Abstract

Multiple-quantum-well (MQW) structures of GaAs and GaAlAs have been used for passive mode locking of commercial GaAs semiconductor diode lasers. We present an extended discussion of this application of the sensitive room-temperature excitonic absorption saturation in MQW material. We review the criteria for passive mode locking and discuss two methods—carrier diffusion and proton bombardment—for reducing the aborption recovery time without destroying the excitonic nonlinearity. A simple probabilistic theory is derived for the effect of bombardment on the excitonic effects that is in order-of-magnitude agreement with experiment. We have performed experiments using MQW material to mode lock a GaAs laser. A continuous train of pulses as narrow as 1.6 psec has been obtained with a pulse-repetition rate of 2 GHz.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Silberberg, P. W. Smith, D. J. Eilenberger, D. A. B. Miller, A. C. Gossard, and W. Wiegmann, “Passive mode locking of a semiconductor dye laser,” Opt. Lett. 9, 507–509 (1984).
    [Crossref] [PubMed]
  2. V. N. Morozov, V. V. Nikitin, and A. A. Sheronov, “Self-synchronization of modes in a GaAs semiconductor injection laser,” JETP Lett. 7, 256–258 (1968).
  3. O. V. Bogdankevich, A. N. Mestvirishvili, A. N. Pechenov, and A. F. Suchkov, “Mode-locking in a semiconductor laser with electronic excitation of an internal nonlinear active medium,” JETP Lett. 12, 128–129 (1970).
  4. E. P. Ippen, D. J. Eilenberger, and R. W. Dixon, “Picosecond pulse generation by passive mode-locking of diode lasers,” Appl. Phys. Lett. 37, 267–270 (1980);“Picosecond pulse generation with diode lasers” in Picosecond Phenomena II, R. Hochstrasser, W. Kaiser, and C. V. Shank, eds (Springer-Verlag, New York, 1980), pp. 21–25.
    [Crossref]
  5. J. P. van der Ziel, W. T. Tsang, R. A. Logan, R. M. Mikulyak, and W. M. Augustyniak, “Subpicosecond pulses from passively mode-locked GaAs buried optical guide semiconductor lasers,” Appl. Phys. Lett. 39, 525–527 (1981).
    [Crossref]
  6. H. Yokoyama, H. Ito, and H. Inaba, “Generation of subpicosecond coherent optical pulses by passive mode-locking of an AlGaAs diode laser,” Appl. Phys. Lett. 42, 105–107 (1982).
    [Crossref]
  7. C. Harder, J. S. Smith, K. Y. Lau, and A. Yariv, “Passive mode-locking of buried heterostructure lasers with nonuniform current injection,” Appl. Phys. Lett. 42, 772–774 (1983).
    [Crossref]
  8. See, for example, D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Large room-temperature optical nonlinearity in GaAs/GalAs multiple quantum well structures,” Appl. Phys. Lett. 41, 679–681 (1982);D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/GaAlAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984);D. S. Chemla and D. A. B. Miller, “Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures,” J. Opt. Soc. Am. B 2, 1155–1173 (1985).
    [Crossref]
  9. See, for example, P. W. Smith, M. A. Duguay, and E. P. Ippen, “Mode-locking of lasers” in Progress in Quantum Electronics, J. H. Sanders and S. Stenholm, eds (Pergamon, New York, 1974), Vol.3, pp. 107–229.
    [Crossref]
  10. H. A. Haus, “Theory of mode-locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975).
    [Crossref]
  11. G H C. New, “Pulse evolution in mode-locked quasi-continuous laser,” IEEE J. Quantum Electron. QE-10, 115–124 (1974).
    [Crossref]
  12. H. A. Haus, “Theory of mode-locking with a slow saturable absorber,” IEEE J. Quantum Electron. QE-11, 736–746 (1975).
    [Crossref]
  13. Recently, it was demonstrated that a fast component to MQW saturation may have an effect on mode-locking behavior.See, for example, H. A. Haus and Y. Silberberg, “Theory of mode-locking of a laser diode with a Multiple-quantum-well structure,” J. Opt. Soc. Am. B 2, 1237–1243 (1985).
    [Crossref]
  14. W. Lenth, “Picosecond gain measurements in a GaAlAs diode laser,” Opt. Lett. 9, 396–398 (1984).
    [Crossref] [PubMed]
  15. See, for example, P. R. Smith, D. H. Auston, A. M. Johnson, and W. M. Augustyniak, “Picosecond photoconductivity in radiation-damaged silicon-on-sapphire films,” Appl. Phys. Lett. 38, 47–50 (1981).
    [Crossref]
  16. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum well structures,” Phys. Rev. B (to be published).
  17. Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 16, 701–703 (1985).
    [Crossref]
  18. I. P. Kaminouw, G. Eisenstein, and L. W. Stulz, “Measurement of the modal reflectivity of an antireflection coating on a super-luminescent diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1983)
    [Crossref]
  19. W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond dynamics of nonequilibrium correlated electron-hole pair distributions in room-temperature GaAs multiple quantum well structures,” in Ultrafast Phenomena IV, D. H. Auston and K. B. Eisenthal, eds. (Springer-Verlag, New York, 1984), pp. 162–165;“Femtosecond dynamics of resonantly excited excitons in room-temperature GaAs quantum wells,” Phys. Rev. Lett. 54, 1306–1309 (1985).
    [Crossref] [PubMed]
  20. O. E. Martinez, R. L. Fork, and J. P. Gordon, “Theory of passively mode-locked lasers including self–phase modulation and group velocity dispersion,” Opt. Lett. 9, 156–158 (1984).
    [Crossref] [PubMed]
  21. O. E. Martinez, R. L. Fork, and J. P. Gordon, “Theory of passively modelocked lasers for the case of a nonlinear complex propagation coefficient,” J. Opt. Soc. Am. B2 (to be published).
  22. J. A. Valdmanis, R. L. Fork, and J. P. Gordon, “Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation, group-velocity dispersion, saturable absorption, and saturable gain,” Opt. Lett. 10, 131–133 (1985).
    [Crossref] [PubMed]
  23. D. E. Aspnes, S. M. Kelso, C. G. Olson, and D. W. Lynch, “Direct determination of sizes of excitations from optical measurements on ion-implanted GaAs,” Phys. Rev. Lett. 48, 1863–1866 (1982)
    [Crossref]

1985 (3)

1984 (3)

1983 (2)

C. Harder, J. S. Smith, K. Y. Lau, and A. Yariv, “Passive mode-locking of buried heterostructure lasers with nonuniform current injection,” Appl. Phys. Lett. 42, 772–774 (1983).
[Crossref]

I. P. Kaminouw, G. Eisenstein, and L. W. Stulz, “Measurement of the modal reflectivity of an antireflection coating on a super-luminescent diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1983)
[Crossref]

1982 (3)

H. Yokoyama, H. Ito, and H. Inaba, “Generation of subpicosecond coherent optical pulses by passive mode-locking of an AlGaAs diode laser,” Appl. Phys. Lett. 42, 105–107 (1982).
[Crossref]

See, for example, D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Large room-temperature optical nonlinearity in GaAs/GalAs multiple quantum well structures,” Appl. Phys. Lett. 41, 679–681 (1982);D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/GaAlAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984);D. S. Chemla and D. A. B. Miller, “Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures,” J. Opt. Soc. Am. B 2, 1155–1173 (1985).
[Crossref]

D. E. Aspnes, S. M. Kelso, C. G. Olson, and D. W. Lynch, “Direct determination of sizes of excitations from optical measurements on ion-implanted GaAs,” Phys. Rev. Lett. 48, 1863–1866 (1982)
[Crossref]

1981 (2)

J. P. van der Ziel, W. T. Tsang, R. A. Logan, R. M. Mikulyak, and W. M. Augustyniak, “Subpicosecond pulses from passively mode-locked GaAs buried optical guide semiconductor lasers,” Appl. Phys. Lett. 39, 525–527 (1981).
[Crossref]

See, for example, P. R. Smith, D. H. Auston, A. M. Johnson, and W. M. Augustyniak, “Picosecond photoconductivity in radiation-damaged silicon-on-sapphire films,” Appl. Phys. Lett. 38, 47–50 (1981).
[Crossref]

1980 (1)

E. P. Ippen, D. J. Eilenberger, and R. W. Dixon, “Picosecond pulse generation by passive mode-locking of diode lasers,” Appl. Phys. Lett. 37, 267–270 (1980);“Picosecond pulse generation with diode lasers” in Picosecond Phenomena II, R. Hochstrasser, W. Kaiser, and C. V. Shank, eds (Springer-Verlag, New York, 1980), pp. 21–25.
[Crossref]

1975 (2)

H. A. Haus, “Theory of mode-locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975).
[Crossref]

H. A. Haus, “Theory of mode-locking with a slow saturable absorber,” IEEE J. Quantum Electron. QE-11, 736–746 (1975).
[Crossref]

1974 (1)

G H C. New, “Pulse evolution in mode-locked quasi-continuous laser,” IEEE J. Quantum Electron. QE-10, 115–124 (1974).
[Crossref]

1970 (1)

O. V. Bogdankevich, A. N. Mestvirishvili, A. N. Pechenov, and A. F. Suchkov, “Mode-locking in a semiconductor laser with electronic excitation of an internal nonlinear active medium,” JETP Lett. 12, 128–129 (1970).

1968 (1)

V. N. Morozov, V. V. Nikitin, and A. A. Sheronov, “Self-synchronization of modes in a GaAs semiconductor injection laser,” JETP Lett. 7, 256–258 (1968).

Aspnes, D. E.

D. E. Aspnes, S. M. Kelso, C. G. Olson, and D. W. Lynch, “Direct determination of sizes of excitations from optical measurements on ion-implanted GaAs,” Phys. Rev. Lett. 48, 1863–1866 (1982)
[Crossref]

Augustyniak, W. M.

See, for example, P. R. Smith, D. H. Auston, A. M. Johnson, and W. M. Augustyniak, “Picosecond photoconductivity in radiation-damaged silicon-on-sapphire films,” Appl. Phys. Lett. 38, 47–50 (1981).
[Crossref]

J. P. van der Ziel, W. T. Tsang, R. A. Logan, R. M. Mikulyak, and W. M. Augustyniak, “Subpicosecond pulses from passively mode-locked GaAs buried optical guide semiconductor lasers,” Appl. Phys. Lett. 39, 525–527 (1981).
[Crossref]

Auston, D. H.

See, for example, P. R. Smith, D. H. Auston, A. M. Johnson, and W. M. Augustyniak, “Picosecond photoconductivity in radiation-damaged silicon-on-sapphire films,” Appl. Phys. Lett. 38, 47–50 (1981).
[Crossref]

Bogdankevich, O. V.

O. V. Bogdankevich, A. N. Mestvirishvili, A. N. Pechenov, and A. F. Suchkov, “Mode-locking in a semiconductor laser with electronic excitation of an internal nonlinear active medium,” JETP Lett. 12, 128–129 (1970).

Burrus, C. A.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum well structures,” Phys. Rev. B (to be published).

Chemla, D. S.

See, for example, D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Large room-temperature optical nonlinearity in GaAs/GalAs multiple quantum well structures,” Appl. Phys. Lett. 41, 679–681 (1982);D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/GaAlAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984);D. S. Chemla and D. A. B. Miller, “Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures,” J. Opt. Soc. Am. B 2, 1155–1173 (1985).
[Crossref]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum well structures,” Phys. Rev. B (to be published).

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond dynamics of nonequilibrium correlated electron-hole pair distributions in room-temperature GaAs multiple quantum well structures,” in Ultrafast Phenomena IV, D. H. Auston and K. B. Eisenthal, eds. (Springer-Verlag, New York, 1984), pp. 162–165;“Femtosecond dynamics of resonantly excited excitons in room-temperature GaAs quantum wells,” Phys. Rev. Lett. 54, 1306–1309 (1985).
[Crossref] [PubMed]

Damen, T. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum well structures,” Phys. Rev. B (to be published).

Dixon, R. W.

E. P. Ippen, D. J. Eilenberger, and R. W. Dixon, “Picosecond pulse generation by passive mode-locking of diode lasers,” Appl. Phys. Lett. 37, 267–270 (1980);“Picosecond pulse generation with diode lasers” in Picosecond Phenomena II, R. Hochstrasser, W. Kaiser, and C. V. Shank, eds (Springer-Verlag, New York, 1980), pp. 21–25.
[Crossref]

Downer, M. C.

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond dynamics of nonequilibrium correlated electron-hole pair distributions in room-temperature GaAs multiple quantum well structures,” in Ultrafast Phenomena IV, D. H. Auston and K. B. Eisenthal, eds. (Springer-Verlag, New York, 1984), pp. 162–165;“Femtosecond dynamics of resonantly excited excitons in room-temperature GaAs quantum wells,” Phys. Rev. Lett. 54, 1306–1309 (1985).
[Crossref] [PubMed]

Duguay, M. A.

See, for example, P. W. Smith, M. A. Duguay, and E. P. Ippen, “Mode-locking of lasers” in Progress in Quantum Electronics, J. H. Sanders and S. Stenholm, eds (Pergamon, New York, 1974), Vol.3, pp. 107–229.
[Crossref]

Eilenberger, D. J.

Y. Silberberg, P. W. Smith, D. J. Eilenberger, D. A. B. Miller, A. C. Gossard, and W. Wiegmann, “Passive mode locking of a semiconductor dye laser,” Opt. Lett. 9, 507–509 (1984).
[Crossref] [PubMed]

See, for example, D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Large room-temperature optical nonlinearity in GaAs/GalAs multiple quantum well structures,” Appl. Phys. Lett. 41, 679–681 (1982);D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/GaAlAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984);D. S. Chemla and D. A. B. Miller, “Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures,” J. Opt. Soc. Am. B 2, 1155–1173 (1985).
[Crossref]

E. P. Ippen, D. J. Eilenberger, and R. W. Dixon, “Picosecond pulse generation by passive mode-locking of diode lasers,” Appl. Phys. Lett. 37, 267–270 (1980);“Picosecond pulse generation with diode lasers” in Picosecond Phenomena II, R. Hochstrasser, W. Kaiser, and C. V. Shank, eds (Springer-Verlag, New York, 1980), pp. 21–25.
[Crossref]

Eisenstein, G.

I. P. Kaminouw, G. Eisenstein, and L. W. Stulz, “Measurement of the modal reflectivity of an antireflection coating on a super-luminescent diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1983)
[Crossref]

Fork, R. L.

J. A. Valdmanis, R. L. Fork, and J. P. Gordon, “Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation, group-velocity dispersion, saturable absorption, and saturable gain,” Opt. Lett. 10, 131–133 (1985).
[Crossref] [PubMed]

O. E. Martinez, R. L. Fork, and J. P. Gordon, “Theory of passively mode-locked lasers including self–phase modulation and group velocity dispersion,” Opt. Lett. 9, 156–158 (1984).
[Crossref] [PubMed]

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond dynamics of nonequilibrium correlated electron-hole pair distributions in room-temperature GaAs multiple quantum well structures,” in Ultrafast Phenomena IV, D. H. Auston and K. B. Eisenthal, eds. (Springer-Verlag, New York, 1984), pp. 162–165;“Femtosecond dynamics of resonantly excited excitons in room-temperature GaAs quantum wells,” Phys. Rev. Lett. 54, 1306–1309 (1985).
[Crossref] [PubMed]

O. E. Martinez, R. L. Fork, and J. P. Gordon, “Theory of passively modelocked lasers for the case of a nonlinear complex propagation coefficient,” J. Opt. Soc. Am. B2 (to be published).

Gordon, J. P.

Gossard, A. C.

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 16, 701–703 (1985).
[Crossref]

Y. Silberberg, P. W. Smith, D. J. Eilenberger, D. A. B. Miller, A. C. Gossard, and W. Wiegmann, “Passive mode locking of a semiconductor dye laser,” Opt. Lett. 9, 507–509 (1984).
[Crossref] [PubMed]

See, for example, D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Large room-temperature optical nonlinearity in GaAs/GalAs multiple quantum well structures,” Appl. Phys. Lett. 41, 679–681 (1982);D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/GaAlAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984);D. S. Chemla and D. A. B. Miller, “Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures,” J. Opt. Soc. Am. B 2, 1155–1173 (1985).
[Crossref]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum well structures,” Phys. Rev. B (to be published).

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond dynamics of nonequilibrium correlated electron-hole pair distributions in room-temperature GaAs multiple quantum well structures,” in Ultrafast Phenomena IV, D. H. Auston and K. B. Eisenthal, eds. (Springer-Verlag, New York, 1984), pp. 162–165;“Femtosecond dynamics of resonantly excited excitons in room-temperature GaAs quantum wells,” Phys. Rev. Lett. 54, 1306–1309 (1985).
[Crossref] [PubMed]

Harder, C.

C. Harder, J. S. Smith, K. Y. Lau, and A. Yariv, “Passive mode-locking of buried heterostructure lasers with nonuniform current injection,” Appl. Phys. Lett. 42, 772–774 (1983).
[Crossref]

Haus, H. A.

Recently, it was demonstrated that a fast component to MQW saturation may have an effect on mode-locking behavior.See, for example, H. A. Haus and Y. Silberberg, “Theory of mode-locking of a laser diode with a Multiple-quantum-well structure,” J. Opt. Soc. Am. B 2, 1237–1243 (1985).
[Crossref]

H. A. Haus, “Theory of mode-locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975).
[Crossref]

H. A. Haus, “Theory of mode-locking with a slow saturable absorber,” IEEE J. Quantum Electron. QE-11, 736–746 (1975).
[Crossref]

Inaba, H.

H. Yokoyama, H. Ito, and H. Inaba, “Generation of subpicosecond coherent optical pulses by passive mode-locking of an AlGaAs diode laser,” Appl. Phys. Lett. 42, 105–107 (1982).
[Crossref]

Ippen, E. P.

E. P. Ippen, D. J. Eilenberger, and R. W. Dixon, “Picosecond pulse generation by passive mode-locking of diode lasers,” Appl. Phys. Lett. 37, 267–270 (1980);“Picosecond pulse generation with diode lasers” in Picosecond Phenomena II, R. Hochstrasser, W. Kaiser, and C. V. Shank, eds (Springer-Verlag, New York, 1980), pp. 21–25.
[Crossref]

See, for example, P. W. Smith, M. A. Duguay, and E. P. Ippen, “Mode-locking of lasers” in Progress in Quantum Electronics, J. H. Sanders and S. Stenholm, eds (Pergamon, New York, 1974), Vol.3, pp. 107–229.
[Crossref]

Ito, H.

H. Yokoyama, H. Ito, and H. Inaba, “Generation of subpicosecond coherent optical pulses by passive mode-locking of an AlGaAs diode laser,” Appl. Phys. Lett. 42, 105–107 (1982).
[Crossref]

Johnson, A. M.

See, for example, P. R. Smith, D. H. Auston, A. M. Johnson, and W. M. Augustyniak, “Picosecond photoconductivity in radiation-damaged silicon-on-sapphire films,” Appl. Phys. Lett. 38, 47–50 (1981).
[Crossref]

Kaminouw, I. P.

I. P. Kaminouw, G. Eisenstein, and L. W. Stulz, “Measurement of the modal reflectivity of an antireflection coating on a super-luminescent diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1983)
[Crossref]

Kelso, S. M.

D. E. Aspnes, S. M. Kelso, C. G. Olson, and D. W. Lynch, “Direct determination of sizes of excitations from optical measurements on ion-implanted GaAs,” Phys. Rev. Lett. 48, 1863–1866 (1982)
[Crossref]

Knox, W. H.

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond dynamics of nonequilibrium correlated electron-hole pair distributions in room-temperature GaAs multiple quantum well structures,” in Ultrafast Phenomena IV, D. H. Auston and K. B. Eisenthal, eds. (Springer-Verlag, New York, 1984), pp. 162–165;“Femtosecond dynamics of resonantly excited excitons in room-temperature GaAs quantum wells,” Phys. Rev. Lett. 54, 1306–1309 (1985).
[Crossref] [PubMed]

Lau, K. Y.

C. Harder, J. S. Smith, K. Y. Lau, and A. Yariv, “Passive mode-locking of buried heterostructure lasers with nonuniform current injection,” Appl. Phys. Lett. 42, 772–774 (1983).
[Crossref]

Lenth, W.

Logan, R. A.

J. P. van der Ziel, W. T. Tsang, R. A. Logan, R. M. Mikulyak, and W. M. Augustyniak, “Subpicosecond pulses from passively mode-locked GaAs buried optical guide semiconductor lasers,” Appl. Phys. Lett. 39, 525–527 (1981).
[Crossref]

Lynch, D. W.

D. E. Aspnes, S. M. Kelso, C. G. Olson, and D. W. Lynch, “Direct determination of sizes of excitations from optical measurements on ion-implanted GaAs,” Phys. Rev. Lett. 48, 1863–1866 (1982)
[Crossref]

Martinez, O. E.

O. E. Martinez, R. L. Fork, and J. P. Gordon, “Theory of passively mode-locked lasers including self–phase modulation and group velocity dispersion,” Opt. Lett. 9, 156–158 (1984).
[Crossref] [PubMed]

O. E. Martinez, R. L. Fork, and J. P. Gordon, “Theory of passively modelocked lasers for the case of a nonlinear complex propagation coefficient,” J. Opt. Soc. Am. B2 (to be published).

Mestvirishvili, A. N.

O. V. Bogdankevich, A. N. Mestvirishvili, A. N. Pechenov, and A. F. Suchkov, “Mode-locking in a semiconductor laser with electronic excitation of an internal nonlinear active medium,” JETP Lett. 12, 128–129 (1970).

Mikulyak, R. M.

J. P. van der Ziel, W. T. Tsang, R. A. Logan, R. M. Mikulyak, and W. M. Augustyniak, “Subpicosecond pulses from passively mode-locked GaAs buried optical guide semiconductor lasers,” Appl. Phys. Lett. 39, 525–527 (1981).
[Crossref]

Miller, D. A. B.

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 16, 701–703 (1985).
[Crossref]

Y. Silberberg, P. W. Smith, D. J. Eilenberger, D. A. B. Miller, A. C. Gossard, and W. Wiegmann, “Passive mode locking of a semiconductor dye laser,” Opt. Lett. 9, 507–509 (1984).
[Crossref] [PubMed]

See, for example, D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Large room-temperature optical nonlinearity in GaAs/GalAs multiple quantum well structures,” Appl. Phys. Lett. 41, 679–681 (1982);D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/GaAlAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984);D. S. Chemla and D. A. B. Miller, “Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures,” J. Opt. Soc. Am. B 2, 1155–1173 (1985).
[Crossref]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum well structures,” Phys. Rev. B (to be published).

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond dynamics of nonequilibrium correlated electron-hole pair distributions in room-temperature GaAs multiple quantum well structures,” in Ultrafast Phenomena IV, D. H. Auston and K. B. Eisenthal, eds. (Springer-Verlag, New York, 1984), pp. 162–165;“Femtosecond dynamics of resonantly excited excitons in room-temperature GaAs quantum wells,” Phys. Rev. Lett. 54, 1306–1309 (1985).
[Crossref] [PubMed]

Morozov, V. N.

V. N. Morozov, V. V. Nikitin, and A. A. Sheronov, “Self-synchronization of modes in a GaAs semiconductor injection laser,” JETP Lett. 7, 256–258 (1968).

New, G H C.

G H C. New, “Pulse evolution in mode-locked quasi-continuous laser,” IEEE J. Quantum Electron. QE-10, 115–124 (1974).
[Crossref]

Nikitin, V. V.

V. N. Morozov, V. V. Nikitin, and A. A. Sheronov, “Self-synchronization of modes in a GaAs semiconductor injection laser,” JETP Lett. 7, 256–258 (1968).

Olson, C. G.

D. E. Aspnes, S. M. Kelso, C. G. Olson, and D. W. Lynch, “Direct determination of sizes of excitations from optical measurements on ion-implanted GaAs,” Phys. Rev. Lett. 48, 1863–1866 (1982)
[Crossref]

Pechenov, A. N.

O. V. Bogdankevich, A. N. Mestvirishvili, A. N. Pechenov, and A. F. Suchkov, “Mode-locking in a semiconductor laser with electronic excitation of an internal nonlinear active medium,” JETP Lett. 12, 128–129 (1970).

Shank, C. V.

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond dynamics of nonequilibrium correlated electron-hole pair distributions in room-temperature GaAs multiple quantum well structures,” in Ultrafast Phenomena IV, D. H. Auston and K. B. Eisenthal, eds. (Springer-Verlag, New York, 1984), pp. 162–165;“Femtosecond dynamics of resonantly excited excitons in room-temperature GaAs quantum wells,” Phys. Rev. Lett. 54, 1306–1309 (1985).
[Crossref] [PubMed]

Sheronov, A. A.

V. N. Morozov, V. V. Nikitin, and A. A. Sheronov, “Self-synchronization of modes in a GaAs semiconductor injection laser,” JETP Lett. 7, 256–258 (1968).

Silberberg, Y.

Smith, J. S.

C. Harder, J. S. Smith, K. Y. Lau, and A. Yariv, “Passive mode-locking of buried heterostructure lasers with nonuniform current injection,” Appl. Phys. Lett. 42, 772–774 (1983).
[Crossref]

Smith, P. R.

See, for example, P. R. Smith, D. H. Auston, A. M. Johnson, and W. M. Augustyniak, “Picosecond photoconductivity in radiation-damaged silicon-on-sapphire films,” Appl. Phys. Lett. 38, 47–50 (1981).
[Crossref]

Smith, P. W.

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 16, 701–703 (1985).
[Crossref]

Y. Silberberg, P. W. Smith, D. J. Eilenberger, D. A. B. Miller, A. C. Gossard, and W. Wiegmann, “Passive mode locking of a semiconductor dye laser,” Opt. Lett. 9, 507–509 (1984).
[Crossref] [PubMed]

See, for example, D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Large room-temperature optical nonlinearity in GaAs/GalAs multiple quantum well structures,” Appl. Phys. Lett. 41, 679–681 (1982);D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/GaAlAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984);D. S. Chemla and D. A. B. Miller, “Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures,” J. Opt. Soc. Am. B 2, 1155–1173 (1985).
[Crossref]

See, for example, P. W. Smith, M. A. Duguay, and E. P. Ippen, “Mode-locking of lasers” in Progress in Quantum Electronics, J. H. Sanders and S. Stenholm, eds (Pergamon, New York, 1974), Vol.3, pp. 107–229.
[Crossref]

Stulz, L. W.

I. P. Kaminouw, G. Eisenstein, and L. W. Stulz, “Measurement of the modal reflectivity of an antireflection coating on a super-luminescent diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1983)
[Crossref]

Suchkov, A. F.

O. V. Bogdankevich, A. N. Mestvirishvili, A. N. Pechenov, and A. F. Suchkov, “Mode-locking in a semiconductor laser with electronic excitation of an internal nonlinear active medium,” JETP Lett. 12, 128–129 (1970).

Tell, B.

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 16, 701–703 (1985).
[Crossref]

Tsang, W. T.

J. P. van der Ziel, W. T. Tsang, R. A. Logan, R. M. Mikulyak, and W. M. Augustyniak, “Subpicosecond pulses from passively mode-locked GaAs buried optical guide semiconductor lasers,” Appl. Phys. Lett. 39, 525–527 (1981).
[Crossref]

Valdmanis, J. A.

van der Ziel, J. P.

J. P. van der Ziel, W. T. Tsang, R. A. Logan, R. M. Mikulyak, and W. M. Augustyniak, “Subpicosecond pulses from passively mode-locked GaAs buried optical guide semiconductor lasers,” Appl. Phys. Lett. 39, 525–527 (1981).
[Crossref]

Wiegmann, W.

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 16, 701–703 (1985).
[Crossref]

Y. Silberberg, P. W. Smith, D. J. Eilenberger, D. A. B. Miller, A. C. Gossard, and W. Wiegmann, “Passive mode locking of a semiconductor dye laser,” Opt. Lett. 9, 507–509 (1984).
[Crossref] [PubMed]

See, for example, D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Large room-temperature optical nonlinearity in GaAs/GalAs multiple quantum well structures,” Appl. Phys. Lett. 41, 679–681 (1982);D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/GaAlAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984);D. S. Chemla and D. A. B. Miller, “Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures,” J. Opt. Soc. Am. B 2, 1155–1173 (1985).
[Crossref]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum well structures,” Phys. Rev. B (to be published).

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond dynamics of nonequilibrium correlated electron-hole pair distributions in room-temperature GaAs multiple quantum well structures,” in Ultrafast Phenomena IV, D. H. Auston and K. B. Eisenthal, eds. (Springer-Verlag, New York, 1984), pp. 162–165;“Femtosecond dynamics of resonantly excited excitons in room-temperature GaAs quantum wells,” Phys. Rev. Lett. 54, 1306–1309 (1985).
[Crossref] [PubMed]

Wood, T. H.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum well structures,” Phys. Rev. B (to be published).

Yariv, A.

C. Harder, J. S. Smith, K. Y. Lau, and A. Yariv, “Passive mode-locking of buried heterostructure lasers with nonuniform current injection,” Appl. Phys. Lett. 42, 772–774 (1983).
[Crossref]

Yokoyama, H.

H. Yokoyama, H. Ito, and H. Inaba, “Generation of subpicosecond coherent optical pulses by passive mode-locking of an AlGaAs diode laser,” Appl. Phys. Lett. 42, 105–107 (1982).
[Crossref]

Appl. Phys. Lett. (7)

E. P. Ippen, D. J. Eilenberger, and R. W. Dixon, “Picosecond pulse generation by passive mode-locking of diode lasers,” Appl. Phys. Lett. 37, 267–270 (1980);“Picosecond pulse generation with diode lasers” in Picosecond Phenomena II, R. Hochstrasser, W. Kaiser, and C. V. Shank, eds (Springer-Verlag, New York, 1980), pp. 21–25.
[Crossref]

J. P. van der Ziel, W. T. Tsang, R. A. Logan, R. M. Mikulyak, and W. M. Augustyniak, “Subpicosecond pulses from passively mode-locked GaAs buried optical guide semiconductor lasers,” Appl. Phys. Lett. 39, 525–527 (1981).
[Crossref]

H. Yokoyama, H. Ito, and H. Inaba, “Generation of subpicosecond coherent optical pulses by passive mode-locking of an AlGaAs diode laser,” Appl. Phys. Lett. 42, 105–107 (1982).
[Crossref]

C. Harder, J. S. Smith, K. Y. Lau, and A. Yariv, “Passive mode-locking of buried heterostructure lasers with nonuniform current injection,” Appl. Phys. Lett. 42, 772–774 (1983).
[Crossref]

See, for example, D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Large room-temperature optical nonlinearity in GaAs/GalAs multiple quantum well structures,” Appl. Phys. Lett. 41, 679–681 (1982);D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/GaAlAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984);D. S. Chemla and D. A. B. Miller, “Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures,” J. Opt. Soc. Am. B 2, 1155–1173 (1985).
[Crossref]

See, for example, P. R. Smith, D. H. Auston, A. M. Johnson, and W. M. Augustyniak, “Picosecond photoconductivity in radiation-damaged silicon-on-sapphire films,” Appl. Phys. Lett. 38, 47–50 (1981).
[Crossref]

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 16, 701–703 (1985).
[Crossref]

IEEE J. Quantum Electron. (3)

I. P. Kaminouw, G. Eisenstein, and L. W. Stulz, “Measurement of the modal reflectivity of an antireflection coating on a super-luminescent diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1983)
[Crossref]

G H C. New, “Pulse evolution in mode-locked quasi-continuous laser,” IEEE J. Quantum Electron. QE-10, 115–124 (1974).
[Crossref]

H. A. Haus, “Theory of mode-locking with a slow saturable absorber,” IEEE J. Quantum Electron. QE-11, 736–746 (1975).
[Crossref]

J. Appl. Phys. (1)

H. A. Haus, “Theory of mode-locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975).
[Crossref]

J. Opt. Soc. Am. B (1)

JETP Lett. (2)

V. N. Morozov, V. V. Nikitin, and A. A. Sheronov, “Self-synchronization of modes in a GaAs semiconductor injection laser,” JETP Lett. 7, 256–258 (1968).

O. V. Bogdankevich, A. N. Mestvirishvili, A. N. Pechenov, and A. F. Suchkov, “Mode-locking in a semiconductor laser with electronic excitation of an internal nonlinear active medium,” JETP Lett. 12, 128–129 (1970).

Opt. Lett. (4)

Phys. Rev. Lett. (1)

D. E. Aspnes, S. M. Kelso, C. G. Olson, and D. W. Lynch, “Direct determination of sizes of excitations from optical measurements on ion-implanted GaAs,” Phys. Rev. Lett. 48, 1863–1866 (1982)
[Crossref]

Other (4)

O. E. Martinez, R. L. Fork, and J. P. Gordon, “Theory of passively modelocked lasers for the case of a nonlinear complex propagation coefficient,” J. Opt. Soc. Am. B2 (to be published).

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond dynamics of nonequilibrium correlated electron-hole pair distributions in room-temperature GaAs multiple quantum well structures,” in Ultrafast Phenomena IV, D. H. Auston and K. B. Eisenthal, eds. (Springer-Verlag, New York, 1984), pp. 162–165;“Femtosecond dynamics of resonantly excited excitons in room-temperature GaAs quantum wells,” Phys. Rev. Lett. 54, 1306–1309 (1985).
[Crossref] [PubMed]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum well structures,” Phys. Rev. B (to be published).

See, for example, P. W. Smith, M. A. Duguay, and E. P. Ippen, “Mode-locking of lasers” in Progress in Quantum Electronics, J. H. Sanders and S. Stenholm, eds (Pergamon, New York, 1974), Vol.3, pp. 107–229.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Room-temperature linear-absorption spectra for bulk GaAs and GaAs/GaAlAs MQW samples near the band edge.8

Fig. 2
Fig. 2

Intensity dependence of optical absorption in GaAs and GaAs/GaAlAs MQW samples at room temperature measured with 5–μm spot.8

Fig. 3
Fig. 3

Gain and loss dynamics for ideal mode locking with a slow saturable absorber.

Fig. 4
Fig. 4

Change in probe transmission as a function of time for annealed MQW samples.

Fig. 5
Fig. 5

Small–signalndash;absorption spectrum of unannealed MQW samples as a function of proton bombardment dose. The spectrum of a proton dose of 1011 cm−2 is indistinguishable from the spectrum of umbombarded material.

Fig. 6
Fig. 6

Nonlinear absorption spectra for annealed MQW samples.

Fig. 7
Fig. 7

Setup for mode-locking experiments.

Fig. 8
Fig. 8

Reflectivity spectrum of a mirror–MQW–absorber combi nation as a function of incident light intensity.

Fig. 9
Fig. 9

Laser output characteristics for a Hitachi HLP 1400 laser diode with one facet A.R. coated (see text).

Fig. 10
Fig. 10

Mode-locked laser output as observed with a fast photodetector (response time ∼ 100 psec). (a) Pulse train, (b) expanded view of a single pulse.

Fig. 11
Fig. 11

Mode-locked laser spectrum observed with an optical multichannel analyzer, (a) Non-mode-locked, (b) mode-locked output. Both spectra are shown with a full-scale range of 200 Å.

Fig. 12
Fig. 12

Autocorrelation traces of mode-locked laser output pulses (see text).

Tables (1)

Tables Icon

Table 1 Recovery Time of Nonlinear Absorption for Proton-Bombarded MQW Samplesa

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

σ A / A A > σ G / A G
τ A < τ G ,
1 τ A = 1 τ r + 1 τ d ,
τ d = ω 0 2 / 8 D .
α = α 0 exp { F A x [ 1 exp ( L x / L d ) ] } ,
p υ = p a × p l ,
( 1 p L z ) = ( 1 p l ) L z / Δ l ,
( 1 p L z ) = exp ( L z / L d ) .
p a L z = p a × P L z .
P x = ( 1 p a L z ) A x / Δ a ,
P x = exp { F A x [ 1 exp ( L z / L d ) ] } ,

Metrics