Abstract

Lead-salt-diode lasers have been used to detect more than 100 absorption lines of H3O+ in an ac discharge by using the velocity-modulation technique. Many lines have been assigned to vibration–rotation transitions in the 1 ← 0+ and 1+ ← 0 components of the ν2 inversion mode of H3O+ with band centers at 954.4 and 525.8 cm−1, respectively. The results for the former band extend those of earlier work and lead to some minor changes in assignment.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Eigen, “Proton transfer, acid-base catalysis, and enzymatic hydrolysis,” Angew. Chem. Int. Ed. Engl. 3, 1 (1964).
    [CrossRef]
  2. M. D. Newton, S. Ehrenson, “Ab initio studies on the structures and energetics of inner- and outer-shell hydrates of the proton and hydroxide ion,” J. Am. Chem. Soc. 93, 4971 (1971).
    [CrossRef]
  3. A. Good, D. A. Durden, P. Kebarle, “Mechanism and rate constants of ion–molecule reactions leading to formation of H+(H2O)n in moist oxygen and air,” J. Chem. Phys. 52, 222 (1970).
    [CrossRef]
  4. P. Kebarle, E. W. Godbole, “Mass-spectrometric study of ions from the α-particle irradiation of gases at near atmospheric pressure,” J. Chem. Phys. 39, 1131 (1963).
    [CrossRef]
  5. For a review, see D. Smith, N. G. Adams, “Molecular synthesis in interstellar clouds: recent laboratory studies of ionic reactions,” Int. Rev. Phys. Chem. 1, 271 (1981).
    [CrossRef]
  6. W. G. Richards, P. R. Scott, V. Sackwild, S. A. Robin, A Bibliography of ab Initio Molecular Wave Functions (Oxford U. Press, London, 1981).
  7. N. N. Haese, T. Oka, “Observation of the ν2(1−← 0+) inversion mode band in H3O+ by high resolution infrared spectroscopy,” J. Chem. Phys. 80, 572 (1984).
    [CrossRef]
  8. M. H. Begemann, C. S. Gudeman, J. Pfaff, R. J. Saykally, “Detection of the hydroxonium ion (H3O+), by high-resolution infrared spectroscopy,” Phys. Rev. Lett. 51, 554 (1983).
    [CrossRef]
  9. P. Botschwina, P. Rosmus, E.-A. Reinsch, “Spectroscopic properties of the hydroxonium ion, calculated from SCEP CEPA wavefunctions,” Chem. Phys. Lett. 102, 299 (1983).
    [CrossRef]
  10. P. R. Bunker, W. P. Kraemer, V. Spirko, “Ab initio rotation–vibration energies of H3O+,” J. Mol. Spectrosc. 101, 180 (1983).
    [CrossRef]
  11. P. R. Bunker, T. Amano, V. Spirko, “A preliminary determination of the equilibrium geometry and inversion potential in H3O+ from experiment,” J. Mol. Spectrosc. 107, 208 (1984).
    [CrossRef]
  12. C. S. Gudeman, M. H. Begemann, J. Pfaff, R. J. Saykally, “Velocity-modulated infrared laser spectroscopy of molecular ions: the ν1 band of HCO+,” Phys. Rev. Lett. 50, 727 (1983).
    [CrossRef]
  13. K. Jolma, J. Kauppinen, V.-M. Horneman, “Vibration– rotation bands of CO2 and OCS in the region 540 cm−1–890 cm−1,” J. Mol. Spectrosc. 101, 300 (1983);C. Freed, L. C. Bradley, R. G. O’Donnell, “Absolute frequencies of lasing transitions in seven CO2isotopic species,” IEEE J. Quantum Electron. QE-16, 1195 (1980).
    [CrossRef]
  14. K. Jolma, J. Kauppinen, V.-M. Horneman, “Vibration–rotation spectrum of N2O in the region of the lowest fundamental,” J. Mol. Spectrosc. 101, 278 (1983);B. G. Whitford, K. J. Siemsen, H. D. Riccius, G. R. Hanes, “Absolute frequency measurements of N2O laser transitions,” Opt. Commun. 14, 70 (1975).
    [CrossRef]
  15. R. L. Poynter, J. S. Margolis, “The ν2 spectrum of NH3,” Mol. Phys. 51, 393 (1984).
    [CrossRef]
  16. J. Kauppinen, K. Jolma, V.-M. Horneman, “New wavenumber calibration tables for H2O, CO2, and OCS lines between 500 and 900 cm−1,” Appl. Op. 21, 3332 (1982).
    [CrossRef]
  17. J. W. C. Johns, Herzberg Institute of Astrophysics, National Research Council of Canada, Ottawa, Canada, (personal communication).
  18. B. Lemoine, J. L. Destombes, “I. R. spectroscopy of molecular ions in a magnetically confined glow discharge,” Chem. Phys. Lett. 111, 284 (1984).
    [CrossRef]
  19. P. B. Davies, P. A. Hamilton, S. A. Johnson, “Laboratory measurement of H3O+ line positions around 10 μm for astrophysical searches,” Astron. Astrophys. 141, L9 (1984).
  20. J. M. Hollas, High Resolution Spectroscopy (Butterworths, London, 1982).
  21. N. Shida, K. Tanaka, K. Ohno, “An ab initio calculation of symmetric bending and stretching vibrational states of the H3O+ and D3O+ions,” Chem. Phys. Lett. 104, 575 (1984).
    [CrossRef]

1984 (6)

N. N. Haese, T. Oka, “Observation of the ν2(1−← 0+) inversion mode band in H3O+ by high resolution infrared spectroscopy,” J. Chem. Phys. 80, 572 (1984).
[CrossRef]

P. R. Bunker, T. Amano, V. Spirko, “A preliminary determination of the equilibrium geometry and inversion potential in H3O+ from experiment,” J. Mol. Spectrosc. 107, 208 (1984).
[CrossRef]

R. L. Poynter, J. S. Margolis, “The ν2 spectrum of NH3,” Mol. Phys. 51, 393 (1984).
[CrossRef]

B. Lemoine, J. L. Destombes, “I. R. spectroscopy of molecular ions in a magnetically confined glow discharge,” Chem. Phys. Lett. 111, 284 (1984).
[CrossRef]

P. B. Davies, P. A. Hamilton, S. A. Johnson, “Laboratory measurement of H3O+ line positions around 10 μm for astrophysical searches,” Astron. Astrophys. 141, L9 (1984).

N. Shida, K. Tanaka, K. Ohno, “An ab initio calculation of symmetric bending and stretching vibrational states of the H3O+ and D3O+ions,” Chem. Phys. Lett. 104, 575 (1984).
[CrossRef]

1983 (6)

C. S. Gudeman, M. H. Begemann, J. Pfaff, R. J. Saykally, “Velocity-modulated infrared laser spectroscopy of molecular ions: the ν1 band of HCO+,” Phys. Rev. Lett. 50, 727 (1983).
[CrossRef]

K. Jolma, J. Kauppinen, V.-M. Horneman, “Vibration– rotation bands of CO2 and OCS in the region 540 cm−1–890 cm−1,” J. Mol. Spectrosc. 101, 300 (1983);C. Freed, L. C. Bradley, R. G. O’Donnell, “Absolute frequencies of lasing transitions in seven CO2isotopic species,” IEEE J. Quantum Electron. QE-16, 1195 (1980).
[CrossRef]

K. Jolma, J. Kauppinen, V.-M. Horneman, “Vibration–rotation spectrum of N2O in the region of the lowest fundamental,” J. Mol. Spectrosc. 101, 278 (1983);B. G. Whitford, K. J. Siemsen, H. D. Riccius, G. R. Hanes, “Absolute frequency measurements of N2O laser transitions,” Opt. Commun. 14, 70 (1975).
[CrossRef]

M. H. Begemann, C. S. Gudeman, J. Pfaff, R. J. Saykally, “Detection of the hydroxonium ion (H3O+), by high-resolution infrared spectroscopy,” Phys. Rev. Lett. 51, 554 (1983).
[CrossRef]

P. Botschwina, P. Rosmus, E.-A. Reinsch, “Spectroscopic properties of the hydroxonium ion, calculated from SCEP CEPA wavefunctions,” Chem. Phys. Lett. 102, 299 (1983).
[CrossRef]

P. R. Bunker, W. P. Kraemer, V. Spirko, “Ab initio rotation–vibration energies of H3O+,” J. Mol. Spectrosc. 101, 180 (1983).
[CrossRef]

1982 (1)

J. Kauppinen, K. Jolma, V.-M. Horneman, “New wavenumber calibration tables for H2O, CO2, and OCS lines between 500 and 900 cm−1,” Appl. Op. 21, 3332 (1982).
[CrossRef]

1981 (1)

For a review, see D. Smith, N. G. Adams, “Molecular synthesis in interstellar clouds: recent laboratory studies of ionic reactions,” Int. Rev. Phys. Chem. 1, 271 (1981).
[CrossRef]

1971 (1)

M. D. Newton, S. Ehrenson, “Ab initio studies on the structures and energetics of inner- and outer-shell hydrates of the proton and hydroxide ion,” J. Am. Chem. Soc. 93, 4971 (1971).
[CrossRef]

1970 (1)

A. Good, D. A. Durden, P. Kebarle, “Mechanism and rate constants of ion–molecule reactions leading to formation of H+(H2O)n in moist oxygen and air,” J. Chem. Phys. 52, 222 (1970).
[CrossRef]

1964 (1)

M. Eigen, “Proton transfer, acid-base catalysis, and enzymatic hydrolysis,” Angew. Chem. Int. Ed. Engl. 3, 1 (1964).
[CrossRef]

1963 (1)

P. Kebarle, E. W. Godbole, “Mass-spectrometric study of ions from the α-particle irradiation of gases at near atmospheric pressure,” J. Chem. Phys. 39, 1131 (1963).
[CrossRef]

Adams, N. G.

For a review, see D. Smith, N. G. Adams, “Molecular synthesis in interstellar clouds: recent laboratory studies of ionic reactions,” Int. Rev. Phys. Chem. 1, 271 (1981).
[CrossRef]

Amano, T.

P. R. Bunker, T. Amano, V. Spirko, “A preliminary determination of the equilibrium geometry and inversion potential in H3O+ from experiment,” J. Mol. Spectrosc. 107, 208 (1984).
[CrossRef]

Begemann, M. H.

C. S. Gudeman, M. H. Begemann, J. Pfaff, R. J. Saykally, “Velocity-modulated infrared laser spectroscopy of molecular ions: the ν1 band of HCO+,” Phys. Rev. Lett. 50, 727 (1983).
[CrossRef]

M. H. Begemann, C. S. Gudeman, J. Pfaff, R. J. Saykally, “Detection of the hydroxonium ion (H3O+), by high-resolution infrared spectroscopy,” Phys. Rev. Lett. 51, 554 (1983).
[CrossRef]

Botschwina, P.

P. Botschwina, P. Rosmus, E.-A. Reinsch, “Spectroscopic properties of the hydroxonium ion, calculated from SCEP CEPA wavefunctions,” Chem. Phys. Lett. 102, 299 (1983).
[CrossRef]

Bunker, P. R.

P. R. Bunker, T. Amano, V. Spirko, “A preliminary determination of the equilibrium geometry and inversion potential in H3O+ from experiment,” J. Mol. Spectrosc. 107, 208 (1984).
[CrossRef]

P. R. Bunker, W. P. Kraemer, V. Spirko, “Ab initio rotation–vibration energies of H3O+,” J. Mol. Spectrosc. 101, 180 (1983).
[CrossRef]

Davies, P. B.

P. B. Davies, P. A. Hamilton, S. A. Johnson, “Laboratory measurement of H3O+ line positions around 10 μm for astrophysical searches,” Astron. Astrophys. 141, L9 (1984).

Destombes, J. L.

B. Lemoine, J. L. Destombes, “I. R. spectroscopy of molecular ions in a magnetically confined glow discharge,” Chem. Phys. Lett. 111, 284 (1984).
[CrossRef]

Durden, D. A.

A. Good, D. A. Durden, P. Kebarle, “Mechanism and rate constants of ion–molecule reactions leading to formation of H+(H2O)n in moist oxygen and air,” J. Chem. Phys. 52, 222 (1970).
[CrossRef]

Ehrenson, S.

M. D. Newton, S. Ehrenson, “Ab initio studies on the structures and energetics of inner- and outer-shell hydrates of the proton and hydroxide ion,” J. Am. Chem. Soc. 93, 4971 (1971).
[CrossRef]

Eigen, M.

M. Eigen, “Proton transfer, acid-base catalysis, and enzymatic hydrolysis,” Angew. Chem. Int. Ed. Engl. 3, 1 (1964).
[CrossRef]

Godbole, E. W.

P. Kebarle, E. W. Godbole, “Mass-spectrometric study of ions from the α-particle irradiation of gases at near atmospheric pressure,” J. Chem. Phys. 39, 1131 (1963).
[CrossRef]

Good, A.

A. Good, D. A. Durden, P. Kebarle, “Mechanism and rate constants of ion–molecule reactions leading to formation of H+(H2O)n in moist oxygen and air,” J. Chem. Phys. 52, 222 (1970).
[CrossRef]

Gudeman, C. S.

M. H. Begemann, C. S. Gudeman, J. Pfaff, R. J. Saykally, “Detection of the hydroxonium ion (H3O+), by high-resolution infrared spectroscopy,” Phys. Rev. Lett. 51, 554 (1983).
[CrossRef]

C. S. Gudeman, M. H. Begemann, J. Pfaff, R. J. Saykally, “Velocity-modulated infrared laser spectroscopy of molecular ions: the ν1 band of HCO+,” Phys. Rev. Lett. 50, 727 (1983).
[CrossRef]

Haese, N. N.

N. N. Haese, T. Oka, “Observation of the ν2(1−← 0+) inversion mode band in H3O+ by high resolution infrared spectroscopy,” J. Chem. Phys. 80, 572 (1984).
[CrossRef]

Hamilton, P. A.

P. B. Davies, P. A. Hamilton, S. A. Johnson, “Laboratory measurement of H3O+ line positions around 10 μm for astrophysical searches,” Astron. Astrophys. 141, L9 (1984).

Hollas, J. M.

J. M. Hollas, High Resolution Spectroscopy (Butterworths, London, 1982).

Horneman, V.-M.

K. Jolma, J. Kauppinen, V.-M. Horneman, “Vibration–rotation spectrum of N2O in the region of the lowest fundamental,” J. Mol. Spectrosc. 101, 278 (1983);B. G. Whitford, K. J. Siemsen, H. D. Riccius, G. R. Hanes, “Absolute frequency measurements of N2O laser transitions,” Opt. Commun. 14, 70 (1975).
[CrossRef]

K. Jolma, J. Kauppinen, V.-M. Horneman, “Vibration– rotation bands of CO2 and OCS in the region 540 cm−1–890 cm−1,” J. Mol. Spectrosc. 101, 300 (1983);C. Freed, L. C. Bradley, R. G. O’Donnell, “Absolute frequencies of lasing transitions in seven CO2isotopic species,” IEEE J. Quantum Electron. QE-16, 1195 (1980).
[CrossRef]

J. Kauppinen, K. Jolma, V.-M. Horneman, “New wavenumber calibration tables for H2O, CO2, and OCS lines between 500 and 900 cm−1,” Appl. Op. 21, 3332 (1982).
[CrossRef]

Johns, J. W. C.

J. W. C. Johns, Herzberg Institute of Astrophysics, National Research Council of Canada, Ottawa, Canada, (personal communication).

Johnson, S. A.

P. B. Davies, P. A. Hamilton, S. A. Johnson, “Laboratory measurement of H3O+ line positions around 10 μm for astrophysical searches,” Astron. Astrophys. 141, L9 (1984).

Jolma, K.

K. Jolma, J. Kauppinen, V.-M. Horneman, “Vibration–rotation spectrum of N2O in the region of the lowest fundamental,” J. Mol. Spectrosc. 101, 278 (1983);B. G. Whitford, K. J. Siemsen, H. D. Riccius, G. R. Hanes, “Absolute frequency measurements of N2O laser transitions,” Opt. Commun. 14, 70 (1975).
[CrossRef]

K. Jolma, J. Kauppinen, V.-M. Horneman, “Vibration– rotation bands of CO2 and OCS in the region 540 cm−1–890 cm−1,” J. Mol. Spectrosc. 101, 300 (1983);C. Freed, L. C. Bradley, R. G. O’Donnell, “Absolute frequencies of lasing transitions in seven CO2isotopic species,” IEEE J. Quantum Electron. QE-16, 1195 (1980).
[CrossRef]

J. Kauppinen, K. Jolma, V.-M. Horneman, “New wavenumber calibration tables for H2O, CO2, and OCS lines between 500 and 900 cm−1,” Appl. Op. 21, 3332 (1982).
[CrossRef]

Kauppinen, J.

K. Jolma, J. Kauppinen, V.-M. Horneman, “Vibration– rotation bands of CO2 and OCS in the region 540 cm−1–890 cm−1,” J. Mol. Spectrosc. 101, 300 (1983);C. Freed, L. C. Bradley, R. G. O’Donnell, “Absolute frequencies of lasing transitions in seven CO2isotopic species,” IEEE J. Quantum Electron. QE-16, 1195 (1980).
[CrossRef]

K. Jolma, J. Kauppinen, V.-M. Horneman, “Vibration–rotation spectrum of N2O in the region of the lowest fundamental,” J. Mol. Spectrosc. 101, 278 (1983);B. G. Whitford, K. J. Siemsen, H. D. Riccius, G. R. Hanes, “Absolute frequency measurements of N2O laser transitions,” Opt. Commun. 14, 70 (1975).
[CrossRef]

J. Kauppinen, K. Jolma, V.-M. Horneman, “New wavenumber calibration tables for H2O, CO2, and OCS lines between 500 and 900 cm−1,” Appl. Op. 21, 3332 (1982).
[CrossRef]

Kebarle, P.

A. Good, D. A. Durden, P. Kebarle, “Mechanism and rate constants of ion–molecule reactions leading to formation of H+(H2O)n in moist oxygen and air,” J. Chem. Phys. 52, 222 (1970).
[CrossRef]

P. Kebarle, E. W. Godbole, “Mass-spectrometric study of ions from the α-particle irradiation of gases at near atmospheric pressure,” J. Chem. Phys. 39, 1131 (1963).
[CrossRef]

Kraemer, W. P.

P. R. Bunker, W. P. Kraemer, V. Spirko, “Ab initio rotation–vibration energies of H3O+,” J. Mol. Spectrosc. 101, 180 (1983).
[CrossRef]

Lemoine, B.

B. Lemoine, J. L. Destombes, “I. R. spectroscopy of molecular ions in a magnetically confined glow discharge,” Chem. Phys. Lett. 111, 284 (1984).
[CrossRef]

Margolis, J. S.

R. L. Poynter, J. S. Margolis, “The ν2 spectrum of NH3,” Mol. Phys. 51, 393 (1984).
[CrossRef]

Newton, M. D.

M. D. Newton, S. Ehrenson, “Ab initio studies on the structures and energetics of inner- and outer-shell hydrates of the proton and hydroxide ion,” J. Am. Chem. Soc. 93, 4971 (1971).
[CrossRef]

Ohno, K.

N. Shida, K. Tanaka, K. Ohno, “An ab initio calculation of symmetric bending and stretching vibrational states of the H3O+ and D3O+ions,” Chem. Phys. Lett. 104, 575 (1984).
[CrossRef]

Oka, T.

N. N. Haese, T. Oka, “Observation of the ν2(1−← 0+) inversion mode band in H3O+ by high resolution infrared spectroscopy,” J. Chem. Phys. 80, 572 (1984).
[CrossRef]

Pfaff, J.

C. S. Gudeman, M. H. Begemann, J. Pfaff, R. J. Saykally, “Velocity-modulated infrared laser spectroscopy of molecular ions: the ν1 band of HCO+,” Phys. Rev. Lett. 50, 727 (1983).
[CrossRef]

M. H. Begemann, C. S. Gudeman, J. Pfaff, R. J. Saykally, “Detection of the hydroxonium ion (H3O+), by high-resolution infrared spectroscopy,” Phys. Rev. Lett. 51, 554 (1983).
[CrossRef]

Poynter, R. L.

R. L. Poynter, J. S. Margolis, “The ν2 spectrum of NH3,” Mol. Phys. 51, 393 (1984).
[CrossRef]

Reinsch, E.-A.

P. Botschwina, P. Rosmus, E.-A. Reinsch, “Spectroscopic properties of the hydroxonium ion, calculated from SCEP CEPA wavefunctions,” Chem. Phys. Lett. 102, 299 (1983).
[CrossRef]

Richards, W. G.

W. G. Richards, P. R. Scott, V. Sackwild, S. A. Robin, A Bibliography of ab Initio Molecular Wave Functions (Oxford U. Press, London, 1981).

Robin, S. A.

W. G. Richards, P. R. Scott, V. Sackwild, S. A. Robin, A Bibliography of ab Initio Molecular Wave Functions (Oxford U. Press, London, 1981).

Rosmus, P.

P. Botschwina, P. Rosmus, E.-A. Reinsch, “Spectroscopic properties of the hydroxonium ion, calculated from SCEP CEPA wavefunctions,” Chem. Phys. Lett. 102, 299 (1983).
[CrossRef]

Sackwild, V.

W. G. Richards, P. R. Scott, V. Sackwild, S. A. Robin, A Bibliography of ab Initio Molecular Wave Functions (Oxford U. Press, London, 1981).

Saykally, R. J.

M. H. Begemann, C. S. Gudeman, J. Pfaff, R. J. Saykally, “Detection of the hydroxonium ion (H3O+), by high-resolution infrared spectroscopy,” Phys. Rev. Lett. 51, 554 (1983).
[CrossRef]

C. S. Gudeman, M. H. Begemann, J. Pfaff, R. J. Saykally, “Velocity-modulated infrared laser spectroscopy of molecular ions: the ν1 band of HCO+,” Phys. Rev. Lett. 50, 727 (1983).
[CrossRef]

Scott, P. R.

W. G. Richards, P. R. Scott, V. Sackwild, S. A. Robin, A Bibliography of ab Initio Molecular Wave Functions (Oxford U. Press, London, 1981).

Shida, N.

N. Shida, K. Tanaka, K. Ohno, “An ab initio calculation of symmetric bending and stretching vibrational states of the H3O+ and D3O+ions,” Chem. Phys. Lett. 104, 575 (1984).
[CrossRef]

Smith, D.

For a review, see D. Smith, N. G. Adams, “Molecular synthesis in interstellar clouds: recent laboratory studies of ionic reactions,” Int. Rev. Phys. Chem. 1, 271 (1981).
[CrossRef]

Spirko, V.

P. R. Bunker, T. Amano, V. Spirko, “A preliminary determination of the equilibrium geometry and inversion potential in H3O+ from experiment,” J. Mol. Spectrosc. 107, 208 (1984).
[CrossRef]

P. R. Bunker, W. P. Kraemer, V. Spirko, “Ab initio rotation–vibration energies of H3O+,” J. Mol. Spectrosc. 101, 180 (1983).
[CrossRef]

Tanaka, K.

N. Shida, K. Tanaka, K. Ohno, “An ab initio calculation of symmetric bending and stretching vibrational states of the H3O+ and D3O+ions,” Chem. Phys. Lett. 104, 575 (1984).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

M. Eigen, “Proton transfer, acid-base catalysis, and enzymatic hydrolysis,” Angew. Chem. Int. Ed. Engl. 3, 1 (1964).
[CrossRef]

Appl. Op. (1)

J. Kauppinen, K. Jolma, V.-M. Horneman, “New wavenumber calibration tables for H2O, CO2, and OCS lines between 500 and 900 cm−1,” Appl. Op. 21, 3332 (1982).
[CrossRef]

Astron. Astrophys. (1)

P. B. Davies, P. A. Hamilton, S. A. Johnson, “Laboratory measurement of H3O+ line positions around 10 μm for astrophysical searches,” Astron. Astrophys. 141, L9 (1984).

Chem. Phys. Lett. (3)

B. Lemoine, J. L. Destombes, “I. R. spectroscopy of molecular ions in a magnetically confined glow discharge,” Chem. Phys. Lett. 111, 284 (1984).
[CrossRef]

N. Shida, K. Tanaka, K. Ohno, “An ab initio calculation of symmetric bending and stretching vibrational states of the H3O+ and D3O+ions,” Chem. Phys. Lett. 104, 575 (1984).
[CrossRef]

P. Botschwina, P. Rosmus, E.-A. Reinsch, “Spectroscopic properties of the hydroxonium ion, calculated from SCEP CEPA wavefunctions,” Chem. Phys. Lett. 102, 299 (1983).
[CrossRef]

Int. Rev. Phys. Chem. (1)

For a review, see D. Smith, N. G. Adams, “Molecular synthesis in interstellar clouds: recent laboratory studies of ionic reactions,” Int. Rev. Phys. Chem. 1, 271 (1981).
[CrossRef]

J. Am. Chem. Soc. (1)

M. D. Newton, S. Ehrenson, “Ab initio studies on the structures and energetics of inner- and outer-shell hydrates of the proton and hydroxide ion,” J. Am. Chem. Soc. 93, 4971 (1971).
[CrossRef]

J. Chem. Phys. (3)

A. Good, D. A. Durden, P. Kebarle, “Mechanism and rate constants of ion–molecule reactions leading to formation of H+(H2O)n in moist oxygen and air,” J. Chem. Phys. 52, 222 (1970).
[CrossRef]

P. Kebarle, E. W. Godbole, “Mass-spectrometric study of ions from the α-particle irradiation of gases at near atmospheric pressure,” J. Chem. Phys. 39, 1131 (1963).
[CrossRef]

N. N. Haese, T. Oka, “Observation of the ν2(1−← 0+) inversion mode band in H3O+ by high resolution infrared spectroscopy,” J. Chem. Phys. 80, 572 (1984).
[CrossRef]

J. Mol. Spectrosc. (4)

P. R. Bunker, W. P. Kraemer, V. Spirko, “Ab initio rotation–vibration energies of H3O+,” J. Mol. Spectrosc. 101, 180 (1983).
[CrossRef]

P. R. Bunker, T. Amano, V. Spirko, “A preliminary determination of the equilibrium geometry and inversion potential in H3O+ from experiment,” J. Mol. Spectrosc. 107, 208 (1984).
[CrossRef]

K. Jolma, J. Kauppinen, V.-M. Horneman, “Vibration– rotation bands of CO2 and OCS in the region 540 cm−1–890 cm−1,” J. Mol. Spectrosc. 101, 300 (1983);C. Freed, L. C. Bradley, R. G. O’Donnell, “Absolute frequencies of lasing transitions in seven CO2isotopic species,” IEEE J. Quantum Electron. QE-16, 1195 (1980).
[CrossRef]

K. Jolma, J. Kauppinen, V.-M. Horneman, “Vibration–rotation spectrum of N2O in the region of the lowest fundamental,” J. Mol. Spectrosc. 101, 278 (1983);B. G. Whitford, K. J. Siemsen, H. D. Riccius, G. R. Hanes, “Absolute frequency measurements of N2O laser transitions,” Opt. Commun. 14, 70 (1975).
[CrossRef]

Mol. Phys. (1)

R. L. Poynter, J. S. Margolis, “The ν2 spectrum of NH3,” Mol. Phys. 51, 393 (1984).
[CrossRef]

Phys. Rev. Lett. (2)

C. S. Gudeman, M. H. Begemann, J. Pfaff, R. J. Saykally, “Velocity-modulated infrared laser spectroscopy of molecular ions: the ν1 band of HCO+,” Phys. Rev. Lett. 50, 727 (1983).
[CrossRef]

M. H. Begemann, C. S. Gudeman, J. Pfaff, R. J. Saykally, “Detection of the hydroxonium ion (H3O+), by high-resolution infrared spectroscopy,” Phys. Rev. Lett. 51, 554 (1983).
[CrossRef]

Other (3)

W. G. Richards, P. R. Scott, V. Sackwild, S. A. Robin, A Bibliography of ab Initio Molecular Wave Functions (Oxford U. Press, London, 1981).

J. W. C. Johns, Herzberg Institute of Astrophysics, National Research Council of Canada, Ottawa, Canada, (personal communication).

J. M. Hollas, High Resolution Spectroscopy (Butterworths, London, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Vibrational levels of the ν2 mode of H316O+. *, Experimental observations. BKS(83), Ref. 10; BRR(83), Ref. 9; HO(84), Ref. 7; STO(84), Ref. 21; BAS(84), Ref. 11; DHJ(84), present work. BRR(83) give transition-dipole moments that have been used to calculate the relative intensities (given in parentheses) at 600 K.

Fig. 2
Fig. 2

Four Q-branch lines near the band center of the ν2 (1 ← 0+) transition recorded from a 30-mA discharge source with a 1-sec time constant.

Fig. 3
Fig. 3

Stick diagram of the ν2 (1+ ← 0) Q branch calculated using the constants in Table 4 and a temperature of 600 K.

Fig. 4
Fig. 4

Scan near the center of the ν2 (1+ ← 0) band, recorded with a 1-sec time constant.

Fig. 5
Fig. 5

R(4, 0) transition of the ν2 (1+ ← 0) band, recorded with a 1-sec time constant.

Tables (4)

Tables Icon

Table 1 Line Positions of the ν2(1 ← 0+) Banda

Tables Icon

Table 2 Line Positions (cm−1) of the v2 (1+ ← 0) Band

Tables Icon

Table 3 Molecular Constants (cm−1) from Analysis of the ν2 (1 ← 0+) Banda

Tables Icon

Table 4 Molecular Constants (cm−1) from Analysis of the ν2 (1+ ← 0) Banda

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

10 3 D J J
10 3 D J J
10 3 D J K
10 3 D J K
10 3 ( D K K D K K )
10 6 H J J J
10 6 H J J J
10 6 H J J K
10 6 H J J K
10 6 H J K K
10 6 H J K K
10 6 ( H K K K H K K K )
10 3 D J J
10 3 D J J
10 3 D J K
10 3 D J K
10 3 ( D K K D K K )

Metrics