Abstract

A tunable-diode laser operating in the 2120–2350-cm−1 wave-number region is used to probe a conventional cw N2O laser discharge. Absorption lines in more than 10 different vibrational bands are observed, enabling us to determine vibrational populations in all levels of concern to the dynamics of the 10-μm N2O laser. The populations in the three normal modes of vibration of N2O are found to follow Boltzmann distributions, with the ν1 and ν2 modes maintaining a common vibrational temperature under all discharge conditions. The factors limiting the small-signal 10-μm gain are investigated in detail, and it is found that electron deexcitation of the 00°1 level is much more important than N2O dissociation.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. E. Gough, D. G. Knight, G. Scoles, “Matrix spectroscopy in the gas phase: IR spectroscopy of argon clusters containing SF6 or CH3F,” Chem. Phys. Lett. 97, 155–160 (1983).
    [CrossRef]
  2. B. G. Whitford, K. J. Siemsen, H. D. Riccius, G. R. Hanes, “Absolute frequency measurements of N2O laser transitions,” Opt. Commun. 14, 70–74 (1975).
    [CrossRef]
  3. F. Shimizu, “Stark spectroscopy of 15NH3 ν2 band by 10-μ lasers,” J. Chem. Phys. 53, 1149–1151 (1970).
    [CrossRef]
  4. T. Oka, T. Shimizu, “Observation of infrared-microwave two-photon transitions in NH3,” Appl. Phys. Lett. 19, 88–90 (1971).
    [CrossRef]
  5. C. Gastaud, M. Redon, P. Belland, M. Fourrier, “Far-infrared laser action in vinyl chloride, vinyl bromide, and vinyl fluoride optically pumped by a cw N2O laser,” Int. J. Infrared Millimeter Waves 5, 875–885 (1984).
    [CrossRef]
  6. N. Djeu, T. Kan, G. Wolga, “Laser parameters for the 10.8-μ N2O molecular laser,” IEEE J. Quantum Electron. QE-4, 783–785 (1968).
    [CrossRef]
  7. K. Siemsen, J. Reid, “New N2O laser band in the 10 μ m wavelength region,” Opt. Commun. 20, 284–288 (1977).
    [CrossRef]
  8. C. Willett, Introduction to Gas Lasers: Population Inversion Mechanisms (Pergamon, Oxford, 1974), p. 301.
  9. C. Dang, J. Reid, B. K. Garside, “Detailed vibrational population distributions in a CO2 laser discharge as measured with a tunable diode laser,” Appl. Phys. B 27, 145–151 (1982).
    [CrossRef]
  10. B. F. Gordietz, N. N. Sobolev, V. V. Sokovikov, L. A. Shelepin, “Population inversion of the vibrational levels in CO2 lasers,” IEEE J. Quantum Electron. QE-4, 796–802 (1968).
    [CrossRef]
  11. C. B. Moore, R. E. Wood, B.-L. Hu, J. T. Yardley, “Vibrational energy transfer in CO2 lasers,” J. Chem.Phys. 46, 4222–4231 (1967).
    [CrossRef]
  12. K. J. Siemsen, J. Reid, C. Dang, “New techniques for determining vibrational temperatures, dissociation, and gain limitations in cw CO2 lasers,” IEEE J. Quantum Electron. QE-16, 668–676 (1980).
    [CrossRef]
  13. C. Dang, J. Reid, B. K. Garside, “Gain limitations in TE CO2 laser amplifiers,” IEEE J. Quantum Electron. QE-16, 1097–1103 (1980).
    [CrossRef]
  14. R. T. Pack, “Analytic estimation of almost resonant molecular energy transfer due to multipolar potentials. VV processes involving CO2,” J. Chem. Phys. 72, 6140–6152 (1980).
    [CrossRef]
  15. A. Picard-Bersellini, C. Rossetti, C. Boulet, “A study of vibrational relaxation of nitrous oxide by high resolution infrared emission spectroscopy,” Spectrochim. Acta 34A, 1067–1076 (1978).
  16. W. H. Anderson, D. F. Hornig, “The structure of shock fronts in gases,” Mol. Phys. 2, 49–63 (1959).
    [CrossRef]
  17. R. Holmes, G. R. Jones, R. Lawrence, “Rotational relaxation in carbon dioxide and nitrous oxide,” J. Chem. Phys. 41, 2955–2956 (1964).
    [CrossRef]
  18. R. R. Jacobs, K. J. Pettipiece, S. J. Thomas, “Rotational relaxation rate constants for CO2,” Appl. Phys. Lett. 24, 375–377 (1974).
    [CrossRef]
  19. R. Farrenq, D. Gaultier, C. Rossetti, “Vibrational luminescence of N2O excited by dc discharge,” J. Mol. Spectrosc. 49, 280–288 (1974).
    [CrossRef]
  20. A. M. Robinson, “Gain distribution in a CO2 TEA laser,” Can. J. Phys. 50, 2471–2474 (1972).
    [CrossRef]
  21. N. Lacombe, A. Levy, G. Guelachvili, “Fourier transform measurement of self-, N2-, and O2-broadening of N2O lines: temperature dependence of linewidths,” Appl. Opt. 23, 425–435 (1984).
    [CrossRef]
  22. R. K. Brimacombe, J. Reid, “Accurate measurements of pressure-broadened linewidths in a transversely excited O2discharge,” IEEE J. Quantum Electron. QE-19, 1668–1673 (1983).
    [CrossRef]
  23. R. H. Kagann, “Infrared absorption intensities for N2O,” J. Mol.Spectrosc. 95, 297–305 (1982).
    [CrossRef]
  24. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
    [CrossRef]
  25. J. Pliva, “Molecular constants of nitrous oxide, 14N216O,” J. Mol. Spectrosc. 27, 461–488 (1968).
    [CrossRef]
  26. C. Amiot, “Vibration-rotation bands of 14N15N16O−15N14N16O: 1.6–5.7 μm region,” J. Mol. Spectrosc. 59, 191–208 (1976).
    [CrossRef]
  27. C. Amiot, G. Guelachvili, “Extension of the 106samples Fourier spectrometry to the indium antimonide region: vibration-rotation bands of 14N216O: 3.3–5.5 μm region,” J. Mol. Spectrosc. 59, 171–190 (1976).
    [CrossRef]
  28. R. Farrenq, J. Dupre-Maquaire, “Vibrational luminescence of N2O excited by dc dischage—rotation–vibration constants,” J. Mol. Spectrosc. 49, 268–279 (1974).
    [CrossRef]
  29. For convenience, vibrational bands will generally be identified by the lower level only, e.g., the (00° 3–00 °2) absorption band becomes the 00° 2 band.
  30. L. A. Weaver, L. H. Taylor, L. J. Denes, “Rotational temperature determinations in molecular gas lasers,” J. Appl. Phys. 46, 3951–3958 (1975).
    [CrossRef]
  31. The experimental points shown in Fig. 6 have been corrected for the absorption that occurs in the nondischarge portion of the tube. This correction is significant for the low-lying levels, such as 0110, but has little effect for levels such as 0330. The fitted value of α(00°0), as derived for Fig. 5, is used in the calculations of Nijl0. The combined effect of these procedures produces a linear least-squares fit to the data points, which need not pass exactly through the point (0, 0).
  32. The measured dissociation corresponds to the gas mixture leaving the discharge region, whereas the gas entering the discharge is undissociated. As the final products of N2O dissociation are N2and O2,33 reformation of N2O is not expected to be significant.
  33. J. M. Austin, A. L. S. Smith, “Decomposition of N2O in a glow discharge,” J. Phys.D 6, 2236–2241 (1973).
    [CrossRef]
  34. Measurements made in CO2 discharges generally determine T2 to be ∼20 K higher than T,9 but part of this difference may arise from an underestimation of T through the use of inaccurate CO2–He pressure-broadening coefficients.22
  35. C. Dang, J. Reid, B. K. Garside, “Dynamics of the CO2 upper laser level as measured with a tunable diode laser,” IEEE J. Quantum Electron. QE-19, 755–764 (1983).
    [CrossRef]
  36. Little change in T3 was observed over a pressure range from 7 to 14 Torr in the cw discharge, although we have observed a slight increase in T toward higher pressure. The pulsed measurements shown in Fig. 8 for N2O were taken at a pressure of 80 Torr.
  37. R. K. Brimacombe, J. Reid, T. A. Znotins, “Gain dynamics of the 4.3-μ m CO2laser, Appl. Phys. B. (to be published).
  38. W. J. Wiegand, M. C. Fowler, J. A. Benda, “Carbon monoxide formation in CO2 lasers,” Appl. Phys. Lett. 16, 237–239 (1970).
    [CrossRef]
  39. The degree of dissociation at the entrance and exit of the discharge is known, and thus the exponential variation in N2O density exp(−dl) along the length of the discharge tube can be calculated. The average value of the exponential [1 − exp(−dL)]/dL is used to represent the average mixture in the discharge. L is the length of the discharge region.
  40. N. Lacombe, C. Boulet, E. Arie, “Spectroscopic par source laser. III Intensities et largeurs des raies de la transition 00°1–10°0 du protoxyde d’azote. Ecarts a la forme de Lorentz,” Can. J. Phys. 51, 302–310 (1973).
    [CrossRef]
  41. Klaus Siemsen, National Research Council, Ottawa K1A 0R8, Canada (personal communication).
  42. G. J. Mullaney, H. G. Ahlstrom, W. H. Christiansen, “Pulsed N2O molecular laser studies,” IEEE J. Quantum Electron. QE-7, 551–555 (1971).
    [CrossRef]
  43. R. K. Brimacombe, “4.3-μm TE CO2laser dynamics,” Ph.D. dissertation (McMaster University, Hamilton, Ontario, Canada, 1985).
  44. T. A. Znotins, J. Reid, B. K. Garside, E. A. Ballik, “4.3-μm TE CO2 laser,” Opt. Lett. 4, 253–255 (1979).
    [CrossRef]

1984 (2)

C. Gastaud, M. Redon, P. Belland, M. Fourrier, “Far-infrared laser action in vinyl chloride, vinyl bromide, and vinyl fluoride optically pumped by a cw N2O laser,” Int. J. Infrared Millimeter Waves 5, 875–885 (1984).
[CrossRef]

N. Lacombe, A. Levy, G. Guelachvili, “Fourier transform measurement of self-, N2-, and O2-broadening of N2O lines: temperature dependence of linewidths,” Appl. Opt. 23, 425–435 (1984).
[CrossRef]

1983 (3)

R. K. Brimacombe, J. Reid, “Accurate measurements of pressure-broadened linewidths in a transversely excited O2discharge,” IEEE J. Quantum Electron. QE-19, 1668–1673 (1983).
[CrossRef]

T. E. Gough, D. G. Knight, G. Scoles, “Matrix spectroscopy in the gas phase: IR spectroscopy of argon clusters containing SF6 or CH3F,” Chem. Phys. Lett. 97, 155–160 (1983).
[CrossRef]

C. Dang, J. Reid, B. K. Garside, “Dynamics of the CO2 upper laser level as measured with a tunable diode laser,” IEEE J. Quantum Electron. QE-19, 755–764 (1983).
[CrossRef]

1982 (2)

C. Dang, J. Reid, B. K. Garside, “Detailed vibrational population distributions in a CO2 laser discharge as measured with a tunable diode laser,” Appl. Phys. B 27, 145–151 (1982).
[CrossRef]

R. H. Kagann, “Infrared absorption intensities for N2O,” J. Mol.Spectrosc. 95, 297–305 (1982).
[CrossRef]

1981 (1)

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

1980 (3)

K. J. Siemsen, J. Reid, C. Dang, “New techniques for determining vibrational temperatures, dissociation, and gain limitations in cw CO2 lasers,” IEEE J. Quantum Electron. QE-16, 668–676 (1980).
[CrossRef]

C. Dang, J. Reid, B. K. Garside, “Gain limitations in TE CO2 laser amplifiers,” IEEE J. Quantum Electron. QE-16, 1097–1103 (1980).
[CrossRef]

R. T. Pack, “Analytic estimation of almost resonant molecular energy transfer due to multipolar potentials. VV processes involving CO2,” J. Chem. Phys. 72, 6140–6152 (1980).
[CrossRef]

1979 (1)

1978 (1)

A. Picard-Bersellini, C. Rossetti, C. Boulet, “A study of vibrational relaxation of nitrous oxide by high resolution infrared emission spectroscopy,” Spectrochim. Acta 34A, 1067–1076 (1978).

1977 (1)

K. Siemsen, J. Reid, “New N2O laser band in the 10 μ m wavelength region,” Opt. Commun. 20, 284–288 (1977).
[CrossRef]

1976 (2)

C. Amiot, “Vibration-rotation bands of 14N15N16O−15N14N16O: 1.6–5.7 μm region,” J. Mol. Spectrosc. 59, 191–208 (1976).
[CrossRef]

C. Amiot, G. Guelachvili, “Extension of the 106samples Fourier spectrometry to the indium antimonide region: vibration-rotation bands of 14N216O: 3.3–5.5 μm region,” J. Mol. Spectrosc. 59, 171–190 (1976).
[CrossRef]

1975 (2)

L. A. Weaver, L. H. Taylor, L. J. Denes, “Rotational temperature determinations in molecular gas lasers,” J. Appl. Phys. 46, 3951–3958 (1975).
[CrossRef]

B. G. Whitford, K. J. Siemsen, H. D. Riccius, G. R. Hanes, “Absolute frequency measurements of N2O laser transitions,” Opt. Commun. 14, 70–74 (1975).
[CrossRef]

1974 (3)

R. Farrenq, J. Dupre-Maquaire, “Vibrational luminescence of N2O excited by dc dischage—rotation–vibration constants,” J. Mol. Spectrosc. 49, 268–279 (1974).
[CrossRef]

R. R. Jacobs, K. J. Pettipiece, S. J. Thomas, “Rotational relaxation rate constants for CO2,” Appl. Phys. Lett. 24, 375–377 (1974).
[CrossRef]

R. Farrenq, D. Gaultier, C. Rossetti, “Vibrational luminescence of N2O excited by dc discharge,” J. Mol. Spectrosc. 49, 280–288 (1974).
[CrossRef]

1973 (2)

J. M. Austin, A. L. S. Smith, “Decomposition of N2O in a glow discharge,” J. Phys.D 6, 2236–2241 (1973).
[CrossRef]

N. Lacombe, C. Boulet, E. Arie, “Spectroscopic par source laser. III Intensities et largeurs des raies de la transition 00°1–10°0 du protoxyde d’azote. Ecarts a la forme de Lorentz,” Can. J. Phys. 51, 302–310 (1973).
[CrossRef]

1972 (1)

A. M. Robinson, “Gain distribution in a CO2 TEA laser,” Can. J. Phys. 50, 2471–2474 (1972).
[CrossRef]

1971 (2)

G. J. Mullaney, H. G. Ahlstrom, W. H. Christiansen, “Pulsed N2O molecular laser studies,” IEEE J. Quantum Electron. QE-7, 551–555 (1971).
[CrossRef]

T. Oka, T. Shimizu, “Observation of infrared-microwave two-photon transitions in NH3,” Appl. Phys. Lett. 19, 88–90 (1971).
[CrossRef]

1970 (2)

F. Shimizu, “Stark spectroscopy of 15NH3 ν2 band by 10-μ lasers,” J. Chem. Phys. 53, 1149–1151 (1970).
[CrossRef]

W. J. Wiegand, M. C. Fowler, J. A. Benda, “Carbon monoxide formation in CO2 lasers,” Appl. Phys. Lett. 16, 237–239 (1970).
[CrossRef]

1968 (3)

N. Djeu, T. Kan, G. Wolga, “Laser parameters for the 10.8-μ N2O molecular laser,” IEEE J. Quantum Electron. QE-4, 783–785 (1968).
[CrossRef]

B. F. Gordietz, N. N. Sobolev, V. V. Sokovikov, L. A. Shelepin, “Population inversion of the vibrational levels in CO2 lasers,” IEEE J. Quantum Electron. QE-4, 796–802 (1968).
[CrossRef]

J. Pliva, “Molecular constants of nitrous oxide, 14N216O,” J. Mol. Spectrosc. 27, 461–488 (1968).
[CrossRef]

1967 (1)

C. B. Moore, R. E. Wood, B.-L. Hu, J. T. Yardley, “Vibrational energy transfer in CO2 lasers,” J. Chem.Phys. 46, 4222–4231 (1967).
[CrossRef]

1964 (1)

R. Holmes, G. R. Jones, R. Lawrence, “Rotational relaxation in carbon dioxide and nitrous oxide,” J. Chem. Phys. 41, 2955–2956 (1964).
[CrossRef]

1959 (1)

W. H. Anderson, D. F. Hornig, “The structure of shock fronts in gases,” Mol. Phys. 2, 49–63 (1959).
[CrossRef]

Ahlstrom, H. G.

G. J. Mullaney, H. G. Ahlstrom, W. H. Christiansen, “Pulsed N2O molecular laser studies,” IEEE J. Quantum Electron. QE-7, 551–555 (1971).
[CrossRef]

Amiot, C.

C. Amiot, “Vibration-rotation bands of 14N15N16O−15N14N16O: 1.6–5.7 μm region,” J. Mol. Spectrosc. 59, 191–208 (1976).
[CrossRef]

C. Amiot, G. Guelachvili, “Extension of the 106samples Fourier spectrometry to the indium antimonide region: vibration-rotation bands of 14N216O: 3.3–5.5 μm region,” J. Mol. Spectrosc. 59, 171–190 (1976).
[CrossRef]

Anderson, W. H.

W. H. Anderson, D. F. Hornig, “The structure of shock fronts in gases,” Mol. Phys. 2, 49–63 (1959).
[CrossRef]

Arie, E.

N. Lacombe, C. Boulet, E. Arie, “Spectroscopic par source laser. III Intensities et largeurs des raies de la transition 00°1–10°0 du protoxyde d’azote. Ecarts a la forme de Lorentz,” Can. J. Phys. 51, 302–310 (1973).
[CrossRef]

Austin, J. M.

J. M. Austin, A. L. S. Smith, “Decomposition of N2O in a glow discharge,” J. Phys.D 6, 2236–2241 (1973).
[CrossRef]

Ballik, E. A.

Belland, P.

C. Gastaud, M. Redon, P. Belland, M. Fourrier, “Far-infrared laser action in vinyl chloride, vinyl bromide, and vinyl fluoride optically pumped by a cw N2O laser,” Int. J. Infrared Millimeter Waves 5, 875–885 (1984).
[CrossRef]

Benda, J. A.

W. J. Wiegand, M. C. Fowler, J. A. Benda, “Carbon monoxide formation in CO2 lasers,” Appl. Phys. Lett. 16, 237–239 (1970).
[CrossRef]

Boulet, C.

A. Picard-Bersellini, C. Rossetti, C. Boulet, “A study of vibrational relaxation of nitrous oxide by high resolution infrared emission spectroscopy,” Spectrochim. Acta 34A, 1067–1076 (1978).

N. Lacombe, C. Boulet, E. Arie, “Spectroscopic par source laser. III Intensities et largeurs des raies de la transition 00°1–10°0 du protoxyde d’azote. Ecarts a la forme de Lorentz,” Can. J. Phys. 51, 302–310 (1973).
[CrossRef]

Brimacombe, R. K.

R. K. Brimacombe, J. Reid, “Accurate measurements of pressure-broadened linewidths in a transversely excited O2discharge,” IEEE J. Quantum Electron. QE-19, 1668–1673 (1983).
[CrossRef]

R. K. Brimacombe, J. Reid, T. A. Znotins, “Gain dynamics of the 4.3-μ m CO2laser, Appl. Phys. B. (to be published).

R. K. Brimacombe, “4.3-μm TE CO2laser dynamics,” Ph.D. dissertation (McMaster University, Hamilton, Ontario, Canada, 1985).

Christiansen, W. H.

G. J. Mullaney, H. G. Ahlstrom, W. H. Christiansen, “Pulsed N2O molecular laser studies,” IEEE J. Quantum Electron. QE-7, 551–555 (1971).
[CrossRef]

Dang, C.

C. Dang, J. Reid, B. K. Garside, “Dynamics of the CO2 upper laser level as measured with a tunable diode laser,” IEEE J. Quantum Electron. QE-19, 755–764 (1983).
[CrossRef]

C. Dang, J. Reid, B. K. Garside, “Detailed vibrational population distributions in a CO2 laser discharge as measured with a tunable diode laser,” Appl. Phys. B 27, 145–151 (1982).
[CrossRef]

K. J. Siemsen, J. Reid, C. Dang, “New techniques for determining vibrational temperatures, dissociation, and gain limitations in cw CO2 lasers,” IEEE J. Quantum Electron. QE-16, 668–676 (1980).
[CrossRef]

C. Dang, J. Reid, B. K. Garside, “Gain limitations in TE CO2 laser amplifiers,” IEEE J. Quantum Electron. QE-16, 1097–1103 (1980).
[CrossRef]

Denes, L. J.

L. A. Weaver, L. H. Taylor, L. J. Denes, “Rotational temperature determinations in molecular gas lasers,” J. Appl. Phys. 46, 3951–3958 (1975).
[CrossRef]

Djeu, N.

N. Djeu, T. Kan, G. Wolga, “Laser parameters for the 10.8-μ N2O molecular laser,” IEEE J. Quantum Electron. QE-4, 783–785 (1968).
[CrossRef]

Dupre-Maquaire, J.

R. Farrenq, J. Dupre-Maquaire, “Vibrational luminescence of N2O excited by dc dischage—rotation–vibration constants,” J. Mol. Spectrosc. 49, 268–279 (1974).
[CrossRef]

Farrenq, R.

R. Farrenq, J. Dupre-Maquaire, “Vibrational luminescence of N2O excited by dc dischage—rotation–vibration constants,” J. Mol. Spectrosc. 49, 268–279 (1974).
[CrossRef]

R. Farrenq, D. Gaultier, C. Rossetti, “Vibrational luminescence of N2O excited by dc discharge,” J. Mol. Spectrosc. 49, 280–288 (1974).
[CrossRef]

Fourrier, M.

C. Gastaud, M. Redon, P. Belland, M. Fourrier, “Far-infrared laser action in vinyl chloride, vinyl bromide, and vinyl fluoride optically pumped by a cw N2O laser,” Int. J. Infrared Millimeter Waves 5, 875–885 (1984).
[CrossRef]

Fowler, M. C.

W. J. Wiegand, M. C. Fowler, J. A. Benda, “Carbon monoxide formation in CO2 lasers,” Appl. Phys. Lett. 16, 237–239 (1970).
[CrossRef]

Garside, B. K.

C. Dang, J. Reid, B. K. Garside, “Dynamics of the CO2 upper laser level as measured with a tunable diode laser,” IEEE J. Quantum Electron. QE-19, 755–764 (1983).
[CrossRef]

C. Dang, J. Reid, B. K. Garside, “Detailed vibrational population distributions in a CO2 laser discharge as measured with a tunable diode laser,” Appl. Phys. B 27, 145–151 (1982).
[CrossRef]

C. Dang, J. Reid, B. K. Garside, “Gain limitations in TE CO2 laser amplifiers,” IEEE J. Quantum Electron. QE-16, 1097–1103 (1980).
[CrossRef]

T. A. Znotins, J. Reid, B. K. Garside, E. A. Ballik, “4.3-μm TE CO2 laser,” Opt. Lett. 4, 253–255 (1979).
[CrossRef]

Gastaud, C.

C. Gastaud, M. Redon, P. Belland, M. Fourrier, “Far-infrared laser action in vinyl chloride, vinyl bromide, and vinyl fluoride optically pumped by a cw N2O laser,” Int. J. Infrared Millimeter Waves 5, 875–885 (1984).
[CrossRef]

Gaultier, D.

R. Farrenq, D. Gaultier, C. Rossetti, “Vibrational luminescence of N2O excited by dc discharge,” J. Mol. Spectrosc. 49, 280–288 (1974).
[CrossRef]

Gordietz, B. F.

B. F. Gordietz, N. N. Sobolev, V. V. Sokovikov, L. A. Shelepin, “Population inversion of the vibrational levels in CO2 lasers,” IEEE J. Quantum Electron. QE-4, 796–802 (1968).
[CrossRef]

Gough, T. E.

T. E. Gough, D. G. Knight, G. Scoles, “Matrix spectroscopy in the gas phase: IR spectroscopy of argon clusters containing SF6 or CH3F,” Chem. Phys. Lett. 97, 155–160 (1983).
[CrossRef]

Guelachvili, G.

N. Lacombe, A. Levy, G. Guelachvili, “Fourier transform measurement of self-, N2-, and O2-broadening of N2O lines: temperature dependence of linewidths,” Appl. Opt. 23, 425–435 (1984).
[CrossRef]

C. Amiot, G. Guelachvili, “Extension of the 106samples Fourier spectrometry to the indium antimonide region: vibration-rotation bands of 14N216O: 3.3–5.5 μm region,” J. Mol. Spectrosc. 59, 171–190 (1976).
[CrossRef]

Hanes, G. R.

B. G. Whitford, K. J. Siemsen, H. D. Riccius, G. R. Hanes, “Absolute frequency measurements of N2O laser transitions,” Opt. Commun. 14, 70–74 (1975).
[CrossRef]

Holmes, R.

R. Holmes, G. R. Jones, R. Lawrence, “Rotational relaxation in carbon dioxide and nitrous oxide,” J. Chem. Phys. 41, 2955–2956 (1964).
[CrossRef]

Hornig, D. F.

W. H. Anderson, D. F. Hornig, “The structure of shock fronts in gases,” Mol. Phys. 2, 49–63 (1959).
[CrossRef]

Hu, B.-L.

C. B. Moore, R. E. Wood, B.-L. Hu, J. T. Yardley, “Vibrational energy transfer in CO2 lasers,” J. Chem.Phys. 46, 4222–4231 (1967).
[CrossRef]

Jacobs, R. R.

R. R. Jacobs, K. J. Pettipiece, S. J. Thomas, “Rotational relaxation rate constants for CO2,” Appl. Phys. Lett. 24, 375–377 (1974).
[CrossRef]

Jones, G. R.

R. Holmes, G. R. Jones, R. Lawrence, “Rotational relaxation in carbon dioxide and nitrous oxide,” J. Chem. Phys. 41, 2955–2956 (1964).
[CrossRef]

Kagann, R. H.

R. H. Kagann, “Infrared absorption intensities for N2O,” J. Mol.Spectrosc. 95, 297–305 (1982).
[CrossRef]

Kan, T.

N. Djeu, T. Kan, G. Wolga, “Laser parameters for the 10.8-μ N2O molecular laser,” IEEE J. Quantum Electron. QE-4, 783–785 (1968).
[CrossRef]

Knight, D. G.

T. E. Gough, D. G. Knight, G. Scoles, “Matrix spectroscopy in the gas phase: IR spectroscopy of argon clusters containing SF6 or CH3F,” Chem. Phys. Lett. 97, 155–160 (1983).
[CrossRef]

Labrie, D.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Lacombe, N.

N. Lacombe, A. Levy, G. Guelachvili, “Fourier transform measurement of self-, N2-, and O2-broadening of N2O lines: temperature dependence of linewidths,” Appl. Opt. 23, 425–435 (1984).
[CrossRef]

N. Lacombe, C. Boulet, E. Arie, “Spectroscopic par source laser. III Intensities et largeurs des raies de la transition 00°1–10°0 du protoxyde d’azote. Ecarts a la forme de Lorentz,” Can. J. Phys. 51, 302–310 (1973).
[CrossRef]

Lawrence, R.

R. Holmes, G. R. Jones, R. Lawrence, “Rotational relaxation in carbon dioxide and nitrous oxide,” J. Chem. Phys. 41, 2955–2956 (1964).
[CrossRef]

Levy, A.

Moore, C. B.

C. B. Moore, R. E. Wood, B.-L. Hu, J. T. Yardley, “Vibrational energy transfer in CO2 lasers,” J. Chem.Phys. 46, 4222–4231 (1967).
[CrossRef]

Mullaney, G. J.

G. J. Mullaney, H. G. Ahlstrom, W. H. Christiansen, “Pulsed N2O molecular laser studies,” IEEE J. Quantum Electron. QE-7, 551–555 (1971).
[CrossRef]

Oka, T.

T. Oka, T. Shimizu, “Observation of infrared-microwave two-photon transitions in NH3,” Appl. Phys. Lett. 19, 88–90 (1971).
[CrossRef]

Pack, R. T.

R. T. Pack, “Analytic estimation of almost resonant molecular energy transfer due to multipolar potentials. VV processes involving CO2,” J. Chem. Phys. 72, 6140–6152 (1980).
[CrossRef]

Pettipiece, K. J.

R. R. Jacobs, K. J. Pettipiece, S. J. Thomas, “Rotational relaxation rate constants for CO2,” Appl. Phys. Lett. 24, 375–377 (1974).
[CrossRef]

Picard-Bersellini, A.

A. Picard-Bersellini, C. Rossetti, C. Boulet, “A study of vibrational relaxation of nitrous oxide by high resolution infrared emission spectroscopy,” Spectrochim. Acta 34A, 1067–1076 (1978).

Pliva, J.

J. Pliva, “Molecular constants of nitrous oxide, 14N216O,” J. Mol. Spectrosc. 27, 461–488 (1968).
[CrossRef]

Redon, M.

C. Gastaud, M. Redon, P. Belland, M. Fourrier, “Far-infrared laser action in vinyl chloride, vinyl bromide, and vinyl fluoride optically pumped by a cw N2O laser,” Int. J. Infrared Millimeter Waves 5, 875–885 (1984).
[CrossRef]

Reid, J.

R. K. Brimacombe, J. Reid, “Accurate measurements of pressure-broadened linewidths in a transversely excited O2discharge,” IEEE J. Quantum Electron. QE-19, 1668–1673 (1983).
[CrossRef]

C. Dang, J. Reid, B. K. Garside, “Dynamics of the CO2 upper laser level as measured with a tunable diode laser,” IEEE J. Quantum Electron. QE-19, 755–764 (1983).
[CrossRef]

C. Dang, J. Reid, B. K. Garside, “Detailed vibrational population distributions in a CO2 laser discharge as measured with a tunable diode laser,” Appl. Phys. B 27, 145–151 (1982).
[CrossRef]

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

C. Dang, J. Reid, B. K. Garside, “Gain limitations in TE CO2 laser amplifiers,” IEEE J. Quantum Electron. QE-16, 1097–1103 (1980).
[CrossRef]

K. J. Siemsen, J. Reid, C. Dang, “New techniques for determining vibrational temperatures, dissociation, and gain limitations in cw CO2 lasers,” IEEE J. Quantum Electron. QE-16, 668–676 (1980).
[CrossRef]

T. A. Znotins, J. Reid, B. K. Garside, E. A. Ballik, “4.3-μm TE CO2 laser,” Opt. Lett. 4, 253–255 (1979).
[CrossRef]

K. Siemsen, J. Reid, “New N2O laser band in the 10 μ m wavelength region,” Opt. Commun. 20, 284–288 (1977).
[CrossRef]

R. K. Brimacombe, J. Reid, T. A. Znotins, “Gain dynamics of the 4.3-μ m CO2laser, Appl. Phys. B. (to be published).

Riccius, H. D.

B. G. Whitford, K. J. Siemsen, H. D. Riccius, G. R. Hanes, “Absolute frequency measurements of N2O laser transitions,” Opt. Commun. 14, 70–74 (1975).
[CrossRef]

Robinson, A. M.

A. M. Robinson, “Gain distribution in a CO2 TEA laser,” Can. J. Phys. 50, 2471–2474 (1972).
[CrossRef]

Rossetti, C.

A. Picard-Bersellini, C. Rossetti, C. Boulet, “A study of vibrational relaxation of nitrous oxide by high resolution infrared emission spectroscopy,” Spectrochim. Acta 34A, 1067–1076 (1978).

R. Farrenq, D. Gaultier, C. Rossetti, “Vibrational luminescence of N2O excited by dc discharge,” J. Mol. Spectrosc. 49, 280–288 (1974).
[CrossRef]

Scoles, G.

T. E. Gough, D. G. Knight, G. Scoles, “Matrix spectroscopy in the gas phase: IR spectroscopy of argon clusters containing SF6 or CH3F,” Chem. Phys. Lett. 97, 155–160 (1983).
[CrossRef]

Shelepin, L. A.

B. F. Gordietz, N. N. Sobolev, V. V. Sokovikov, L. A. Shelepin, “Population inversion of the vibrational levels in CO2 lasers,” IEEE J. Quantum Electron. QE-4, 796–802 (1968).
[CrossRef]

Shimizu, F.

F. Shimizu, “Stark spectroscopy of 15NH3 ν2 band by 10-μ lasers,” J. Chem. Phys. 53, 1149–1151 (1970).
[CrossRef]

Shimizu, T.

T. Oka, T. Shimizu, “Observation of infrared-microwave two-photon transitions in NH3,” Appl. Phys. Lett. 19, 88–90 (1971).
[CrossRef]

Siemsen, K.

K. Siemsen, J. Reid, “New N2O laser band in the 10 μ m wavelength region,” Opt. Commun. 20, 284–288 (1977).
[CrossRef]

Siemsen, K. J.

K. J. Siemsen, J. Reid, C. Dang, “New techniques for determining vibrational temperatures, dissociation, and gain limitations in cw CO2 lasers,” IEEE J. Quantum Electron. QE-16, 668–676 (1980).
[CrossRef]

B. G. Whitford, K. J. Siemsen, H. D. Riccius, G. R. Hanes, “Absolute frequency measurements of N2O laser transitions,” Opt. Commun. 14, 70–74 (1975).
[CrossRef]

Siemsen, Klaus

Klaus Siemsen, National Research Council, Ottawa K1A 0R8, Canada (personal communication).

Smith, A. L. S.

J. M. Austin, A. L. S. Smith, “Decomposition of N2O in a glow discharge,” J. Phys.D 6, 2236–2241 (1973).
[CrossRef]

Sobolev, N. N.

B. F. Gordietz, N. N. Sobolev, V. V. Sokovikov, L. A. Shelepin, “Population inversion of the vibrational levels in CO2 lasers,” IEEE J. Quantum Electron. QE-4, 796–802 (1968).
[CrossRef]

Sokovikov, V. V.

B. F. Gordietz, N. N. Sobolev, V. V. Sokovikov, L. A. Shelepin, “Population inversion of the vibrational levels in CO2 lasers,” IEEE J. Quantum Electron. QE-4, 796–802 (1968).
[CrossRef]

Taylor, L. H.

L. A. Weaver, L. H. Taylor, L. J. Denes, “Rotational temperature determinations in molecular gas lasers,” J. Appl. Phys. 46, 3951–3958 (1975).
[CrossRef]

Thomas, S. J.

R. R. Jacobs, K. J. Pettipiece, S. J. Thomas, “Rotational relaxation rate constants for CO2,” Appl. Phys. Lett. 24, 375–377 (1974).
[CrossRef]

Weaver, L. A.

L. A. Weaver, L. H. Taylor, L. J. Denes, “Rotational temperature determinations in molecular gas lasers,” J. Appl. Phys. 46, 3951–3958 (1975).
[CrossRef]

Whitford, B. G.

B. G. Whitford, K. J. Siemsen, H. D. Riccius, G. R. Hanes, “Absolute frequency measurements of N2O laser transitions,” Opt. Commun. 14, 70–74 (1975).
[CrossRef]

Wiegand, W. J.

W. J. Wiegand, M. C. Fowler, J. A. Benda, “Carbon monoxide formation in CO2 lasers,” Appl. Phys. Lett. 16, 237–239 (1970).
[CrossRef]

Willett, C.

C. Willett, Introduction to Gas Lasers: Population Inversion Mechanisms (Pergamon, Oxford, 1974), p. 301.

Wolga, G.

N. Djeu, T. Kan, G. Wolga, “Laser parameters for the 10.8-μ N2O molecular laser,” IEEE J. Quantum Electron. QE-4, 783–785 (1968).
[CrossRef]

Wood, R. E.

C. B. Moore, R. E. Wood, B.-L. Hu, J. T. Yardley, “Vibrational energy transfer in CO2 lasers,” J. Chem.Phys. 46, 4222–4231 (1967).
[CrossRef]

Yardley, J. T.

C. B. Moore, R. E. Wood, B.-L. Hu, J. T. Yardley, “Vibrational energy transfer in CO2 lasers,” J. Chem.Phys. 46, 4222–4231 (1967).
[CrossRef]

Znotins, T. A.

T. A. Znotins, J. Reid, B. K. Garside, E. A. Ballik, “4.3-μm TE CO2 laser,” Opt. Lett. 4, 253–255 (1979).
[CrossRef]

R. K. Brimacombe, J. Reid, T. A. Znotins, “Gain dynamics of the 4.3-μ m CO2laser, Appl. Phys. B. (to be published).

Appl. Opt. (1)

Appl. Phys. B (2)

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

C. Dang, J. Reid, B. K. Garside, “Detailed vibrational population distributions in a CO2 laser discharge as measured with a tunable diode laser,” Appl. Phys. B 27, 145–151 (1982).
[CrossRef]

Appl. Phys. Lett. (3)

T. Oka, T. Shimizu, “Observation of infrared-microwave two-photon transitions in NH3,” Appl. Phys. Lett. 19, 88–90 (1971).
[CrossRef]

R. R. Jacobs, K. J. Pettipiece, S. J. Thomas, “Rotational relaxation rate constants for CO2,” Appl. Phys. Lett. 24, 375–377 (1974).
[CrossRef]

W. J. Wiegand, M. C. Fowler, J. A. Benda, “Carbon monoxide formation in CO2 lasers,” Appl. Phys. Lett. 16, 237–239 (1970).
[CrossRef]

Can. J. Phys. (2)

A. M. Robinson, “Gain distribution in a CO2 TEA laser,” Can. J. Phys. 50, 2471–2474 (1972).
[CrossRef]

N. Lacombe, C. Boulet, E. Arie, “Spectroscopic par source laser. III Intensities et largeurs des raies de la transition 00°1–10°0 du protoxyde d’azote. Ecarts a la forme de Lorentz,” Can. J. Phys. 51, 302–310 (1973).
[CrossRef]

Chem. Phys. Lett. (1)

T. E. Gough, D. G. Knight, G. Scoles, “Matrix spectroscopy in the gas phase: IR spectroscopy of argon clusters containing SF6 or CH3F,” Chem. Phys. Lett. 97, 155–160 (1983).
[CrossRef]

IEEE J. Quantum Electron. (7)

B. F. Gordietz, N. N. Sobolev, V. V. Sokovikov, L. A. Shelepin, “Population inversion of the vibrational levels in CO2 lasers,” IEEE J. Quantum Electron. QE-4, 796–802 (1968).
[CrossRef]

N. Djeu, T. Kan, G. Wolga, “Laser parameters for the 10.8-μ N2O molecular laser,” IEEE J. Quantum Electron. QE-4, 783–785 (1968).
[CrossRef]

K. J. Siemsen, J. Reid, C. Dang, “New techniques for determining vibrational temperatures, dissociation, and gain limitations in cw CO2 lasers,” IEEE J. Quantum Electron. QE-16, 668–676 (1980).
[CrossRef]

C. Dang, J. Reid, B. K. Garside, “Gain limitations in TE CO2 laser amplifiers,” IEEE J. Quantum Electron. QE-16, 1097–1103 (1980).
[CrossRef]

R. K. Brimacombe, J. Reid, “Accurate measurements of pressure-broadened linewidths in a transversely excited O2discharge,” IEEE J. Quantum Electron. QE-19, 1668–1673 (1983).
[CrossRef]

C. Dang, J. Reid, B. K. Garside, “Dynamics of the CO2 upper laser level as measured with a tunable diode laser,” IEEE J. Quantum Electron. QE-19, 755–764 (1983).
[CrossRef]

G. J. Mullaney, H. G. Ahlstrom, W. H. Christiansen, “Pulsed N2O molecular laser studies,” IEEE J. Quantum Electron. QE-7, 551–555 (1971).
[CrossRef]

Int. J. Infrared Millimeter Waves (1)

C. Gastaud, M. Redon, P. Belland, M. Fourrier, “Far-infrared laser action in vinyl chloride, vinyl bromide, and vinyl fluoride optically pumped by a cw N2O laser,” Int. J. Infrared Millimeter Waves 5, 875–885 (1984).
[CrossRef]

J. Appl. Phys. (1)

L. A. Weaver, L. H. Taylor, L. J. Denes, “Rotational temperature determinations in molecular gas lasers,” J. Appl. Phys. 46, 3951–3958 (1975).
[CrossRef]

J. Chem. Phys. (3)

R. Holmes, G. R. Jones, R. Lawrence, “Rotational relaxation in carbon dioxide and nitrous oxide,” J. Chem. Phys. 41, 2955–2956 (1964).
[CrossRef]

R. T. Pack, “Analytic estimation of almost resonant molecular energy transfer due to multipolar potentials. VV processes involving CO2,” J. Chem. Phys. 72, 6140–6152 (1980).
[CrossRef]

F. Shimizu, “Stark spectroscopy of 15NH3 ν2 band by 10-μ lasers,” J. Chem. Phys. 53, 1149–1151 (1970).
[CrossRef]

J. Chem.Phys. (1)

C. B. Moore, R. E. Wood, B.-L. Hu, J. T. Yardley, “Vibrational energy transfer in CO2 lasers,” J. Chem.Phys. 46, 4222–4231 (1967).
[CrossRef]

J. Mol. Spectrosc. (5)

R. Farrenq, D. Gaultier, C. Rossetti, “Vibrational luminescence of N2O excited by dc discharge,” J. Mol. Spectrosc. 49, 280–288 (1974).
[CrossRef]

J. Pliva, “Molecular constants of nitrous oxide, 14N216O,” J. Mol. Spectrosc. 27, 461–488 (1968).
[CrossRef]

C. Amiot, “Vibration-rotation bands of 14N15N16O−15N14N16O: 1.6–5.7 μm region,” J. Mol. Spectrosc. 59, 191–208 (1976).
[CrossRef]

C. Amiot, G. Guelachvili, “Extension of the 106samples Fourier spectrometry to the indium antimonide region: vibration-rotation bands of 14N216O: 3.3–5.5 μm region,” J. Mol. Spectrosc. 59, 171–190 (1976).
[CrossRef]

R. Farrenq, J. Dupre-Maquaire, “Vibrational luminescence of N2O excited by dc dischage—rotation–vibration constants,” J. Mol. Spectrosc. 49, 268–279 (1974).
[CrossRef]

J. Mol.Spectrosc. (1)

R. H. Kagann, “Infrared absorption intensities for N2O,” J. Mol.Spectrosc. 95, 297–305 (1982).
[CrossRef]

J. Phys.D (1)

J. M. Austin, A. L. S. Smith, “Decomposition of N2O in a glow discharge,” J. Phys.D 6, 2236–2241 (1973).
[CrossRef]

Mol. Phys. (1)

W. H. Anderson, D. F. Hornig, “The structure of shock fronts in gases,” Mol. Phys. 2, 49–63 (1959).
[CrossRef]

Opt. Commun. (2)

K. Siemsen, J. Reid, “New N2O laser band in the 10 μ m wavelength region,” Opt. Commun. 20, 284–288 (1977).
[CrossRef]

B. G. Whitford, K. J. Siemsen, H. D. Riccius, G. R. Hanes, “Absolute frequency measurements of N2O laser transitions,” Opt. Commun. 14, 70–74 (1975).
[CrossRef]

Opt. Lett. (1)

Spectrochim. Acta (1)

A. Picard-Bersellini, C. Rossetti, C. Boulet, “A study of vibrational relaxation of nitrous oxide by high resolution infrared emission spectroscopy,” Spectrochim. Acta 34A, 1067–1076 (1978).

Other (10)

C. Willett, Introduction to Gas Lasers: Population Inversion Mechanisms (Pergamon, Oxford, 1974), p. 301.

Measurements made in CO2 discharges generally determine T2 to be ∼20 K higher than T,9 but part of this difference may arise from an underestimation of T through the use of inaccurate CO2–He pressure-broadening coefficients.22

The experimental points shown in Fig. 6 have been corrected for the absorption that occurs in the nondischarge portion of the tube. This correction is significant for the low-lying levels, such as 0110, but has little effect for levels such as 0330. The fitted value of α(00°0), as derived for Fig. 5, is used in the calculations of Nijl0. The combined effect of these procedures produces a linear least-squares fit to the data points, which need not pass exactly through the point (0, 0).

The measured dissociation corresponds to the gas mixture leaving the discharge region, whereas the gas entering the discharge is undissociated. As the final products of N2O dissociation are N2and O2,33 reformation of N2O is not expected to be significant.

Little change in T3 was observed over a pressure range from 7 to 14 Torr in the cw discharge, although we have observed a slight increase in T toward higher pressure. The pulsed measurements shown in Fig. 8 for N2O were taken at a pressure of 80 Torr.

R. K. Brimacombe, J. Reid, T. A. Znotins, “Gain dynamics of the 4.3-μ m CO2laser, Appl. Phys. B. (to be published).

The degree of dissociation at the entrance and exit of the discharge is known, and thus the exponential variation in N2O density exp(−dl) along the length of the discharge tube can be calculated. The average value of the exponential [1 − exp(−dL)]/dL is used to represent the average mixture in the discharge. L is the length of the discharge region.

For convenience, vibrational bands will generally be identified by the lower level only, e.g., the (00° 3–00 °2) absorption band becomes the 00° 2 band.

R. K. Brimacombe, “4.3-μm TE CO2laser dynamics,” Ph.D. dissertation (McMaster University, Hamilton, Ontario, Canada, 1985).

Klaus Siemsen, National Research Council, Ottawa K1A 0R8, Canada (personal communication).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Partial vibrational energy-level diagram for N2O showing the three fundamental modes with their associated mode temperatures. Also shown are some typical transitions in the 2200-cm−1 region that are probed with the TDL.

Fig. 2
Fig. 2

Schematic diagram of the experimental apparatus.

Fig. 3
Fig. 3

Typical TDL scans recorded with the laser beam focused into the discharge tube. The upper scan is taken with no discharge current, and the lower scan corresponds to a current of 15 mA in a 15%N2O–15%N2–70%He mixture at 13.7 Torr. The more important absorption lines are labeled beneath the traces. The number in parentheses indicates an isotope other than the most abundant 14N14N16O isotope: 15N14N16O is labeled (546). Each line is identified by its lower vibrational level.29

Fig. 4
Fig. 4

Rotational distributions measured in the 00° 0 band of 15N14N16O at room temperature and in the 00° 2 band of 14N216O at a discharge current of 25 mA. The pressure was 13.7 Torr. The smooth curves show the theoretical calculations; the distributions are normalized to a maximum value of unity.

Fig. 5
Fig. 5

Vibrational population distributions in the ν3 mode of N2O at discharge currents of 5 and 25 mA. Data points are experimental measurements made with the TDL; the solid line is a linear fit, constrained to pass through the point (0, 0). The slope of the line gives the mode temperature T3.

Fig. 6
Fig. 6

Vibrational population distributions in the ν1 and ν2 modes of N2O at discharge currents of 5 and 25 mA. Data points are experimental measurements for the levels indicated in the figure; solid lines represent Boltzmann distributions for the indicated value of T1 = T2.

Fig. 7
Fig. 7

Experimental values of T3, T2 (=T1), and T as a function of discharge current. The gas-flow rate is 773 ml/min NTP, resulting in a gas dwell time in the discharge region of ∼11 msec.

Fig. 8
Fig. 8

T3 measurements as a function of gas mixture in both N2O and CO2 discharges. The CO2 curve is taken from Ref. 37 and represents the average of many pulsed and cw measurements recorded under conditions designed to maximize T3. The N2O data points were measured in the present work; the cw measurements (circles) were made with a TDL for a mixture containing 15% N2 at a total pressure of 13.7 Torr and a discharge current of 10 mA. The pulsed measurements (squares) were made in a transversely excited discharge using the techniques described in Ref. 37. T(=T1 = T2) is also shown as a function of gas mixture for N2O.

Fig. 9
Fig. 9

Degree of N2O dissociation measured at the outlet of the discharge tube as a function of current and inlet gas mixture. Dwell time in the discharge was ∼11 msec, and the total pressure was 13.7 Torr. Mixtures were prepared with 15% N2 content. The associated absorption measurements were made on a variety of different transitions.

Fig. 10
Fig. 10

Calculated 10-μm gain on the P(20) transition of the 00°1–00°0 band for two different N2O mixtures at 13.7 Torr. The solid lines join calculated points for which dissociation is included; the dashed lines show gain calculated by assuming that the measured temperatures correspond to the undissociated mixtures. Dissociation estimates are an average over the 10-cm discharge length.39

Fig. 11
Fig. 11

Calculated 10-μm gain as a function of effective percent of N2O in the gas mixture at 13.7 Torr. The mixtures were prepared with 15% N2, and the balance was He. The associated TDL measurements were, taken at a discharge current of 10 mA, and the calculations were carried out using the data of Figs. 8 and 9.

Tables (1)

Tables Icon

Table 1 Calculated 10-μm Gain in cw N2O and CO2 Systems, Showing the Effects of N2O Dissociation and T3 Saturation

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

x n = exp ( h ν n / k T n ) ,
N i j l k = N 0 Q υ x 1 i x 2 j x 3 k g υ ,
Q υ = ( 1 x 1 ) 1 ( 1 x 2 ) 2 ( 1 x 3 ) 1 .
n i j l k ( J ) = K ( J ) N i j l k .
K ( J ) = g ( J ) Q R exp [ B J ( J + 1 ) / kT ] ,
α ( ν ) = ( λ 0 2 / 8 π ) A u l g ( ν ) [ K e N e ( g u / g e ) K u N u ] ,
α ( 00 ° 1 ) α ( 00 ° 0 ) = 2 ( N 002 N 001 ) ( N 001 N 000 ) = 2 x 3 ( x 3 1 ) ( x 3 1 ) = 2 exp ( h ν 3 / k T 3 ) = 2 N 001 / N 000 .
α ( 00 ° 2 ) α ( 00 ° 0 ) = 3 N 002 N 000 .

Metrics