Abstract

A new concept is proposed for an optical probe with spatial resolution unlimited by diffraction effects. It is based on optical-field confinement by surface plasmons of a submicrometer-sized metal particle. The particle serves as an antenna that receives an incoming electromagnetic field. The field extends to a nearby sample surface and interacts with a small area on that surface through the nonlinear susceptibility tensors. The induced sample polarization is reradiated by the particle, thereby generating a Raman, a two-photon, or a second-harmonic spectrum. Microscopy is performed by rastering the position of the metal particle over the sample surface. Spatial resolution approaching 1 nm is projected. The concept is also applicable to submicrometer optical lithography and ultrahigh-density optical recording.

© 1985 Optical Society of America

Full Article  |  PDF Article
Related Articles
Relationship between surface-enhanced Raman scattering and the dielectric properties of aggregated silver films

J. G. Bergman, D. S. Chemla, P. F. Liao, A. M. Glass, A. Pinczuk, R. M. Hart, and D. H. Olson
Opt. Lett. 6(1) 33-35 (1981)

Local-field enhancement in an optical force metallic nanotrap: application to single-molecule spectroscopy

Patrick C. Chaumet, Adel Rahmani, and Manuel Nieto-Vesperinas
Appl. Opt. 45(21) 5185-5190 (2006)

Light scattering by a nanoparticle and a dipole placed near a dielectric surface covered by a thin metallic film

Pavel I. Geshev, Ulrich C. Fischer, and Harald Fuchs
Opt. Express 15(21) 13796-13804 (2007)

References

  • View by:
  • |
  • |
  • |

  1. G. Binning, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57 (1982); Appl. Phys. Lett. 40, 178 (1982); G. Binning, H. Rohrer, Surf. Sci. 126, 236 (1983).
    [Crossref]
  2. R. K. Chang, T. E. Furtak, eds., Surface Enhanced Raman Scattering (Plenum, New York, 1982).
    [Crossref]
  3. J. Gersten, A. Nitzan, J. Chem. Phys. 73, 3023 (1980).
    [Crossref]
  4. G. T. Boyd, Th. Rasing, J. R. R. Leite, Y. R. Shen, Phys. Rev. B 30, 519 (1984).
    [Crossref]
  5. A. Wokaun, J. P. Gordon, P. F. Liao, Phys. Rev. Lett. 48, 957 (1982).
    [Crossref]
  6. C. A. Murray, D. L. Allara, M. Rhinewine, Phys. Rev. Lett. 46, 57 (1981).
    [Crossref]
  7. P. W. Barker, R. K. Chang, H. Massoudi, Phys. Rev. Lett. 50, 997 (1983).
    [Crossref]
  8. B. F. Levine, C. V. Shank, J. P. Heritage, IEEE J. Quantum Electron. QE-15, 1418 (1979); B. F. Levine, C. G. Bethea, IEEE J. Quantum Electron. QE-16, 85 (1980); Appl. Phys. Lett. 36, 245 (1980); J. P. Heritage, J. G. Bergman, A. Pinczuk, J. M. Worlock, Chem. Phys. Lett. 67, 229 (1979).
    [Crossref]
  9. Unenhanced spontaneous Raman cross sections range from about 10−31to 10−28cm2. Refer, for example, to J. G. Skinner, W. G. Nilsen, J. Opt. Soc. Am. 58, 113 (1968) for benzene and to Y. R. Shen in Light Scattering in Solids, M. Cardona, ed. (Springer-Verlag, New York, 1975) for other materials.
    [Crossref]
  10. U. Ch. Fischer, J. Vac. Sci. Technol. B 3, 386 (1985); U. Ch. Fischer, H. P. Zingsheim, Appl. Phys. Lett. 40, 195 (1982); J. Vac. Sci. Technol. 19, 881 (1981).
    [Crossref]

1985 (1)

U. Ch. Fischer, J. Vac. Sci. Technol. B 3, 386 (1985); U. Ch. Fischer, H. P. Zingsheim, Appl. Phys. Lett. 40, 195 (1982); J. Vac. Sci. Technol. 19, 881 (1981).
[Crossref]

1984 (1)

G. T. Boyd, Th. Rasing, J. R. R. Leite, Y. R. Shen, Phys. Rev. B 30, 519 (1984).
[Crossref]

1983 (1)

P. W. Barker, R. K. Chang, H. Massoudi, Phys. Rev. Lett. 50, 997 (1983).
[Crossref]

1982 (2)

A. Wokaun, J. P. Gordon, P. F. Liao, Phys. Rev. Lett. 48, 957 (1982).
[Crossref]

G. Binning, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57 (1982); Appl. Phys. Lett. 40, 178 (1982); G. Binning, H. Rohrer, Surf. Sci. 126, 236 (1983).
[Crossref]

1981 (1)

C. A. Murray, D. L. Allara, M. Rhinewine, Phys. Rev. Lett. 46, 57 (1981).
[Crossref]

1980 (1)

J. Gersten, A. Nitzan, J. Chem. Phys. 73, 3023 (1980).
[Crossref]

1979 (1)

B. F. Levine, C. V. Shank, J. P. Heritage, IEEE J. Quantum Electron. QE-15, 1418 (1979); B. F. Levine, C. G. Bethea, IEEE J. Quantum Electron. QE-16, 85 (1980); Appl. Phys. Lett. 36, 245 (1980); J. P. Heritage, J. G. Bergman, A. Pinczuk, J. M. Worlock, Chem. Phys. Lett. 67, 229 (1979).
[Crossref]

1968 (1)

Allara, D. L.

C. A. Murray, D. L. Allara, M. Rhinewine, Phys. Rev. Lett. 46, 57 (1981).
[Crossref]

Barker, P. W.

P. W. Barker, R. K. Chang, H. Massoudi, Phys. Rev. Lett. 50, 997 (1983).
[Crossref]

Binning, G.

G. Binning, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57 (1982); Appl. Phys. Lett. 40, 178 (1982); G. Binning, H. Rohrer, Surf. Sci. 126, 236 (1983).
[Crossref]

Boyd, G. T.

G. T. Boyd, Th. Rasing, J. R. R. Leite, Y. R. Shen, Phys. Rev. B 30, 519 (1984).
[Crossref]

Chang, R. K.

P. W. Barker, R. K. Chang, H. Massoudi, Phys. Rev. Lett. 50, 997 (1983).
[Crossref]

Fischer, U. Ch.

U. Ch. Fischer, J. Vac. Sci. Technol. B 3, 386 (1985); U. Ch. Fischer, H. P. Zingsheim, Appl. Phys. Lett. 40, 195 (1982); J. Vac. Sci. Technol. 19, 881 (1981).
[Crossref]

Gerber, Ch.

G. Binning, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57 (1982); Appl. Phys. Lett. 40, 178 (1982); G. Binning, H. Rohrer, Surf. Sci. 126, 236 (1983).
[Crossref]

Gersten, J.

J. Gersten, A. Nitzan, J. Chem. Phys. 73, 3023 (1980).
[Crossref]

Gordon, J. P.

A. Wokaun, J. P. Gordon, P. F. Liao, Phys. Rev. Lett. 48, 957 (1982).
[Crossref]

Heritage, J. P.

B. F. Levine, C. V. Shank, J. P. Heritage, IEEE J. Quantum Electron. QE-15, 1418 (1979); B. F. Levine, C. G. Bethea, IEEE J. Quantum Electron. QE-16, 85 (1980); Appl. Phys. Lett. 36, 245 (1980); J. P. Heritage, J. G. Bergman, A. Pinczuk, J. M. Worlock, Chem. Phys. Lett. 67, 229 (1979).
[Crossref]

Leite, J. R. R.

G. T. Boyd, Th. Rasing, J. R. R. Leite, Y. R. Shen, Phys. Rev. B 30, 519 (1984).
[Crossref]

Levine, B. F.

B. F. Levine, C. V. Shank, J. P. Heritage, IEEE J. Quantum Electron. QE-15, 1418 (1979); B. F. Levine, C. G. Bethea, IEEE J. Quantum Electron. QE-16, 85 (1980); Appl. Phys. Lett. 36, 245 (1980); J. P. Heritage, J. G. Bergman, A. Pinczuk, J. M. Worlock, Chem. Phys. Lett. 67, 229 (1979).
[Crossref]

Liao, P. F.

A. Wokaun, J. P. Gordon, P. F. Liao, Phys. Rev. Lett. 48, 957 (1982).
[Crossref]

Massoudi, H.

P. W. Barker, R. K. Chang, H. Massoudi, Phys. Rev. Lett. 50, 997 (1983).
[Crossref]

Murray, C. A.

C. A. Murray, D. L. Allara, M. Rhinewine, Phys. Rev. Lett. 46, 57 (1981).
[Crossref]

Nilsen, W. G.

Nitzan, A.

J. Gersten, A. Nitzan, J. Chem. Phys. 73, 3023 (1980).
[Crossref]

Rasing, Th.

G. T. Boyd, Th. Rasing, J. R. R. Leite, Y. R. Shen, Phys. Rev. B 30, 519 (1984).
[Crossref]

Rhinewine, M.

C. A. Murray, D. L. Allara, M. Rhinewine, Phys. Rev. Lett. 46, 57 (1981).
[Crossref]

Rohrer, H.

G. Binning, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57 (1982); Appl. Phys. Lett. 40, 178 (1982); G. Binning, H. Rohrer, Surf. Sci. 126, 236 (1983).
[Crossref]

Shank, C. V.

B. F. Levine, C. V. Shank, J. P. Heritage, IEEE J. Quantum Electron. QE-15, 1418 (1979); B. F. Levine, C. G. Bethea, IEEE J. Quantum Electron. QE-16, 85 (1980); Appl. Phys. Lett. 36, 245 (1980); J. P. Heritage, J. G. Bergman, A. Pinczuk, J. M. Worlock, Chem. Phys. Lett. 67, 229 (1979).
[Crossref]

Shen, Y. R.

G. T. Boyd, Th. Rasing, J. R. R. Leite, Y. R. Shen, Phys. Rev. B 30, 519 (1984).
[Crossref]

Skinner, J. G.

Weibel, E.

G. Binning, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57 (1982); Appl. Phys. Lett. 40, 178 (1982); G. Binning, H. Rohrer, Surf. Sci. 126, 236 (1983).
[Crossref]

Wokaun, A.

A. Wokaun, J. P. Gordon, P. F. Liao, Phys. Rev. Lett. 48, 957 (1982).
[Crossref]

IEEE J. Quantum Electron. (1)

B. F. Levine, C. V. Shank, J. P. Heritage, IEEE J. Quantum Electron. QE-15, 1418 (1979); B. F. Levine, C. G. Bethea, IEEE J. Quantum Electron. QE-16, 85 (1980); Appl. Phys. Lett. 36, 245 (1980); J. P. Heritage, J. G. Bergman, A. Pinczuk, J. M. Worlock, Chem. Phys. Lett. 67, 229 (1979).
[Crossref]

J. Chem. Phys. (1)

J. Gersten, A. Nitzan, J. Chem. Phys. 73, 3023 (1980).
[Crossref]

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol. B (1)

U. Ch. Fischer, J. Vac. Sci. Technol. B 3, 386 (1985); U. Ch. Fischer, H. P. Zingsheim, Appl. Phys. Lett. 40, 195 (1982); J. Vac. Sci. Technol. 19, 881 (1981).
[Crossref]

Phys. Rev. B (1)

G. T. Boyd, Th. Rasing, J. R. R. Leite, Y. R. Shen, Phys. Rev. B 30, 519 (1984).
[Crossref]

Phys. Rev. Lett. (4)

A. Wokaun, J. P. Gordon, P. F. Liao, Phys. Rev. Lett. 48, 957 (1982).
[Crossref]

C. A. Murray, D. L. Allara, M. Rhinewine, Phys. Rev. Lett. 46, 57 (1981).
[Crossref]

P. W. Barker, R. K. Chang, H. Massoudi, Phys. Rev. Lett. 50, 997 (1983).
[Crossref]

G. Binning, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57 (1982); Appl. Phys. Lett. 40, 178 (1982); G. Binning, H. Rohrer, Surf. Sci. 126, 236 (1983).
[Crossref]

Other (1)

R. K. Chang, T. E. Furtak, eds., Surface Enhanced Raman Scattering (Plenum, New York, 1982).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

The optical probe particle (a) intercepts an incident laser beam, of frequency ωin, and concentrates the field in a region adjacent to the sample surface (b). The Raman signal from the sample surface is reradiated into the scattered field at frequency ωout. The surface is scanned by moving the optically transparent probe-tip holder (c) by piezoelectric translators (d).

Fig. 2
Fig. 2

Transverse dependence of coherent Raman enhancement for several values of D/a, where D is the distance from the sample to the center of curvature of the probe tip and a is the radius of curvature at the probe tip.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

G R = 4 π 2 c I p N s σ R l 8 ω s 3 n 1 n 2 ,

Metrics