Abstract
Using photothermal lensing, we have measured two-photon absorption coefficients and have observed laser-induced solarization at 532 nm in the transparent borosilicate glasses BK-3, BK-7, and BK-10. The two-photon absorption coefficients at 532 nm are 0.6, 2.9, and 0.4 cm/TW for BK-3, BK-7, and BK-10, respectively. This is approximately 2 orders of magnitude smaller than the two-photon absorption coefficients of crystalline materials of comparable energy-band gap. Our results in BK-7 indicate that a two-photon processinitiates the solarization and that one-photon bleaching limits it. The maximum induced absorption at 532 nm in BK-7 is approximately 0.07 cm−1 per GW/cm2.
© 1985 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Tables (2)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Equations (14)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Metrics
You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription