Abstract

A microcomputer-controlled color-center laser has been designed for broadband tunability and high-resolution sub-Doppler spectroscopy. The application of the programming language forth for the controlling software provides high versatility and universal applicability to microcomputer-controlled laser spectrometers. Different tuning modes were optimized, allowing continuous-frequency scans over several wave numbers with a resolution of 15 MHz as well as high-resolution scans over 2 GHz with a step width of <100 kHz. Intracavity and extracavity detection techniques were tested on the ν1 fundamental band of isothiocyanic acid and on the hydrofluoric acid P(4) vibration–rotation transition, indicating a resolution limit of <10−5 cm−1 for the spectrometer.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, J. Chem. Phys. 72, 6602 (1980).
    [CrossRef]
  2. C. S. Gudeman, M. H. Begemann, J. Pfaff, R. J. Saykally, Opt. Lett. 8, 310 (1983);H. Adams, J. L. Hall, J. V. V. Kasper, F. K. Tittel, R. F. Curl, J. Opt. Soc. Am. B (to be published).
    [CrossRef] [PubMed]
  3. C. S. Gudeman, M. H. Begemann, J. Pfaff, R. J. Saykally, Phys. Rev. Lett. 50, 727 (1983).
    [CrossRef]
  4. H. Adams, J. L. Hall, L. A. Russel, J. V. V. Kasper, F. K. Tittel, R. F. Curl, J. Opt. Soc. Am. B (to be published).
  5. M. H. Begemann, R. J. Saykally, Opt. Commun. 40, 277 (1982).
    [CrossRef]
  6. G. K. R. German, W. S. Gornall, J. Opt. Soc. Am. 71, 1452 (1982).
    [CrossRef]
  7. V. M. Baev, H. Schröder, P. E. Toschek, Opt. Commun. 36, 57 (1981);W. Schrepp, H. Figger, H. Walther, Lasers and Applications77 (July1984).
    [CrossRef]
  8. H. Gerhardt, T. W. Hänsch, Opt. Commun. 41, 17 (1982).
    [CrossRef]
  9. D. J. Jackson, H. Gerhardt, T. W. Hänsch, Opt. Commun. 37, 23 (1981).
    [CrossRef]
  10. J. N. Dahiya, K. Igbal, H. G. Kraft, W. C. Eue, J. W. Bevan, Infrared Phys. 22, 77 (1982).
    [CrossRef]
  11. T. W. Hänsch, I. S. Shahin, A. L. Schawlow, Phys. Rev. Lett. 27, 707 (1971).
    [CrossRef]
  12. C. Wieman, T. W. Hänsch, Phys. Rev. Lett. 36, 1170 (1976).
    [CrossRef]
  13. Ch. Breant, T. Baer, D. Nesbitt, J. L. Hall, National Bureau of Standards, Boulder, Colorado (personal communication).
  14. J. V. V. Kasper, C. R. Pollock, R. F. Curl, F. K. Tittel, Appl. Opt. 21, 236 (1982).
    [CrossRef] [PubMed]
  15. Forth Interest Group, P.O. Box 1105, San Carlos, Calif. 94070.
  16. L. F. Mollenauer, “Color center lasers,” in Methods of Experimental Physics, C. L. Tang, ed. (Academic, New York, 1979), Vol. 15B.
  17. G. R. Draper, R. L. Werner, J. Mol. Spectrosc. 50, 369–402 (1974).
    [CrossRef]
  18. C. Delsart, J. C. Keller, Laser Spectroscopy III, Proceedings of the 3rd International Conference, Vol. 7 of Springer Series on Optical Science (Springer-Verlag, Berlin, 1977), p. 154.
  19. K. M. Evenson, D. A. Jennings, F. R. Peterson, J. S. Wells, “Laser frequency measurements: a review,” in Laser Spectroscopy III, Proceedings of the 3rd International Conference, Vol. 7 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1977), p. 56.
  20. Report of CCL application by the U.S. Air Force, Laser Appl. 3(48) (Oct.1984).

1984 (1)

Report of CCL application by the U.S. Air Force, Laser Appl. 3(48) (Oct.1984).

1983 (2)

1982 (5)

M. H. Begemann, R. J. Saykally, Opt. Commun. 40, 277 (1982).
[CrossRef]

H. Gerhardt, T. W. Hänsch, Opt. Commun. 41, 17 (1982).
[CrossRef]

J. N. Dahiya, K. Igbal, H. G. Kraft, W. C. Eue, J. W. Bevan, Infrared Phys. 22, 77 (1982).
[CrossRef]

J. V. V. Kasper, C. R. Pollock, R. F. Curl, F. K. Tittel, Appl. Opt. 21, 236 (1982).
[CrossRef] [PubMed]

G. K. R. German, W. S. Gornall, J. Opt. Soc. Am. 71, 1452 (1982).
[CrossRef]

1981 (2)

D. J. Jackson, H. Gerhardt, T. W. Hänsch, Opt. Commun. 37, 23 (1981).
[CrossRef]

V. M. Baev, H. Schröder, P. E. Toschek, Opt. Commun. 36, 57 (1981);W. Schrepp, H. Figger, H. Walther, Lasers and Applications77 (July1984).
[CrossRef]

1980 (1)

G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, J. Chem. Phys. 72, 6602 (1980).
[CrossRef]

1976 (1)

C. Wieman, T. W. Hänsch, Phys. Rev. Lett. 36, 1170 (1976).
[CrossRef]

1974 (1)

G. R. Draper, R. L. Werner, J. Mol. Spectrosc. 50, 369–402 (1974).
[CrossRef]

1971 (1)

T. W. Hänsch, I. S. Shahin, A. L. Schawlow, Phys. Rev. Lett. 27, 707 (1971).
[CrossRef]

Adams, H.

H. Adams, J. L. Hall, L. A. Russel, J. V. V. Kasper, F. K. Tittel, R. F. Curl, J. Opt. Soc. Am. B (to be published).

Baer, T.

Ch. Breant, T. Baer, D. Nesbitt, J. L. Hall, National Bureau of Standards, Boulder, Colorado (personal communication).

Baev, V. M.

V. M. Baev, H. Schröder, P. E. Toschek, Opt. Commun. 36, 57 (1981);W. Schrepp, H. Figger, H. Walther, Lasers and Applications77 (July1984).
[CrossRef]

Begemann, M. H.

C. S. Gudeman, M. H. Begemann, J. Pfaff, R. J. Saykally, Phys. Rev. Lett. 50, 727 (1983).
[CrossRef]

C. S. Gudeman, M. H. Begemann, J. Pfaff, R. J. Saykally, Opt. Lett. 8, 310 (1983);H. Adams, J. L. Hall, J. V. V. Kasper, F. K. Tittel, R. F. Curl, J. Opt. Soc. Am. B (to be published).
[CrossRef] [PubMed]

M. H. Begemann, R. J. Saykally, Opt. Commun. 40, 277 (1982).
[CrossRef]

Bevan, J. W.

J. N. Dahiya, K. Igbal, H. G. Kraft, W. C. Eue, J. W. Bevan, Infrared Phys. 22, 77 (1982).
[CrossRef]

Breant, Ch.

Ch. Breant, T. Baer, D. Nesbitt, J. L. Hall, National Bureau of Standards, Boulder, Colorado (personal communication).

Curl, R. F.

J. V. V. Kasper, C. R. Pollock, R. F. Curl, F. K. Tittel, Appl. Opt. 21, 236 (1982).
[CrossRef] [PubMed]

G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, J. Chem. Phys. 72, 6602 (1980).
[CrossRef]

H. Adams, J. L. Hall, L. A. Russel, J. V. V. Kasper, F. K. Tittel, R. F. Curl, J. Opt. Soc. Am. B (to be published).

Dahiya, J. N.

J. N. Dahiya, K. Igbal, H. G. Kraft, W. C. Eue, J. W. Bevan, Infrared Phys. 22, 77 (1982).
[CrossRef]

Delsart, C.

C. Delsart, J. C. Keller, Laser Spectroscopy III, Proceedings of the 3rd International Conference, Vol. 7 of Springer Series on Optical Science (Springer-Verlag, Berlin, 1977), p. 154.

Draper, G. R.

G. R. Draper, R. L. Werner, J. Mol. Spectrosc. 50, 369–402 (1974).
[CrossRef]

Eue, W. C.

J. N. Dahiya, K. Igbal, H. G. Kraft, W. C. Eue, J. W. Bevan, Infrared Phys. 22, 77 (1982).
[CrossRef]

Evenson, K. M.

K. M. Evenson, D. A. Jennings, F. R. Peterson, J. S. Wells, “Laser frequency measurements: a review,” in Laser Spectroscopy III, Proceedings of the 3rd International Conference, Vol. 7 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1977), p. 56.

Gerhardt, H.

H. Gerhardt, T. W. Hänsch, Opt. Commun. 41, 17 (1982).
[CrossRef]

D. J. Jackson, H. Gerhardt, T. W. Hänsch, Opt. Commun. 37, 23 (1981).
[CrossRef]

German, G. K. R.

Gornall, W. S.

Gudeman, C. S.

Hall, J. L.

H. Adams, J. L. Hall, L. A. Russel, J. V. V. Kasper, F. K. Tittel, R. F. Curl, J. Opt. Soc. Am. B (to be published).

Ch. Breant, T. Baer, D. Nesbitt, J. L. Hall, National Bureau of Standards, Boulder, Colorado (personal communication).

Hänsch, T. W.

H. Gerhardt, T. W. Hänsch, Opt. Commun. 41, 17 (1982).
[CrossRef]

D. J. Jackson, H. Gerhardt, T. W. Hänsch, Opt. Commun. 37, 23 (1981).
[CrossRef]

C. Wieman, T. W. Hänsch, Phys. Rev. Lett. 36, 1170 (1976).
[CrossRef]

T. W. Hänsch, I. S. Shahin, A. L. Schawlow, Phys. Rev. Lett. 27, 707 (1971).
[CrossRef]

Igbal, K.

J. N. Dahiya, K. Igbal, H. G. Kraft, W. C. Eue, J. W. Bevan, Infrared Phys. 22, 77 (1982).
[CrossRef]

Jackson, D. J.

D. J. Jackson, H. Gerhardt, T. W. Hänsch, Opt. Commun. 37, 23 (1981).
[CrossRef]

Jennings, D. A.

K. M. Evenson, D. A. Jennings, F. R. Peterson, J. S. Wells, “Laser frequency measurements: a review,” in Laser Spectroscopy III, Proceedings of the 3rd International Conference, Vol. 7 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1977), p. 56.

Kasper, J. V. V.

J. V. V. Kasper, C. R. Pollock, R. F. Curl, F. K. Tittel, Appl. Opt. 21, 236 (1982).
[CrossRef] [PubMed]

H. Adams, J. L. Hall, L. A. Russel, J. V. V. Kasper, F. K. Tittel, R. F. Curl, J. Opt. Soc. Am. B (to be published).

Keller, J. C.

C. Delsart, J. C. Keller, Laser Spectroscopy III, Proceedings of the 3rd International Conference, Vol. 7 of Springer Series on Optical Science (Springer-Verlag, Berlin, 1977), p. 154.

Kraft, H. G.

J. N. Dahiya, K. Igbal, H. G. Kraft, W. C. Eue, J. W. Bevan, Infrared Phys. 22, 77 (1982).
[CrossRef]

Litfin, G.

G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, J. Chem. Phys. 72, 6602 (1980).
[CrossRef]

Mollenauer, L. F.

L. F. Mollenauer, “Color center lasers,” in Methods of Experimental Physics, C. L. Tang, ed. (Academic, New York, 1979), Vol. 15B.

Nesbitt, D.

Ch. Breant, T. Baer, D. Nesbitt, J. L. Hall, National Bureau of Standards, Boulder, Colorado (personal communication).

Peterson, F. R.

K. M. Evenson, D. A. Jennings, F. R. Peterson, J. S. Wells, “Laser frequency measurements: a review,” in Laser Spectroscopy III, Proceedings of the 3rd International Conference, Vol. 7 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1977), p. 56.

Pfaff, J.

Pollock, C. R.

J. V. V. Kasper, C. R. Pollock, R. F. Curl, F. K. Tittel, Appl. Opt. 21, 236 (1982).
[CrossRef] [PubMed]

G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, J. Chem. Phys. 72, 6602 (1980).
[CrossRef]

Russel, L. A.

H. Adams, J. L. Hall, L. A. Russel, J. V. V. Kasper, F. K. Tittel, R. F. Curl, J. Opt. Soc. Am. B (to be published).

Saykally, R. J.

C. S. Gudeman, M. H. Begemann, J. Pfaff, R. J. Saykally, Phys. Rev. Lett. 50, 727 (1983).
[CrossRef]

C. S. Gudeman, M. H. Begemann, J. Pfaff, R. J. Saykally, Opt. Lett. 8, 310 (1983);H. Adams, J. L. Hall, J. V. V. Kasper, F. K. Tittel, R. F. Curl, J. Opt. Soc. Am. B (to be published).
[CrossRef] [PubMed]

M. H. Begemann, R. J. Saykally, Opt. Commun. 40, 277 (1982).
[CrossRef]

Schawlow, A. L.

T. W. Hänsch, I. S. Shahin, A. L. Schawlow, Phys. Rev. Lett. 27, 707 (1971).
[CrossRef]

Schröder, H.

V. M. Baev, H. Schröder, P. E. Toschek, Opt. Commun. 36, 57 (1981);W. Schrepp, H. Figger, H. Walther, Lasers and Applications77 (July1984).
[CrossRef]

Shahin, I. S.

T. W. Hänsch, I. S. Shahin, A. L. Schawlow, Phys. Rev. Lett. 27, 707 (1971).
[CrossRef]

Tittel, F. K.

J. V. V. Kasper, C. R. Pollock, R. F. Curl, F. K. Tittel, Appl. Opt. 21, 236 (1982).
[CrossRef] [PubMed]

G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, J. Chem. Phys. 72, 6602 (1980).
[CrossRef]

H. Adams, J. L. Hall, L. A. Russel, J. V. V. Kasper, F. K. Tittel, R. F. Curl, J. Opt. Soc. Am. B (to be published).

Toschek, P. E.

V. M. Baev, H. Schröder, P. E. Toschek, Opt. Commun. 36, 57 (1981);W. Schrepp, H. Figger, H. Walther, Lasers and Applications77 (July1984).
[CrossRef]

Wells, J. S.

K. M. Evenson, D. A. Jennings, F. R. Peterson, J. S. Wells, “Laser frequency measurements: a review,” in Laser Spectroscopy III, Proceedings of the 3rd International Conference, Vol. 7 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1977), p. 56.

Werner, R. L.

G. R. Draper, R. L. Werner, J. Mol. Spectrosc. 50, 369–402 (1974).
[CrossRef]

Wieman, C.

C. Wieman, T. W. Hänsch, Phys. Rev. Lett. 36, 1170 (1976).
[CrossRef]

Appl. Opt. (1)

Infrared Phys. (1)

J. N. Dahiya, K. Igbal, H. G. Kraft, W. C. Eue, J. W. Bevan, Infrared Phys. 22, 77 (1982).
[CrossRef]

J. Chem. Phys. (1)

G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, J. Chem. Phys. 72, 6602 (1980).
[CrossRef]

J. Mol. Spectrosc. (1)

G. R. Draper, R. L. Werner, J. Mol. Spectrosc. 50, 369–402 (1974).
[CrossRef]

J. Opt. Soc. Am. (1)

Laser Appl. (1)

Report of CCL application by the U.S. Air Force, Laser Appl. 3(48) (Oct.1984).

Opt. Commun. (4)

M. H. Begemann, R. J. Saykally, Opt. Commun. 40, 277 (1982).
[CrossRef]

V. M. Baev, H. Schröder, P. E. Toschek, Opt. Commun. 36, 57 (1981);W. Schrepp, H. Figger, H. Walther, Lasers and Applications77 (July1984).
[CrossRef]

H. Gerhardt, T. W. Hänsch, Opt. Commun. 41, 17 (1982).
[CrossRef]

D. J. Jackson, H. Gerhardt, T. W. Hänsch, Opt. Commun. 37, 23 (1981).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (3)

C. S. Gudeman, M. H. Begemann, J. Pfaff, R. J. Saykally, Phys. Rev. Lett. 50, 727 (1983).
[CrossRef]

T. W. Hänsch, I. S. Shahin, A. L. Schawlow, Phys. Rev. Lett. 27, 707 (1971).
[CrossRef]

C. Wieman, T. W. Hänsch, Phys. Rev. Lett. 36, 1170 (1976).
[CrossRef]

Other (6)

Ch. Breant, T. Baer, D. Nesbitt, J. L. Hall, National Bureau of Standards, Boulder, Colorado (personal communication).

H. Adams, J. L. Hall, L. A. Russel, J. V. V. Kasper, F. K. Tittel, R. F. Curl, J. Opt. Soc. Am. B (to be published).

Forth Interest Group, P.O. Box 1105, San Carlos, Calif. 94070.

L. F. Mollenauer, “Color center lasers,” in Methods of Experimental Physics, C. L. Tang, ed. (Academic, New York, 1979), Vol. 15B.

C. Delsart, J. C. Keller, Laser Spectroscopy III, Proceedings of the 3rd International Conference, Vol. 7 of Springer Series on Optical Science (Springer-Verlag, Berlin, 1977), p. 154.

K. M. Evenson, D. A. Jennings, F. R. Peterson, J. S. Wells, “Laser frequency measurements: a review,” in Laser Spectroscopy III, Proceedings of the 3rd International Conference, Vol. 7 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1977), p. 56.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Design of the color-center laser (CCL) spectrometer with pump laser, CCL, and diagnostic instrumentation. The whole infrared beam path is evacuated to avoid atmospheric water absorption. For intracavity spectroscopy a short absorption cell can be placed inside the tuning section of the laser.

Fig. 2
Fig. 2

Mechanical setup of the CCL showing that laser mirrors, tuning elements, and crystal mount on the three-axis motion stage are fixed to the stiff base plate.

Fig. 3
Fig. 3

Interfacing of the laser spectrometer to a CDP 1802 microcomputer and a CBM 8032 used as a graphics terminal.

Fig. 4
Fig. 4

The feedback loops for continuous single-mode scanning. (a) For broadband scans of 40 GHz or more the cavity mode is locked to the intracavity étalon, which is tracked with the grating. (b) Feedback loop for high-resolution scans and sub-Doppler spectroscopy locking the étalon to the cavity mode.

Fig. 5
Fig. 5

The architecture of the scanning program. For broadband scans grating and étalon are tuned, whereas for high-resolution scans the grating is held in a fixed position and the étalon is locked to the cavity, which is ramped. A fast-tuning subprogram permits choosing a new start position on the graphics display and tuning the laser in reproducible steps to this frequency.

Fig. 6
Fig. 6

Structure of subprogram tune. The experimental data are recorded and sent to the CBM 8032 for real-time display.

Fig. 7
Fig. 7

Typical low-resolution survey scan over part of the H2O calibration spectrum and the HF (1 ← 0) P(4) transition.

Fig. 8
Fig. 8

Upper trace: Medium-resolution scan over the HNCS ν1 rQ2 rotation–vibration transition (3 Torr, 80-cm path length). Middle trace: Transmission peaks of fixed-frequency marker cavity. Lower trace: Voltage variation at the folding-mirror PZT.

Fig. 9
Fig. 9

Experimental layout for sub-Doppler extracavity saturation spectroscopy with balanced detectors.

Fig. 10
Fig. 10

Sub-Doppler signals from the HF P(4) transition obtained in various extracavity experiments (absorption length: 20 cm; HF pressure: 5 mTorr).

Fig. 11
Fig. 11

Experimental setup for sub-Doppler polarization spectroscopy.

Fig. 12
Fig. 12

Intracavity arrangement for Doppler-free investigations. The length of the absorption cell is 5 cm.

Fig. 13
Fig. 13

Doppler-free signals from the HF P(4) transition obtained with the intracavity arrangement. Pure HF was obtained by heating KHF2 to 250°C. Pressure was well below 1 mTorr in the absorption cell, the intracavity laser power was <100 μW, and the beam diameter was 1.5 mm. Upper trace: Signal at the reference detector. Middle trace: Simultaneously recorded Doppler-broadened signal from reference gas cell (100 mTorr hydrofluoric acid 38–40%; absorption length, 80 cm). Lower trace: Transmission of 150-MHz marker cavity.

Fig. 14
Fig. 14

Highest-resolution scan (step width: <100 kHz) over the intracavity Lamb dip. Although a substructure is perceptible, the hyperfine structure is nqt resolved.13 However, the achieved resolution limit can be estimated to be 10−5 cm−1.

Fig. 15
Fig. 15

2-GHz scan over the 150-MHz fixed-frequency marker using the highest-resolution scanning mode. Marker spacing variations and intensity modulation are produced by the nonlinear response and bending of the PZT.

Tables (1)

Tables Icon

Table 1 Color-Center-Laser Design Parameters

Metrics