Abstract

The absorption spectrum of atomic xenon in the wavelength region 922–1296 Å has been investigated with a 6.65-m vacuum spectrograph. The expected five ns and nd Rydberg series have been observed. The series have been extended as far as n = 66 for nd(3/2)1 and n = 65 for nd(3/2)1. The ionization energies obtained are 97 833.7 and 108 370.8 cm−1 for 2P3/2 and 2P1/2 states of Xe ii, respectively. Absolute term values for xenon have been reevaluated.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Beutler, “Über Absorptionsserien von Argon Krypton und Xenon in Termen zwischen den beiden Ionisierungsgrenzen 2P3/2und 2P1/2,” Z. Phys. 93, 177 (1935).
    [Crossref]
  2. K. Yoshino, “Absorption spectrum of the argon atom in the vacuum-ultraviolet region,” J. Opt. Soc. Am. 60, 1220 (1970).
    [Crossref]
  3. K. Yoshino and Y. Tanaka, “Absorption spectrum of krypton in the vacuum UV region,” J. Opt. Soc. Am. 69, 159 (1979).
    [Crossref]
  4. M. A. Baig and J. P. Connerade, “Centrifugal barrier effects in the high Rydberg states and autoionizing resonances of neon,” J. Phys. B 17, 1785 (1984).
    [Crossref]
  5. R. E. Huffman, Y. Tanaka, and J. C. Larrabee, “Absorption coefficient of Xe and Ar in the 600–1025 Å wavelength region,” J. Chem. Phys. 39, 902 (1963).
    [Crossref]
  6. P. H. Metzger and G. R. Cook, “Flux distribution of the Hopfield helium continuum from the photoionization of Ar, Kr, and Xe,” J. Opt. Soc. Am. 55, 516 (1965).
    [Crossref]
  7. F. M. Matsunaga, R. S. Jackson, and K. Watanabe, “Photoionization yield and absorption coefficient of xenon in the region of 860–1022 Å,” J. Quant. Spectrosc. Radiat. Transfer 5, 329 (1965).
    [Crossref]
  8. K. D. Bonin, T. J. McIlrath, and K. Yoshino, “High-resolution laser and classical spectroscopy of xenon autoionization,” J. Opt. Soc. Am. B 2, 1275 (1985).
    [Crossref]
  9. B. Petersson, “Remeasured Ne i, Ar i, Kr i, and Xe i lines in the vacuum ultraviolet,” Arkiv Fys. 27, 317 (1964).
  10. C. E. Moore, Atomic Energy Levels, Vol. III (National Bureau of Standards, Washington, D.C., 1958).
  11. C.J. Humphreys and E. Paul, “Interferometric wavelength determinations in the first spectrum of 136Xe,” J. Opt. Soc. Am. 60, 1302 (1970).
    [Crossref]
  12. J. D. Boyce, “The spectra of xenon in the extreme ultraviolet,” Phys. Rev. 49, 730 (1936).
    [Crossref]
  13. V. Kaufman and B. Edlén, “Reference wavelengths from atomic spectra in the range 15 Å to 25000 Å,” J. Phys. Chem. Ref. Data 3, 825 (1974).
    [Crossref]
  14. C. E. Moore, Ionization Potentials and Ionization Limits Derived from the Analyses of Optical Spectra, NSRDS-NBS 34 (U.S. Government. Printing Office, Washington, D.C., 1970).
  15. B. Edlén, “Magnetic-dipole transitions in the configurations 5p5, 5p4,and 6p5of xenon and radon,” Phys. Rev. 65, 248 (1944).
    [Crossref]
  16. K. T. Lu and U. Fano, “Graphic analysis of perturbed Rydberg series,” Phys. Rev. A 2, 81 (1970).
    [Crossref]
  17. K. T. Lu, “Spectroscopy and collision theory, the Xe absorption spectrum,” Phys. Rev. A 4, 579 (1971).
    [Crossref]
  18. W. R. Johnson, K. T. Cheng, K.-N. Huang, and M. Le Dourneuf, “Analysis of Beutler–Fano autionizing resonances in the rare gas atoms using the relativistic multichannel quantum-defect theory,” Phys. Rev. A 22, 989 (1980).
    [Crossref]
  19. J. Geiger, “Energy loss spectra of xenon and krypton and their analysis by energy-dependent multichannel quantum defect theory,” Z. Phys. A 282, 129 (1977).
    [Crossref]
  20. L. Minnhagen, “Spectrum and the energy levels of neutral argon, Ar i,” J. Opt. Soc. Am. 63, 1185 (1973).
    [Crossref]

1985 (1)

1984 (1)

M. A. Baig and J. P. Connerade, “Centrifugal barrier effects in the high Rydberg states and autoionizing resonances of neon,” J. Phys. B 17, 1785 (1984).
[Crossref]

1980 (1)

W. R. Johnson, K. T. Cheng, K.-N. Huang, and M. Le Dourneuf, “Analysis of Beutler–Fano autionizing resonances in the rare gas atoms using the relativistic multichannel quantum-defect theory,” Phys. Rev. A 22, 989 (1980).
[Crossref]

1979 (1)

1977 (1)

J. Geiger, “Energy loss spectra of xenon and krypton and their analysis by energy-dependent multichannel quantum defect theory,” Z. Phys. A 282, 129 (1977).
[Crossref]

1974 (1)

V. Kaufman and B. Edlén, “Reference wavelengths from atomic spectra in the range 15 Å to 25000 Å,” J. Phys. Chem. Ref. Data 3, 825 (1974).
[Crossref]

1973 (1)

1971 (1)

K. T. Lu, “Spectroscopy and collision theory, the Xe absorption spectrum,” Phys. Rev. A 4, 579 (1971).
[Crossref]

1970 (3)

1965 (2)

P. H. Metzger and G. R. Cook, “Flux distribution of the Hopfield helium continuum from the photoionization of Ar, Kr, and Xe,” J. Opt. Soc. Am. 55, 516 (1965).
[Crossref]

F. M. Matsunaga, R. S. Jackson, and K. Watanabe, “Photoionization yield and absorption coefficient of xenon in the region of 860–1022 Å,” J. Quant. Spectrosc. Radiat. Transfer 5, 329 (1965).
[Crossref]

1964 (1)

B. Petersson, “Remeasured Ne i, Ar i, Kr i, and Xe i lines in the vacuum ultraviolet,” Arkiv Fys. 27, 317 (1964).

1963 (1)

R. E. Huffman, Y. Tanaka, and J. C. Larrabee, “Absorption coefficient of Xe and Ar in the 600–1025 Å wavelength region,” J. Chem. Phys. 39, 902 (1963).
[Crossref]

1944 (1)

B. Edlén, “Magnetic-dipole transitions in the configurations 5p5, 5p4,and 6p5of xenon and radon,” Phys. Rev. 65, 248 (1944).
[Crossref]

1936 (1)

J. D. Boyce, “The spectra of xenon in the extreme ultraviolet,” Phys. Rev. 49, 730 (1936).
[Crossref]

1935 (1)

H. Beutler, “Über Absorptionsserien von Argon Krypton und Xenon in Termen zwischen den beiden Ionisierungsgrenzen 2P3/2und 2P1/2,” Z. Phys. 93, 177 (1935).
[Crossref]

Baig, M. A.

M. A. Baig and J. P. Connerade, “Centrifugal barrier effects in the high Rydberg states and autoionizing resonances of neon,” J. Phys. B 17, 1785 (1984).
[Crossref]

Beutler, H.

H. Beutler, “Über Absorptionsserien von Argon Krypton und Xenon in Termen zwischen den beiden Ionisierungsgrenzen 2P3/2und 2P1/2,” Z. Phys. 93, 177 (1935).
[Crossref]

Bonin, K. D.

Boyce, J. D.

J. D. Boyce, “The spectra of xenon in the extreme ultraviolet,” Phys. Rev. 49, 730 (1936).
[Crossref]

Cheng, K. T.

W. R. Johnson, K. T. Cheng, K.-N. Huang, and M. Le Dourneuf, “Analysis of Beutler–Fano autionizing resonances in the rare gas atoms using the relativistic multichannel quantum-defect theory,” Phys. Rev. A 22, 989 (1980).
[Crossref]

Connerade, J. P.

M. A. Baig and J. P. Connerade, “Centrifugal barrier effects in the high Rydberg states and autoionizing resonances of neon,” J. Phys. B 17, 1785 (1984).
[Crossref]

Cook, G. R.

Edlén, B.

V. Kaufman and B. Edlén, “Reference wavelengths from atomic spectra in the range 15 Å to 25000 Å,” J. Phys. Chem. Ref. Data 3, 825 (1974).
[Crossref]

B. Edlén, “Magnetic-dipole transitions in the configurations 5p5, 5p4,and 6p5of xenon and radon,” Phys. Rev. 65, 248 (1944).
[Crossref]

Fano, U.

K. T. Lu and U. Fano, “Graphic analysis of perturbed Rydberg series,” Phys. Rev. A 2, 81 (1970).
[Crossref]

Geiger, J.

J. Geiger, “Energy loss spectra of xenon and krypton and their analysis by energy-dependent multichannel quantum defect theory,” Z. Phys. A 282, 129 (1977).
[Crossref]

Huang, K.-N.

W. R. Johnson, K. T. Cheng, K.-N. Huang, and M. Le Dourneuf, “Analysis of Beutler–Fano autionizing resonances in the rare gas atoms using the relativistic multichannel quantum-defect theory,” Phys. Rev. A 22, 989 (1980).
[Crossref]

Huffman, R. E.

R. E. Huffman, Y. Tanaka, and J. C. Larrabee, “Absorption coefficient of Xe and Ar in the 600–1025 Å wavelength region,” J. Chem. Phys. 39, 902 (1963).
[Crossref]

Humphreys, C.J.

Jackson, R. S.

F. M. Matsunaga, R. S. Jackson, and K. Watanabe, “Photoionization yield and absorption coefficient of xenon in the region of 860–1022 Å,” J. Quant. Spectrosc. Radiat. Transfer 5, 329 (1965).
[Crossref]

Johnson, W. R.

W. R. Johnson, K. T. Cheng, K.-N. Huang, and M. Le Dourneuf, “Analysis of Beutler–Fano autionizing resonances in the rare gas atoms using the relativistic multichannel quantum-defect theory,” Phys. Rev. A 22, 989 (1980).
[Crossref]

Kaufman, V.

V. Kaufman and B. Edlén, “Reference wavelengths from atomic spectra in the range 15 Å to 25000 Å,” J. Phys. Chem. Ref. Data 3, 825 (1974).
[Crossref]

Larrabee, J. C.

R. E. Huffman, Y. Tanaka, and J. C. Larrabee, “Absorption coefficient of Xe and Ar in the 600–1025 Å wavelength region,” J. Chem. Phys. 39, 902 (1963).
[Crossref]

Le Dourneuf, M.

W. R. Johnson, K. T. Cheng, K.-N. Huang, and M. Le Dourneuf, “Analysis of Beutler–Fano autionizing resonances in the rare gas atoms using the relativistic multichannel quantum-defect theory,” Phys. Rev. A 22, 989 (1980).
[Crossref]

Lu, K. T.

K. T. Lu, “Spectroscopy and collision theory, the Xe absorption spectrum,” Phys. Rev. A 4, 579 (1971).
[Crossref]

K. T. Lu and U. Fano, “Graphic analysis of perturbed Rydberg series,” Phys. Rev. A 2, 81 (1970).
[Crossref]

Matsunaga, F. M.

F. M. Matsunaga, R. S. Jackson, and K. Watanabe, “Photoionization yield and absorption coefficient of xenon in the region of 860–1022 Å,” J. Quant. Spectrosc. Radiat. Transfer 5, 329 (1965).
[Crossref]

McIlrath, T. J.

Metzger, P. H.

Minnhagen, L.

Moore, C. E.

C. E. Moore, Atomic Energy Levels, Vol. III (National Bureau of Standards, Washington, D.C., 1958).

C. E. Moore, Ionization Potentials and Ionization Limits Derived from the Analyses of Optical Spectra, NSRDS-NBS 34 (U.S. Government. Printing Office, Washington, D.C., 1970).

Paul, E.

Petersson, B.

B. Petersson, “Remeasured Ne i, Ar i, Kr i, and Xe i lines in the vacuum ultraviolet,” Arkiv Fys. 27, 317 (1964).

Tanaka, Y.

K. Yoshino and Y. Tanaka, “Absorption spectrum of krypton in the vacuum UV region,” J. Opt. Soc. Am. 69, 159 (1979).
[Crossref]

R. E. Huffman, Y. Tanaka, and J. C. Larrabee, “Absorption coefficient of Xe and Ar in the 600–1025 Å wavelength region,” J. Chem. Phys. 39, 902 (1963).
[Crossref]

Watanabe, K.

F. M. Matsunaga, R. S. Jackson, and K. Watanabe, “Photoionization yield and absorption coefficient of xenon in the region of 860–1022 Å,” J. Quant. Spectrosc. Radiat. Transfer 5, 329 (1965).
[Crossref]

Yoshino, K.

Arkiv Fys. (1)

B. Petersson, “Remeasured Ne i, Ar i, Kr i, and Xe i lines in the vacuum ultraviolet,” Arkiv Fys. 27, 317 (1964).

J. Chem. Phys. (1)

R. E. Huffman, Y. Tanaka, and J. C. Larrabee, “Absorption coefficient of Xe and Ar in the 600–1025 Å wavelength region,” J. Chem. Phys. 39, 902 (1963).
[Crossref]

J. Opt. Soc. Am. (5)

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

M. A. Baig and J. P. Connerade, “Centrifugal barrier effects in the high Rydberg states and autoionizing resonances of neon,” J. Phys. B 17, 1785 (1984).
[Crossref]

J. Phys. Chem. Ref. Data (1)

V. Kaufman and B. Edlén, “Reference wavelengths from atomic spectra in the range 15 Å to 25000 Å,” J. Phys. Chem. Ref. Data 3, 825 (1974).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

F. M. Matsunaga, R. S. Jackson, and K. Watanabe, “Photoionization yield and absorption coefficient of xenon in the region of 860–1022 Å,” J. Quant. Spectrosc. Radiat. Transfer 5, 329 (1965).
[Crossref]

Phys. Rev. (2)

J. D. Boyce, “The spectra of xenon in the extreme ultraviolet,” Phys. Rev. 49, 730 (1936).
[Crossref]

B. Edlén, “Magnetic-dipole transitions in the configurations 5p5, 5p4,and 6p5of xenon and radon,” Phys. Rev. 65, 248 (1944).
[Crossref]

Phys. Rev. A (3)

K. T. Lu and U. Fano, “Graphic analysis of perturbed Rydberg series,” Phys. Rev. A 2, 81 (1970).
[Crossref]

K. T. Lu, “Spectroscopy and collision theory, the Xe absorption spectrum,” Phys. Rev. A 4, 579 (1971).
[Crossref]

W. R. Johnson, K. T. Cheng, K.-N. Huang, and M. Le Dourneuf, “Analysis of Beutler–Fano autionizing resonances in the rare gas atoms using the relativistic multichannel quantum-defect theory,” Phys. Rev. A 22, 989 (1980).
[Crossref]

Z. Phys. (1)

H. Beutler, “Über Absorptionsserien von Argon Krypton und Xenon in Termen zwischen den beiden Ionisierungsgrenzen 2P3/2und 2P1/2,” Z. Phys. 93, 177 (1935).
[Crossref]

Z. Phys. A (1)

J. Geiger, “Energy loss spectra of xenon and krypton and their analysis by energy-dependent multichannel quantum defect theory,” Z. Phys. A 282, 129 (1977).
[Crossref]

Other (2)

C. E. Moore, Ionization Potentials and Ionization Limits Derived from the Analyses of Optical Spectra, NSRDS-NBS 34 (U.S. Government. Printing Office, Washington, D.C., 1970).

C. E. Moore, Atomic Energy Levels, Vol. III (National Bureau of Standards, Washington, D.C., 1958).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Rydberg series of xenon: A, converging to the first ionization limit, 2P3/2 of Xe ii; and B, converging to the second ionization limit, 2P1/2 of Xe ii. Photographed with a 6.65-m VUV spectrograph in the second order; 0.010-mm slit width.

Fig. 2
Fig. 2

Densitometer traces of xenon absorption spectrum near 925 Å. d′ series show a characteristic broadening of the Beutler–Fano type, while ns′ series lines remain rather sharp. Intensities of ns′ lines diminish rapidly with increasing n.

Fig. 3
Fig. 3

Calculated ionization limit from observed levels of the n d ( 3 / 2 ) 1 and assumed values of a =0.70, 0.79, 0.80, and 0.90. The higher members are shown only for a = 0.79. Slight upward shifts at m = 37–44 are due to overlapping n s ( 3 / 2 ) 1 series lines.

Tables (7)

Tables Icon

Table 1 5p5nd[3/2]1–5p6 1S0 Series

Tables Icon

Table 2 5p5nd[1/2]1–5p6 1S0 Series

Tables Icon

Table 3 5p5ns[3/2]1–5p6 1S0 Series

Tables Icon

Table 4 5p5nd′[3/2]1–5p6 1S0 Series

Tables Icon

Table 5 5p5ns′[1/2]1–5p6 1S0 Series

Tables Icon

Table 6 Differences of Energy Levels (cm−1) of Xenon from those of HP-70 and the Reevaluated Term Values (cm−1) and Wavelength (Å)

Tables Icon

Table 7 Ionization Potential and Spin-Spiltting Interval (cm−1)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T = T obs + R / ( m + a ) 2

Metrics