Abstract

Using photothermal lensing, we have measured two-photon absorption coefficients and have observed laser-induced solarization at 532 nm in the transparent borosilicate glasses BK-3, BK-7, and BK-10. The two-photon absorption coefficients at 532 nm are 0.6, 2.9, and 0.4 cm/TW for BK-3, BK-7, and BK-10, respectively. This is approximately 2 orders of magnitude smaller than the two-photon absorption coefficients of crystalline materials of comparable energy-band gap. Our results in BK-7 indicate that a two-photon processinitiates the solarization and that one-photon bleaching limits it. The maximum induced absorption at 532 nm in BK-7 is approximately 0.07 cm−1 per GW/cm2.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Twarowski, D. Kliger, “Multiphoton absorption spectra using thermal blooming,” Chem. Phys. 20, 253–264 (1977).
    [CrossRef]
  2. W. L. Smith, C. L. Vercimak, W. E. Warren, “Excited-state-absorption,” J. Opt. Soc. Am. 72, 1782 (A) (1982); W. L. Smith, 1982 Laser Program Annual Rep. UCRL-50021-82 (Lawrence Livermore National Laboratory, Livermore, Calif., 1982), pp. 7.34–7.38.
  3. W. F. Hagen, E. Snitzer, “Nonlinear solarization in flint glasses by intense 0.53 μ m light,” IEEE J. Quantum Electron. QE-4, 361 (1968).
    [CrossRef]
  4. W. L. Smith, 1981 Laser Program Annual Rep. UCRL-50021-81 (Lawrence Livermore National Laboratory, Livermore, Calif., 1982), pp. 7.20–7.24; P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, Phys. Rev. B 17, 4620 (1978).
    [CrossRef]
  5. M. A. Olmstead, N. M. Amer, “A new probe of the optical properties of surfaces,” J. Vac. Sci. Technol. B 1, 751–753 (1983).
    [CrossRef]
  6. W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981).
    [CrossRef] [PubMed]
  7. See, for example, J. Badoz, D. Fournier, eds., “Photoacoustic and photothermal spectroscopy,” J. Phys. (Paris) 44, Colloq. (C6) (1983).
  8. M. Bass, E. W. Van Stryland, A. F. Stewart, “Laser calorimetric measurement of two-photon absorption,” Appl. Phys. Lett. 34(2), 142–144 (1979).
    [CrossRef]
  9. E. A. McLean, L. Sica, A. J. Glass, “Interferometric observation of absorption induced index change associated with thermal blooming,” Appl. Phys. Lett. 13, 369–371 (1968).
    [CrossRef]
  10. M. A. Henesian, A. Rosencwaig, M. J. Weber, 1981 Laser Program Annual Rep. UCRL-50021-81 (Lawrence Livermore National Laboratory, Livermore, Calif., 1981), pp. 7.31–7.33.
  11. M. E. Long, R. L. Swofford, A. C. Albrecht, “Thermal lens technique: a new method of absorption spectroscopy,” Science 19, 183–184 (1976).
    [CrossRef]
  12. See, for example, S. E. Stokowski, R. A. Saroyan, M. J. Weber, “Nd-doped laser glass spectroscopic and physical properties,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1981).
  13. M. J. Weber, D. Milam, W. L. Smith, “Nonlinear retractive index of glasses and crystals,” Opt. Eng. 17, 463–469 (1978).
    [CrossRef]
  14. P. W. Levy, P. L. Mattern, K. Lengweiler, A. M. Bishay, “Studies on nonmetals during irradiation: V, growth and decay of color centers in barium aluminoborate glasses containing cerium,” J. Am. Ceram. Soc. 57, 176–181 (1974).
    [CrossRef]
  15. R. Yokota, “Color centers in alkali silicate and borate glasses,” Phys. Rev. 95, 1145–1148 (1954).
    [CrossRef]
  16. W. B. Fowler, Physics of Color Centers (Academic, New York, 1968), Eq. (2–45).

1983 (2)

M. A. Olmstead, N. M. Amer, “A new probe of the optical properties of surfaces,” J. Vac. Sci. Technol. B 1, 751–753 (1983).
[CrossRef]

See, for example, J. Badoz, D. Fournier, eds., “Photoacoustic and photothermal spectroscopy,” J. Phys. (Paris) 44, Colloq. (C6) (1983).

1982 (1)

W. L. Smith, C. L. Vercimak, W. E. Warren, “Excited-state-absorption,” J. Opt. Soc. Am. 72, 1782 (A) (1982); W. L. Smith, 1982 Laser Program Annual Rep. UCRL-50021-82 (Lawrence Livermore National Laboratory, Livermore, Calif., 1982), pp. 7.34–7.38.

1981 (1)

1979 (1)

M. Bass, E. W. Van Stryland, A. F. Stewart, “Laser calorimetric measurement of two-photon absorption,” Appl. Phys. Lett. 34(2), 142–144 (1979).
[CrossRef]

1978 (1)

M. J. Weber, D. Milam, W. L. Smith, “Nonlinear retractive index of glasses and crystals,” Opt. Eng. 17, 463–469 (1978).
[CrossRef]

1977 (1)

A. J. Twarowski, D. Kliger, “Multiphoton absorption spectra using thermal blooming,” Chem. Phys. 20, 253–264 (1977).
[CrossRef]

1976 (1)

M. E. Long, R. L. Swofford, A. C. Albrecht, “Thermal lens technique: a new method of absorption spectroscopy,” Science 19, 183–184 (1976).
[CrossRef]

1974 (1)

P. W. Levy, P. L. Mattern, K. Lengweiler, A. M. Bishay, “Studies on nonmetals during irradiation: V, growth and decay of color centers in barium aluminoborate glasses containing cerium,” J. Am. Ceram. Soc. 57, 176–181 (1974).
[CrossRef]

1968 (2)

E. A. McLean, L. Sica, A. J. Glass, “Interferometric observation of absorption induced index change associated with thermal blooming,” Appl. Phys. Lett. 13, 369–371 (1968).
[CrossRef]

W. F. Hagen, E. Snitzer, “Nonlinear solarization in flint glasses by intense 0.53 μ m light,” IEEE J. Quantum Electron. QE-4, 361 (1968).
[CrossRef]

1954 (1)

R. Yokota, “Color centers in alkali silicate and borate glasses,” Phys. Rev. 95, 1145–1148 (1954).
[CrossRef]

Albrecht, A. C.

M. E. Long, R. L. Swofford, A. C. Albrecht, “Thermal lens technique: a new method of absorption spectroscopy,” Science 19, 183–184 (1976).
[CrossRef]

Amer, N. M.

M. A. Olmstead, N. M. Amer, “A new probe of the optical properties of surfaces,” J. Vac. Sci. Technol. B 1, 751–753 (1983).
[CrossRef]

W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981).
[CrossRef] [PubMed]

Bass, M.

M. Bass, E. W. Van Stryland, A. F. Stewart, “Laser calorimetric measurement of two-photon absorption,” Appl. Phys. Lett. 34(2), 142–144 (1979).
[CrossRef]

Bishay, A. M.

P. W. Levy, P. L. Mattern, K. Lengweiler, A. M. Bishay, “Studies on nonmetals during irradiation: V, growth and decay of color centers in barium aluminoborate glasses containing cerium,” J. Am. Ceram. Soc. 57, 176–181 (1974).
[CrossRef]

Boccara, A. C.

Fournier, D.

Fowler, W. B.

W. B. Fowler, Physics of Color Centers (Academic, New York, 1968), Eq. (2–45).

Glass, A. J.

E. A. McLean, L. Sica, A. J. Glass, “Interferometric observation of absorption induced index change associated with thermal blooming,” Appl. Phys. Lett. 13, 369–371 (1968).
[CrossRef]

Hagen, W. F.

W. F. Hagen, E. Snitzer, “Nonlinear solarization in flint glasses by intense 0.53 μ m light,” IEEE J. Quantum Electron. QE-4, 361 (1968).
[CrossRef]

Henesian, M. A.

M. A. Henesian, A. Rosencwaig, M. J. Weber, 1981 Laser Program Annual Rep. UCRL-50021-81 (Lawrence Livermore National Laboratory, Livermore, Calif., 1981), pp. 7.31–7.33.

Jackson, W. B.

Kliger, D.

A. J. Twarowski, D. Kliger, “Multiphoton absorption spectra using thermal blooming,” Chem. Phys. 20, 253–264 (1977).
[CrossRef]

Lengweiler, K.

P. W. Levy, P. L. Mattern, K. Lengweiler, A. M. Bishay, “Studies on nonmetals during irradiation: V, growth and decay of color centers in barium aluminoborate glasses containing cerium,” J. Am. Ceram. Soc. 57, 176–181 (1974).
[CrossRef]

Levy, P. W.

P. W. Levy, P. L. Mattern, K. Lengweiler, A. M. Bishay, “Studies on nonmetals during irradiation: V, growth and decay of color centers in barium aluminoborate glasses containing cerium,” J. Am. Ceram. Soc. 57, 176–181 (1974).
[CrossRef]

Long, M. E.

M. E. Long, R. L. Swofford, A. C. Albrecht, “Thermal lens technique: a new method of absorption spectroscopy,” Science 19, 183–184 (1976).
[CrossRef]

Mattern, P. L.

P. W. Levy, P. L. Mattern, K. Lengweiler, A. M. Bishay, “Studies on nonmetals during irradiation: V, growth and decay of color centers in barium aluminoborate glasses containing cerium,” J. Am. Ceram. Soc. 57, 176–181 (1974).
[CrossRef]

McLean, E. A.

E. A. McLean, L. Sica, A. J. Glass, “Interferometric observation of absorption induced index change associated with thermal blooming,” Appl. Phys. Lett. 13, 369–371 (1968).
[CrossRef]

Milam, D.

M. J. Weber, D. Milam, W. L. Smith, “Nonlinear retractive index of glasses and crystals,” Opt. Eng. 17, 463–469 (1978).
[CrossRef]

Olmstead, M. A.

M. A. Olmstead, N. M. Amer, “A new probe of the optical properties of surfaces,” J. Vac. Sci. Technol. B 1, 751–753 (1983).
[CrossRef]

Rosencwaig, A.

M. A. Henesian, A. Rosencwaig, M. J. Weber, 1981 Laser Program Annual Rep. UCRL-50021-81 (Lawrence Livermore National Laboratory, Livermore, Calif., 1981), pp. 7.31–7.33.

Saroyan, R. A.

See, for example, S. E. Stokowski, R. A. Saroyan, M. J. Weber, “Nd-doped laser glass spectroscopic and physical properties,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1981).

Sica, L.

E. A. McLean, L. Sica, A. J. Glass, “Interferometric observation of absorption induced index change associated with thermal blooming,” Appl. Phys. Lett. 13, 369–371 (1968).
[CrossRef]

Smith, W. L.

W. L. Smith, C. L. Vercimak, W. E. Warren, “Excited-state-absorption,” J. Opt. Soc. Am. 72, 1782 (A) (1982); W. L. Smith, 1982 Laser Program Annual Rep. UCRL-50021-82 (Lawrence Livermore National Laboratory, Livermore, Calif., 1982), pp. 7.34–7.38.

M. J. Weber, D. Milam, W. L. Smith, “Nonlinear retractive index of glasses and crystals,” Opt. Eng. 17, 463–469 (1978).
[CrossRef]

W. L. Smith, 1981 Laser Program Annual Rep. UCRL-50021-81 (Lawrence Livermore National Laboratory, Livermore, Calif., 1982), pp. 7.20–7.24; P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, Phys. Rev. B 17, 4620 (1978).
[CrossRef]

Snitzer, E.

W. F. Hagen, E. Snitzer, “Nonlinear solarization in flint glasses by intense 0.53 μ m light,” IEEE J. Quantum Electron. QE-4, 361 (1968).
[CrossRef]

Stewart, A. F.

M. Bass, E. W. Van Stryland, A. F. Stewart, “Laser calorimetric measurement of two-photon absorption,” Appl. Phys. Lett. 34(2), 142–144 (1979).
[CrossRef]

Stokowski, S. E.

See, for example, S. E. Stokowski, R. A. Saroyan, M. J. Weber, “Nd-doped laser glass spectroscopic and physical properties,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1981).

Swofford, R. L.

M. E. Long, R. L. Swofford, A. C. Albrecht, “Thermal lens technique: a new method of absorption spectroscopy,” Science 19, 183–184 (1976).
[CrossRef]

Twarowski, A. J.

A. J. Twarowski, D. Kliger, “Multiphoton absorption spectra using thermal blooming,” Chem. Phys. 20, 253–264 (1977).
[CrossRef]

Van Stryland, E. W.

M. Bass, E. W. Van Stryland, A. F. Stewart, “Laser calorimetric measurement of two-photon absorption,” Appl. Phys. Lett. 34(2), 142–144 (1979).
[CrossRef]

Vercimak, C. L.

W. L. Smith, C. L. Vercimak, W. E. Warren, “Excited-state-absorption,” J. Opt. Soc. Am. 72, 1782 (A) (1982); W. L. Smith, 1982 Laser Program Annual Rep. UCRL-50021-82 (Lawrence Livermore National Laboratory, Livermore, Calif., 1982), pp. 7.34–7.38.

Warren, W. E.

W. L. Smith, C. L. Vercimak, W. E. Warren, “Excited-state-absorption,” J. Opt. Soc. Am. 72, 1782 (A) (1982); W. L. Smith, 1982 Laser Program Annual Rep. UCRL-50021-82 (Lawrence Livermore National Laboratory, Livermore, Calif., 1982), pp. 7.34–7.38.

Weber, M. J.

M. J. Weber, D. Milam, W. L. Smith, “Nonlinear retractive index of glasses and crystals,” Opt. Eng. 17, 463–469 (1978).
[CrossRef]

M. A. Henesian, A. Rosencwaig, M. J. Weber, 1981 Laser Program Annual Rep. UCRL-50021-81 (Lawrence Livermore National Laboratory, Livermore, Calif., 1981), pp. 7.31–7.33.

See, for example, S. E. Stokowski, R. A. Saroyan, M. J. Weber, “Nd-doped laser glass spectroscopic and physical properties,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1981).

Yokota, R.

R. Yokota, “Color centers in alkali silicate and borate glasses,” Phys. Rev. 95, 1145–1148 (1954).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Bass, E. W. Van Stryland, A. F. Stewart, “Laser calorimetric measurement of two-photon absorption,” Appl. Phys. Lett. 34(2), 142–144 (1979).
[CrossRef]

E. A. McLean, L. Sica, A. J. Glass, “Interferometric observation of absorption induced index change associated with thermal blooming,” Appl. Phys. Lett. 13, 369–371 (1968).
[CrossRef]

Chem. Phys. (1)

A. J. Twarowski, D. Kliger, “Multiphoton absorption spectra using thermal blooming,” Chem. Phys. 20, 253–264 (1977).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. F. Hagen, E. Snitzer, “Nonlinear solarization in flint glasses by intense 0.53 μ m light,” IEEE J. Quantum Electron. QE-4, 361 (1968).
[CrossRef]

J. Am. Ceram. Soc. (1)

P. W. Levy, P. L. Mattern, K. Lengweiler, A. M. Bishay, “Studies on nonmetals during irradiation: V, growth and decay of color centers in barium aluminoborate glasses containing cerium,” J. Am. Ceram. Soc. 57, 176–181 (1974).
[CrossRef]

J. Opt. Soc. Am. (1)

W. L. Smith, C. L. Vercimak, W. E. Warren, “Excited-state-absorption,” J. Opt. Soc. Am. 72, 1782 (A) (1982); W. L. Smith, 1982 Laser Program Annual Rep. UCRL-50021-82 (Lawrence Livermore National Laboratory, Livermore, Calif., 1982), pp. 7.34–7.38.

J. Phys. (Paris) (1)

See, for example, J. Badoz, D. Fournier, eds., “Photoacoustic and photothermal spectroscopy,” J. Phys. (Paris) 44, Colloq. (C6) (1983).

J. Vac. Sci. Technol. B (1)

M. A. Olmstead, N. M. Amer, “A new probe of the optical properties of surfaces,” J. Vac. Sci. Technol. B 1, 751–753 (1983).
[CrossRef]

Opt. Eng. (1)

M. J. Weber, D. Milam, W. L. Smith, “Nonlinear retractive index of glasses and crystals,” Opt. Eng. 17, 463–469 (1978).
[CrossRef]

Phys. Rev. (1)

R. Yokota, “Color centers in alkali silicate and borate glasses,” Phys. Rev. 95, 1145–1148 (1954).
[CrossRef]

Science (1)

M. E. Long, R. L. Swofford, A. C. Albrecht, “Thermal lens technique: a new method of absorption spectroscopy,” Science 19, 183–184 (1976).
[CrossRef]

Other (4)

See, for example, S. E. Stokowski, R. A. Saroyan, M. J. Weber, “Nd-doped laser glass spectroscopic and physical properties,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1981).

W. B. Fowler, Physics of Color Centers (Academic, New York, 1968), Eq. (2–45).

M. A. Henesian, A. Rosencwaig, M. J. Weber, 1981 Laser Program Annual Rep. UCRL-50021-81 (Lawrence Livermore National Laboratory, Livermore, Calif., 1981), pp. 7.31–7.33.

W. L. Smith, 1981 Laser Program Annual Rep. UCRL-50021-81 (Lawrence Livermore National Laboratory, Livermore, Calif., 1982), pp. 7.20–7.24; P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, Phys. Rev. B 17, 4620 (1978).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Layout for two-beam photothermal-lensing experiments. (H, half-wave plate; P, Glan polarizer, A1–A3, apertures; L1–L3, lenses; BS1–BS3, beam splitters; W0, plane of probe-beam waist; F1 and F2, optical filters; S′, equivalent sample plane for beam diagnostics.)

Fig. 2
Fig. 2

Temporal profile of second-harmonic pump beam from Nd:YAG laser. Average of 32 consecutive pulses.

Fig. 3
Fig. 3

Spatial profile of second-harmonic pump beam obtained from video-image analysis system. Average of 32 consecutive pulses.

Fig. 4
Fig. 4

Thermal-lensing signal versus axial fluence squared for BK-3, BK-7, and BK-10 glasses. The data are normalized by sample thickness.

Fig. 5
Fig. 5

Induced linear absorbance in solarized BK-7 glass as a function of wavelength. The unsolarized BK-7 spectrum has been subtracted out. (See text for conditions of irradiation.)

Fig. 6
Fig. 6

Solarization-induced linear absorption α(N) in BK-7 as a function of number of laser pulses N at axial fluences of 12, 16, and 26 J/cm2.

Fig. 7
Fig. 7

Steady-state values of solarization-induced absorption α(∞) as a function of axial fluence.

Fig. 8
Fig. 8

Approximation of solarization growth as a multiexponential process. The data come from Fig. 5, 12 J/cm2.

Tables (2)

Tables Icon

Table 1 Temperature Derivative of Optical Path Length and Specific Heat of BK-3, BK-7, and BK-10 at Constant External Pressure and 300 K

Tables Icon

Table 2 Measured Two-Photon Absorption Coefficients at 532 nm (2ω = 4.67 eV) and Approximate Band-Edge Energies (Electron Volts) for BK-3, BK-7, and BK-10

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

1 / f = 1 / f 0 ( 1 + 2 m t / t c ) 2 .
1 / f 0 = 4 m ( 1 - η ) Γ m H ( m ) β ( m ) w p 2 C p ( n l - l ) T
t c = w p 2 / 4 D .
H ( m ) = 0 ( I p ( t ) / Γ ) m d t .
I 2 ( 1 / f ) = I 1 ( 1 + z R 1 - z f ) 2 + ( z λ π w 1 2 ) 2 ,
S = 2 π λ ( n l - l ) T β ( m ) Γ m H ( m ) ( 1 - η ) C p G ( t ) ,
G ( t ) = B 4 m w 1 2 / w p 2 ( 1 + B 2 ) ( 1 + 2 m t / t c ) ,
B = π w 1 2 λ ( 1 / R 1 + 1 / z ) .
G ( t ) = B 4 m w 1 2 / w p 2 ( 1 + 2 m w 1 2 / w p 2 + 2 m t / t c ) 2 + B 2 ( 1 + 2 m t / t c ) 1 / 2 .
N ˙ c c = N ˙ c c + - N ˙ c c - .
N ˙ c c + = a H ( 2 ) Γ 2 ( N 0 - N c c ) a H ( 2 ) Γ 2 N 0 .
N ˙ c c - = b Γ N c c .
N c c = a b H ( 2 ) Γ N 0 .
N c c = 0.8 × 10 15 H ( 2 ) Γ ,

Metrics