Abstract

Intense femtosecond optical pulses are used to discriminate temporally among the different processes involved in the third-order-induced polarization. The tensor elements deduced from the instantaneous measured components are compared with previous frequency-domain experimental results.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. D. Maker, R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. A 137, 801–818 (1965).
  2. M. Thalhammer, A. Penzkofer, “Measurement of third order nonlinear susceptibilities by non-phase-matched third-harmonic generation,” Appl. Phys. B 32, 137–143 (1983).
    [CrossRef]
  3. M. D. Levenson, N. Bloembergen, “Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media,” Phys. Rev. B 10, 4447–4463 (1974).
    [CrossRef]
  4. D. Heiman, R. W. Hellwarth, M. D. Levenson, G. Martin, “Raman induced Kerr effect,” Phys. Rev. Lett. 36, 189–192 (1976).
    [CrossRef]
  5. J. J. Song, M. D. Levenson, “Electronic and orientation contributions to the optical Kerr constant determined by coherent Raman techniques,” J. Appl. Phys. 48, 3496–3501 (1977).
    [CrossRef]
  6. For a review of the subject, see A. Owyoung, “The origin of the nonlinear refractive indices of liquids and glasses,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1971).
  7. R. W. Hellwarth, “Third order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1977).
    [CrossRef]
  8. J. L. Oudar, “Coherent phenomena involved in the time resolved optical Kerr effect,” IEEE J. Quantum Electron. QE-19, 713–718 (1983).
    [CrossRef]
  9. J. Etchepare, G. Grillon, R. Astier, J. L. Martin, C. Bruneau, A. Antonetti, “Time resolved measurement of nonlinear susceptibilities by optical Kerr effect,” in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, A. Lauberau, eds. (Springer-Verlag, Berlin, 1982), pp. 217–220.
    [CrossRef]
  10. A. Migus, A. Antonetti, J. Etchepare, D. Hulin, A. Orszag, “Femtosecond spectroscopy with high-power tunable optical pulses,” J. Opt. Soc. Am. B 2, 584–594 (1985).
    [CrossRef]
  11. J. Etchepare, G. Grillon, A. Orszag, “Third order autocorrelation study of amplified subpicosecond laser pulses,” IEEE J. Quantum Electron. QE-19, 775–778 (1983).
    [CrossRef]
  12. I. Thomazeau, J. Etchepare, G. Grillon, A. Migus, “Electronic nonlinear optical susceptibilities of silicate glasses,” Opt. Lett. (to be published).
  13. Y. A. Volkova, V. A. Zamkoff, L. V. Nalbandoff, “Precision measurement of the absolute value of Kerr constants,” Opt Spectrosc. 30, 556–561 (1971).
  14. M. D. Levenson, N. Bloembergen, “Dispersion of the nonlinear optical susceptibilities of organic liquids and solutions,” J. Chem. Phys. 60, 1323–1327 (1974).
    [CrossRef]
  15. G. Hauchecorne, F. Kerhervé, G. Mayer, “Mesure des interactions entre ondes lumineuses dans diverses substances,” J Phys. (Paris) 32, 47–62 (1971).
    [CrossRef]
  16. A. Owyoung, R. W. Hellwarth, N. George, “Intensity induced changes in optical polarizations in glasses,” Phys. Rev. B 5, 628–633 (1972).
    [CrossRef]
  17. R. W. Hellwarth, A. Owyoung, N. George, “Origin of the nonlinear refractive index of liquid CCl4,” Phys. Rev. A 4, 2342–2347 (1971).
    [CrossRef]
  18. B. I. Greene, R. C. Farrow, “Direct measurement of a subpicosecond birefringent response in CS2,” J. Chem. Phys. 77, 4779–4780 (1982).
    [CrossRef]
  19. J. Etchepare, G. Grillon, A. Antonetti, “Comment on the subpicosecond Kerr effect in CS2,” Chem. Phys. Lett. 107, 489 (1984) [this paper contains a printing error. Line 3 should read “(0.20 ± 0.05 ps)”].
    [CrossRef]
  20. J. M. Halbout, C. V. Tang, “Femtosecond interferometry for nonlinear optics,” Appl. Phys. Lett. 40, 765–767 (1982).
    [CrossRef]
  21. J. Etchepare, G. Grillon, R. Muller, A. Orszag, “Kinetics of optical Kerr effect induced by picosecond laser pulses,” Opt. Commun. 34, 269–272 (1980).
    [CrossRef]
  22. C. L. Tang, J. M. Halbout, “Time resolved observation of molecular dynamics in liquids by femtosecond interferometry,” in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, A. Lauberau, eds. (Springer-VerlagBerlin, 1982), pp. 212–216.
    [CrossRef]
  23. J. J. Song, A. Fedotowsky, Y. B. Kim, “Ultrafast transient Kerr responses of liquids investigated by light-scattering methods,” J. Opt. Soc. Am. A 1, 1300 (A) (1984).
  24. J. Etchepare, G. Grillon, I. Thomazeau, J. P. Chambaret, A. Orszag, “Temporal dependence of third order nonlinear optical susceptibilities of fused quartz and liquid CCl4,” in Ultrafast Phenomena IV, D. H. Auston, K. B. Eisenthal, eds. (Springer-Verlag, Berlin, 1984), pp. 196–198.
    [CrossRef]
  25. H. Lotem, R. T. Lynch, “Destructive interference of imaginary resonant contribution to χ(3),” Phys. Rev. Lett 37, 334–337 (1976).
    [CrossRef]
  26. A. Penzkofer, J. Krauss, J. Sperka, “Noncollinear phase matched four photon frequency mixing in water,” Opt. Commun. 37, 437–441 (1981).
    [CrossRef]

1985 (1)

1984 (2)

J. Etchepare, G. Grillon, A. Antonetti, “Comment on the subpicosecond Kerr effect in CS2,” Chem. Phys. Lett. 107, 489 (1984) [this paper contains a printing error. Line 3 should read “(0.20 ± 0.05 ps)”].
[CrossRef]

J. J. Song, A. Fedotowsky, Y. B. Kim, “Ultrafast transient Kerr responses of liquids investigated by light-scattering methods,” J. Opt. Soc. Am. A 1, 1300 (A) (1984).

1983 (3)

M. Thalhammer, A. Penzkofer, “Measurement of third order nonlinear susceptibilities by non-phase-matched third-harmonic generation,” Appl. Phys. B 32, 137–143 (1983).
[CrossRef]

J. L. Oudar, “Coherent phenomena involved in the time resolved optical Kerr effect,” IEEE J. Quantum Electron. QE-19, 713–718 (1983).
[CrossRef]

J. Etchepare, G. Grillon, A. Orszag, “Third order autocorrelation study of amplified subpicosecond laser pulses,” IEEE J. Quantum Electron. QE-19, 775–778 (1983).
[CrossRef]

1982 (2)

J. M. Halbout, C. V. Tang, “Femtosecond interferometry for nonlinear optics,” Appl. Phys. Lett. 40, 765–767 (1982).
[CrossRef]

B. I. Greene, R. C. Farrow, “Direct measurement of a subpicosecond birefringent response in CS2,” J. Chem. Phys. 77, 4779–4780 (1982).
[CrossRef]

1981 (1)

A. Penzkofer, J. Krauss, J. Sperka, “Noncollinear phase matched four photon frequency mixing in water,” Opt. Commun. 37, 437–441 (1981).
[CrossRef]

1980 (1)

J. Etchepare, G. Grillon, R. Muller, A. Orszag, “Kinetics of optical Kerr effect induced by picosecond laser pulses,” Opt. Commun. 34, 269–272 (1980).
[CrossRef]

1977 (2)

J. J. Song, M. D. Levenson, “Electronic and orientation contributions to the optical Kerr constant determined by coherent Raman techniques,” J. Appl. Phys. 48, 3496–3501 (1977).
[CrossRef]

R. W. Hellwarth, “Third order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1977).
[CrossRef]

1976 (2)

D. Heiman, R. W. Hellwarth, M. D. Levenson, G. Martin, “Raman induced Kerr effect,” Phys. Rev. Lett. 36, 189–192 (1976).
[CrossRef]

H. Lotem, R. T. Lynch, “Destructive interference of imaginary resonant contribution to χ(3),” Phys. Rev. Lett 37, 334–337 (1976).
[CrossRef]

1974 (2)

M. D. Levenson, N. Bloembergen, “Dispersion of the nonlinear optical susceptibilities of organic liquids and solutions,” J. Chem. Phys. 60, 1323–1327 (1974).
[CrossRef]

M. D. Levenson, N. Bloembergen, “Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media,” Phys. Rev. B 10, 4447–4463 (1974).
[CrossRef]

1972 (1)

A. Owyoung, R. W. Hellwarth, N. George, “Intensity induced changes in optical polarizations in glasses,” Phys. Rev. B 5, 628–633 (1972).
[CrossRef]

1971 (3)

R. W. Hellwarth, A. Owyoung, N. George, “Origin of the nonlinear refractive index of liquid CCl4,” Phys. Rev. A 4, 2342–2347 (1971).
[CrossRef]

G. Hauchecorne, F. Kerhervé, G. Mayer, “Mesure des interactions entre ondes lumineuses dans diverses substances,” J Phys. (Paris) 32, 47–62 (1971).
[CrossRef]

Y. A. Volkova, V. A. Zamkoff, L. V. Nalbandoff, “Precision measurement of the absolute value of Kerr constants,” Opt Spectrosc. 30, 556–561 (1971).

1965 (1)

P. D. Maker, R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. A 137, 801–818 (1965).

Antonetti, A.

A. Migus, A. Antonetti, J. Etchepare, D. Hulin, A. Orszag, “Femtosecond spectroscopy with high-power tunable optical pulses,” J. Opt. Soc. Am. B 2, 584–594 (1985).
[CrossRef]

J. Etchepare, G. Grillon, A. Antonetti, “Comment on the subpicosecond Kerr effect in CS2,” Chem. Phys. Lett. 107, 489 (1984) [this paper contains a printing error. Line 3 should read “(0.20 ± 0.05 ps)”].
[CrossRef]

J. Etchepare, G. Grillon, R. Astier, J. L. Martin, C. Bruneau, A. Antonetti, “Time resolved measurement of nonlinear susceptibilities by optical Kerr effect,” in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, A. Lauberau, eds. (Springer-Verlag, Berlin, 1982), pp. 217–220.
[CrossRef]

Astier, R.

J. Etchepare, G. Grillon, R. Astier, J. L. Martin, C. Bruneau, A. Antonetti, “Time resolved measurement of nonlinear susceptibilities by optical Kerr effect,” in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, A. Lauberau, eds. (Springer-Verlag, Berlin, 1982), pp. 217–220.
[CrossRef]

Bloembergen, N.

M. D. Levenson, N. Bloembergen, “Dispersion of the nonlinear optical susceptibilities of organic liquids and solutions,” J. Chem. Phys. 60, 1323–1327 (1974).
[CrossRef]

M. D. Levenson, N. Bloembergen, “Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media,” Phys. Rev. B 10, 4447–4463 (1974).
[CrossRef]

Bruneau, C.

J. Etchepare, G. Grillon, R. Astier, J. L. Martin, C. Bruneau, A. Antonetti, “Time resolved measurement of nonlinear susceptibilities by optical Kerr effect,” in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, A. Lauberau, eds. (Springer-Verlag, Berlin, 1982), pp. 217–220.
[CrossRef]

Chambaret, J. P.

J. Etchepare, G. Grillon, I. Thomazeau, J. P. Chambaret, A. Orszag, “Temporal dependence of third order nonlinear optical susceptibilities of fused quartz and liquid CCl4,” in Ultrafast Phenomena IV, D. H. Auston, K. B. Eisenthal, eds. (Springer-Verlag, Berlin, 1984), pp. 196–198.
[CrossRef]

Etchepare, J.

A. Migus, A. Antonetti, J. Etchepare, D. Hulin, A. Orszag, “Femtosecond spectroscopy with high-power tunable optical pulses,” J. Opt. Soc. Am. B 2, 584–594 (1985).
[CrossRef]

J. Etchepare, G. Grillon, A. Antonetti, “Comment on the subpicosecond Kerr effect in CS2,” Chem. Phys. Lett. 107, 489 (1984) [this paper contains a printing error. Line 3 should read “(0.20 ± 0.05 ps)”].
[CrossRef]

J. Etchepare, G. Grillon, A. Orszag, “Third order autocorrelation study of amplified subpicosecond laser pulses,” IEEE J. Quantum Electron. QE-19, 775–778 (1983).
[CrossRef]

J. Etchepare, G. Grillon, R. Muller, A. Orszag, “Kinetics of optical Kerr effect induced by picosecond laser pulses,” Opt. Commun. 34, 269–272 (1980).
[CrossRef]

J. Etchepare, G. Grillon, I. Thomazeau, J. P. Chambaret, A. Orszag, “Temporal dependence of third order nonlinear optical susceptibilities of fused quartz and liquid CCl4,” in Ultrafast Phenomena IV, D. H. Auston, K. B. Eisenthal, eds. (Springer-Verlag, Berlin, 1984), pp. 196–198.
[CrossRef]

J. Etchepare, G. Grillon, R. Astier, J. L. Martin, C. Bruneau, A. Antonetti, “Time resolved measurement of nonlinear susceptibilities by optical Kerr effect,” in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, A. Lauberau, eds. (Springer-Verlag, Berlin, 1982), pp. 217–220.
[CrossRef]

I. Thomazeau, J. Etchepare, G. Grillon, A. Migus, “Electronic nonlinear optical susceptibilities of silicate glasses,” Opt. Lett. (to be published).

Farrow, R. C.

B. I. Greene, R. C. Farrow, “Direct measurement of a subpicosecond birefringent response in CS2,” J. Chem. Phys. 77, 4779–4780 (1982).
[CrossRef]

Fedotowsky, A.

J. J. Song, A. Fedotowsky, Y. B. Kim, “Ultrafast transient Kerr responses of liquids investigated by light-scattering methods,” J. Opt. Soc. Am. A 1, 1300 (A) (1984).

George, N.

A. Owyoung, R. W. Hellwarth, N. George, “Intensity induced changes in optical polarizations in glasses,” Phys. Rev. B 5, 628–633 (1972).
[CrossRef]

R. W. Hellwarth, A. Owyoung, N. George, “Origin of the nonlinear refractive index of liquid CCl4,” Phys. Rev. A 4, 2342–2347 (1971).
[CrossRef]

Greene, B. I.

B. I. Greene, R. C. Farrow, “Direct measurement of a subpicosecond birefringent response in CS2,” J. Chem. Phys. 77, 4779–4780 (1982).
[CrossRef]

Grillon, G.

J. Etchepare, G. Grillon, A. Antonetti, “Comment on the subpicosecond Kerr effect in CS2,” Chem. Phys. Lett. 107, 489 (1984) [this paper contains a printing error. Line 3 should read “(0.20 ± 0.05 ps)”].
[CrossRef]

J. Etchepare, G. Grillon, A. Orszag, “Third order autocorrelation study of amplified subpicosecond laser pulses,” IEEE J. Quantum Electron. QE-19, 775–778 (1983).
[CrossRef]

J. Etchepare, G. Grillon, R. Muller, A. Orszag, “Kinetics of optical Kerr effect induced by picosecond laser pulses,” Opt. Commun. 34, 269–272 (1980).
[CrossRef]

I. Thomazeau, J. Etchepare, G. Grillon, A. Migus, “Electronic nonlinear optical susceptibilities of silicate glasses,” Opt. Lett. (to be published).

J. Etchepare, G. Grillon, R. Astier, J. L. Martin, C. Bruneau, A. Antonetti, “Time resolved measurement of nonlinear susceptibilities by optical Kerr effect,” in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, A. Lauberau, eds. (Springer-Verlag, Berlin, 1982), pp. 217–220.
[CrossRef]

J. Etchepare, G. Grillon, I. Thomazeau, J. P. Chambaret, A. Orszag, “Temporal dependence of third order nonlinear optical susceptibilities of fused quartz and liquid CCl4,” in Ultrafast Phenomena IV, D. H. Auston, K. B. Eisenthal, eds. (Springer-Verlag, Berlin, 1984), pp. 196–198.
[CrossRef]

Halbout, J. M.

J. M. Halbout, C. V. Tang, “Femtosecond interferometry for nonlinear optics,” Appl. Phys. Lett. 40, 765–767 (1982).
[CrossRef]

C. L. Tang, J. M. Halbout, “Time resolved observation of molecular dynamics in liquids by femtosecond interferometry,” in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, A. Lauberau, eds. (Springer-VerlagBerlin, 1982), pp. 212–216.
[CrossRef]

Hauchecorne, G.

G. Hauchecorne, F. Kerhervé, G. Mayer, “Mesure des interactions entre ondes lumineuses dans diverses substances,” J Phys. (Paris) 32, 47–62 (1971).
[CrossRef]

Heiman, D.

D. Heiman, R. W. Hellwarth, M. D. Levenson, G. Martin, “Raman induced Kerr effect,” Phys. Rev. Lett. 36, 189–192 (1976).
[CrossRef]

Hellwarth, R. W.

R. W. Hellwarth, “Third order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1977).
[CrossRef]

D. Heiman, R. W. Hellwarth, M. D. Levenson, G. Martin, “Raman induced Kerr effect,” Phys. Rev. Lett. 36, 189–192 (1976).
[CrossRef]

A. Owyoung, R. W. Hellwarth, N. George, “Intensity induced changes in optical polarizations in glasses,” Phys. Rev. B 5, 628–633 (1972).
[CrossRef]

R. W. Hellwarth, A. Owyoung, N. George, “Origin of the nonlinear refractive index of liquid CCl4,” Phys. Rev. A 4, 2342–2347 (1971).
[CrossRef]

Hulin, D.

Kerhervé, F.

G. Hauchecorne, F. Kerhervé, G. Mayer, “Mesure des interactions entre ondes lumineuses dans diverses substances,” J Phys. (Paris) 32, 47–62 (1971).
[CrossRef]

Kim, Y. B.

J. J. Song, A. Fedotowsky, Y. B. Kim, “Ultrafast transient Kerr responses of liquids investigated by light-scattering methods,” J. Opt. Soc. Am. A 1, 1300 (A) (1984).

Krauss, J.

A. Penzkofer, J. Krauss, J. Sperka, “Noncollinear phase matched four photon frequency mixing in water,” Opt. Commun. 37, 437–441 (1981).
[CrossRef]

Levenson, M. D.

J. J. Song, M. D. Levenson, “Electronic and orientation contributions to the optical Kerr constant determined by coherent Raman techniques,” J. Appl. Phys. 48, 3496–3501 (1977).
[CrossRef]

D. Heiman, R. W. Hellwarth, M. D. Levenson, G. Martin, “Raman induced Kerr effect,” Phys. Rev. Lett. 36, 189–192 (1976).
[CrossRef]

M. D. Levenson, N. Bloembergen, “Dispersion of the nonlinear optical susceptibilities of organic liquids and solutions,” J. Chem. Phys. 60, 1323–1327 (1974).
[CrossRef]

M. D. Levenson, N. Bloembergen, “Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media,” Phys. Rev. B 10, 4447–4463 (1974).
[CrossRef]

Lotem, H.

H. Lotem, R. T. Lynch, “Destructive interference of imaginary resonant contribution to χ(3),” Phys. Rev. Lett 37, 334–337 (1976).
[CrossRef]

Lynch, R. T.

H. Lotem, R. T. Lynch, “Destructive interference of imaginary resonant contribution to χ(3),” Phys. Rev. Lett 37, 334–337 (1976).
[CrossRef]

Maker, P. D.

P. D. Maker, R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. A 137, 801–818 (1965).

Martin, G.

D. Heiman, R. W. Hellwarth, M. D. Levenson, G. Martin, “Raman induced Kerr effect,” Phys. Rev. Lett. 36, 189–192 (1976).
[CrossRef]

Martin, J. L.

J. Etchepare, G. Grillon, R. Astier, J. L. Martin, C. Bruneau, A. Antonetti, “Time resolved measurement of nonlinear susceptibilities by optical Kerr effect,” in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, A. Lauberau, eds. (Springer-Verlag, Berlin, 1982), pp. 217–220.
[CrossRef]

Mayer, G.

G. Hauchecorne, F. Kerhervé, G. Mayer, “Mesure des interactions entre ondes lumineuses dans diverses substances,” J Phys. (Paris) 32, 47–62 (1971).
[CrossRef]

Migus, A.

A. Migus, A. Antonetti, J. Etchepare, D. Hulin, A. Orszag, “Femtosecond spectroscopy with high-power tunable optical pulses,” J. Opt. Soc. Am. B 2, 584–594 (1985).
[CrossRef]

I. Thomazeau, J. Etchepare, G. Grillon, A. Migus, “Electronic nonlinear optical susceptibilities of silicate glasses,” Opt. Lett. (to be published).

Muller, R.

J. Etchepare, G. Grillon, R. Muller, A. Orszag, “Kinetics of optical Kerr effect induced by picosecond laser pulses,” Opt. Commun. 34, 269–272 (1980).
[CrossRef]

Nalbandoff, L. V.

Y. A. Volkova, V. A. Zamkoff, L. V. Nalbandoff, “Precision measurement of the absolute value of Kerr constants,” Opt Spectrosc. 30, 556–561 (1971).

Orszag, A.

A. Migus, A. Antonetti, J. Etchepare, D. Hulin, A. Orszag, “Femtosecond spectroscopy with high-power tunable optical pulses,” J. Opt. Soc. Am. B 2, 584–594 (1985).
[CrossRef]

J. Etchepare, G. Grillon, A. Orszag, “Third order autocorrelation study of amplified subpicosecond laser pulses,” IEEE J. Quantum Electron. QE-19, 775–778 (1983).
[CrossRef]

J. Etchepare, G. Grillon, R. Muller, A. Orszag, “Kinetics of optical Kerr effect induced by picosecond laser pulses,” Opt. Commun. 34, 269–272 (1980).
[CrossRef]

J. Etchepare, G. Grillon, I. Thomazeau, J. P. Chambaret, A. Orszag, “Temporal dependence of third order nonlinear optical susceptibilities of fused quartz and liquid CCl4,” in Ultrafast Phenomena IV, D. H. Auston, K. B. Eisenthal, eds. (Springer-Verlag, Berlin, 1984), pp. 196–198.
[CrossRef]

Oudar, J. L.

J. L. Oudar, “Coherent phenomena involved in the time resolved optical Kerr effect,” IEEE J. Quantum Electron. QE-19, 713–718 (1983).
[CrossRef]

Owyoung, A.

A. Owyoung, R. W. Hellwarth, N. George, “Intensity induced changes in optical polarizations in glasses,” Phys. Rev. B 5, 628–633 (1972).
[CrossRef]

R. W. Hellwarth, A. Owyoung, N. George, “Origin of the nonlinear refractive index of liquid CCl4,” Phys. Rev. A 4, 2342–2347 (1971).
[CrossRef]

For a review of the subject, see A. Owyoung, “The origin of the nonlinear refractive indices of liquids and glasses,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1971).

Penzkofer, A.

M. Thalhammer, A. Penzkofer, “Measurement of third order nonlinear susceptibilities by non-phase-matched third-harmonic generation,” Appl. Phys. B 32, 137–143 (1983).
[CrossRef]

A. Penzkofer, J. Krauss, J. Sperka, “Noncollinear phase matched four photon frequency mixing in water,” Opt. Commun. 37, 437–441 (1981).
[CrossRef]

Song, J. J.

J. J. Song, A. Fedotowsky, Y. B. Kim, “Ultrafast transient Kerr responses of liquids investigated by light-scattering methods,” J. Opt. Soc. Am. A 1, 1300 (A) (1984).

J. J. Song, M. D. Levenson, “Electronic and orientation contributions to the optical Kerr constant determined by coherent Raman techniques,” J. Appl. Phys. 48, 3496–3501 (1977).
[CrossRef]

Sperka, J.

A. Penzkofer, J. Krauss, J. Sperka, “Noncollinear phase matched four photon frequency mixing in water,” Opt. Commun. 37, 437–441 (1981).
[CrossRef]

Tang, C. L.

C. L. Tang, J. M. Halbout, “Time resolved observation of molecular dynamics in liquids by femtosecond interferometry,” in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, A. Lauberau, eds. (Springer-VerlagBerlin, 1982), pp. 212–216.
[CrossRef]

Tang, C. V.

J. M. Halbout, C. V. Tang, “Femtosecond interferometry for nonlinear optics,” Appl. Phys. Lett. 40, 765–767 (1982).
[CrossRef]

Terhune, R. W.

P. D. Maker, R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. A 137, 801–818 (1965).

Thalhammer, M.

M. Thalhammer, A. Penzkofer, “Measurement of third order nonlinear susceptibilities by non-phase-matched third-harmonic generation,” Appl. Phys. B 32, 137–143 (1983).
[CrossRef]

Thomazeau, I.

I. Thomazeau, J. Etchepare, G. Grillon, A. Migus, “Electronic nonlinear optical susceptibilities of silicate glasses,” Opt. Lett. (to be published).

J. Etchepare, G. Grillon, I. Thomazeau, J. P. Chambaret, A. Orszag, “Temporal dependence of third order nonlinear optical susceptibilities of fused quartz and liquid CCl4,” in Ultrafast Phenomena IV, D. H. Auston, K. B. Eisenthal, eds. (Springer-Verlag, Berlin, 1984), pp. 196–198.
[CrossRef]

Volkova, Y. A.

Y. A. Volkova, V. A. Zamkoff, L. V. Nalbandoff, “Precision measurement of the absolute value of Kerr constants,” Opt Spectrosc. 30, 556–561 (1971).

Zamkoff, V. A.

Y. A. Volkova, V. A. Zamkoff, L. V. Nalbandoff, “Precision measurement of the absolute value of Kerr constants,” Opt Spectrosc. 30, 556–561 (1971).

Appl. Phys. B (1)

M. Thalhammer, A. Penzkofer, “Measurement of third order nonlinear susceptibilities by non-phase-matched third-harmonic generation,” Appl. Phys. B 32, 137–143 (1983).
[CrossRef]

Appl. Phys. Lett. (1)

J. M. Halbout, C. V. Tang, “Femtosecond interferometry for nonlinear optics,” Appl. Phys. Lett. 40, 765–767 (1982).
[CrossRef]

Chem. Phys. Lett. (1)

J. Etchepare, G. Grillon, A. Antonetti, “Comment on the subpicosecond Kerr effect in CS2,” Chem. Phys. Lett. 107, 489 (1984) [this paper contains a printing error. Line 3 should read “(0.20 ± 0.05 ps)”].
[CrossRef]

IEEE J. Quantum Electron. (2)

J. Etchepare, G. Grillon, A. Orszag, “Third order autocorrelation study of amplified subpicosecond laser pulses,” IEEE J. Quantum Electron. QE-19, 775–778 (1983).
[CrossRef]

J. L. Oudar, “Coherent phenomena involved in the time resolved optical Kerr effect,” IEEE J. Quantum Electron. QE-19, 713–718 (1983).
[CrossRef]

J Phys. (Paris) (1)

G. Hauchecorne, F. Kerhervé, G. Mayer, “Mesure des interactions entre ondes lumineuses dans diverses substances,” J Phys. (Paris) 32, 47–62 (1971).
[CrossRef]

J. Appl. Phys. (1)

J. J. Song, M. D. Levenson, “Electronic and orientation contributions to the optical Kerr constant determined by coherent Raman techniques,” J. Appl. Phys. 48, 3496–3501 (1977).
[CrossRef]

J. Chem. Phys. (2)

B. I. Greene, R. C. Farrow, “Direct measurement of a subpicosecond birefringent response in CS2,” J. Chem. Phys. 77, 4779–4780 (1982).
[CrossRef]

M. D. Levenson, N. Bloembergen, “Dispersion of the nonlinear optical susceptibilities of organic liquids and solutions,” J. Chem. Phys. 60, 1323–1327 (1974).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. J. Song, A. Fedotowsky, Y. B. Kim, “Ultrafast transient Kerr responses of liquids investigated by light-scattering methods,” J. Opt. Soc. Am. A 1, 1300 (A) (1984).

J. Opt. Soc. Am. B (1)

Opt Spectrosc. (1)

Y. A. Volkova, V. A. Zamkoff, L. V. Nalbandoff, “Precision measurement of the absolute value of Kerr constants,” Opt Spectrosc. 30, 556–561 (1971).

Opt. Commun. (2)

J. Etchepare, G. Grillon, R. Muller, A. Orszag, “Kinetics of optical Kerr effect induced by picosecond laser pulses,” Opt. Commun. 34, 269–272 (1980).
[CrossRef]

A. Penzkofer, J. Krauss, J. Sperka, “Noncollinear phase matched four photon frequency mixing in water,” Opt. Commun. 37, 437–441 (1981).
[CrossRef]

Phys. Rev. A (2)

P. D. Maker, R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. A 137, 801–818 (1965).

R. W. Hellwarth, A. Owyoung, N. George, “Origin of the nonlinear refractive index of liquid CCl4,” Phys. Rev. A 4, 2342–2347 (1971).
[CrossRef]

Phys. Rev. B (2)

A. Owyoung, R. W. Hellwarth, N. George, “Intensity induced changes in optical polarizations in glasses,” Phys. Rev. B 5, 628–633 (1972).
[CrossRef]

M. D. Levenson, N. Bloembergen, “Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media,” Phys. Rev. B 10, 4447–4463 (1974).
[CrossRef]

Phys. Rev. Lett (1)

H. Lotem, R. T. Lynch, “Destructive interference of imaginary resonant contribution to χ(3),” Phys. Rev. Lett 37, 334–337 (1976).
[CrossRef]

Phys. Rev. Lett. (1)

D. Heiman, R. W. Hellwarth, M. D. Levenson, G. Martin, “Raman induced Kerr effect,” Phys. Rev. Lett. 36, 189–192 (1976).
[CrossRef]

Prog. Quantum Electron. (1)

R. W. Hellwarth, “Third order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1977).
[CrossRef]

Other (5)

J. Etchepare, G. Grillon, R. Astier, J. L. Martin, C. Bruneau, A. Antonetti, “Time resolved measurement of nonlinear susceptibilities by optical Kerr effect,” in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, A. Lauberau, eds. (Springer-Verlag, Berlin, 1982), pp. 217–220.
[CrossRef]

For a review of the subject, see A. Owyoung, “The origin of the nonlinear refractive indices of liquids and glasses,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1971).

C. L. Tang, J. M. Halbout, “Time resolved observation of molecular dynamics in liquids by femtosecond interferometry,” in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, A. Lauberau, eds. (Springer-VerlagBerlin, 1982), pp. 212–216.
[CrossRef]

J. Etchepare, G. Grillon, I. Thomazeau, J. P. Chambaret, A. Orszag, “Temporal dependence of third order nonlinear optical susceptibilities of fused quartz and liquid CCl4,” in Ultrafast Phenomena IV, D. H. Auston, K. B. Eisenthal, eds. (Springer-Verlag, Berlin, 1984), pp. 196–198.
[CrossRef]

I. Thomazeau, J. Etchepare, G. Grillon, A. Migus, “Electronic nonlinear optical susceptibilities of silicate glasses,” Opt. Lett. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Kinetics of Kerr effect in a 1.5-mm slab of SF 59 Schott glass (nonlinear coefficients in glasses will be reported elsewhere).12 A drastic enhancement of the signal dynamics is obtained when two different wavelengths are used for excitation and test while the overall shapes stay identical.

Fig. 2
Fig. 2

Kinetics of Kerr effect in a 2-mm cell of C6H6 with two different polarization states of the pump beam: a, linear; b, circular.

Tables (1)

Tables Icon

Table 1 Measured χ ijkl ( 3 ) Electronic (or Upper-Estimate; See Text) Valuesa

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

P i ( 3 ) ( ω 4 ) = D χ ijkl ( 3 ) ( ω 4 , ω 1 , ω 2 , ω 3 ) E j ( ω 1 ) E k ( ω 2 ) E 1 ( ω 3 ) .
χ eff ( 3 ) ( ω 2 , ω 2 , ω 1 , ω 1 ) = 1 2 [ χ 1212 ( 3 ) + χ 1221 ( 3 ) ] .
I ( t ) { exp + α 1 t , t < 0 exp α 2 t , t > 0 .
S ( t ) = 1 S 0 + I t ( t τ D ) sin 2 [ 2 π l c ω t 1 2 i n 2 B i τ i × t I e ( t ) exp ( t t τ i ) d t ] d τ D 1 S 0 π 2 l 2 ω t c 2 + I t ( t τ D ) i [ n 2 B i τ i exp ( t τ i ) × t I e ( t ) exp ( t τ i ) d t ] 2 d τ D ,
S 0 = + I e 2 ( t ) I t ( t ) d t ,
t < 0 S ( t ) = A exp ( 2 α 1 t ) + B exp ( α 2 t ) , t = 0 S ( t ) = C , t > 0 S ( t ) = D exp ( α 1 t ) + E exp ( 2 α 2 t ) + F exp ( 2 β t ) + G exp ( 2 γ t ) + H exp ( 2 δ t ) + I exp [ ( α 2 + β ) t ] + J exp [ ( α 2 + γ ) t ] + K exp [ ( α 2 + δ ) t ] + L exp [ ( β + γ ) t ] + M exp [ ( β + δ ) t ] + N exp [ ( γ + δ ) t ] ,
n 2 B i = 48 π λ n ( χ 1212 ( 3 ) i + χ 1221 ( 3 ) i ) ,
χ eff ( 3 )
χ 1111 ( 3 ) ( 3 ω , ω , ω , ω )
χ 1111 ( 3 ) ( ω 3 , ω 1 , ω 1 , ω 2 )
χ 1221 ( 3 ) ( ω , ω , ω , ω )
γ 1111 ( 3 ) ( 2 ω , ω , ω , 0 )
n 2 B 0.20 psec = 46
{ or n 2 B e 7 46 n 2 B 0.20 39
n 2 B 0.15 psec = 25
{ or n 2 B e 5 25 n 2 B 0.15 20

Metrics