Abstract

A review of our results in time-domain coherent anti-Stokes Raman spectroscopy (CARS) of N2 molecules cooled in a supersonic jet is given. A full quantitative interpretation of the detected quantum beats, which makes it possible to determine the Trot of N2, is proposed. A noticeable increase of the dephasing cross section with the lowering of temperature is detected. The sensitivity of the CARS spectrometer was radically improved by the development of the injection-locked optical parametric oscillator, which made it possible to register the cooling of N2 to temperatures as low as 8 K.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Brewer, “Coherent optical spectroscopy,” in Nonlinear Spectroscopy, N. Bloembergen, ed. (North-Holland, Amsterdam, 1977).
  2. P. Shoemaker, “Coherent infrared spectroscopy of nonstationary processes,” in Laser and Coherent Spectroscopy, J. Steinfeld, ed. (Plenum, New York, 1978).
    [CrossRef]
  3. A. Laubereau, W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50, 607–665 (1978).
    [CrossRef]
  4. S. A. Akhmanov, N. I. Koroteev, Methods of Nonlinear Optics in Light Scattering Spectroscopy (Nauka, Moscow, 1981).
  5. M. S. Dzhidzhoev, S. A. Magnitskii, S. M. Saltiel, A. P. Tarasevich, V. G. Tunkin, A. I. Kholodnykh, “Elimination of nonresonant background in coherent picosecond active Raman spectroscopy of molecular gases,” Kvantovaya Elektron. (Moscow), 8, 1136–1138 (1981).
  6. S. A. Magnitskii, V. G. Tunkin, “Registration of Dicke narrowing in gaseous hydrogen by direct measurement of dephasing time,” Sov. J. Quantum Electron. 11, 1218–1220 (1981).
    [CrossRef]
  7. Yu. E. Dyakov, S. A. Krikunov, S. A. Magnitskii, S. Yu. Nikitin, V. G. Tunkin, “Time-domain coherent anti-Stokes Raman spectroscopy of gaseous hydrogen in the Dicke narrowing region,” Zh. Eksp. Teor. Fiz. 84, 2013–2025 (1983).
  8. S. A. Akhmanov, N. I. Koroteev, S. A. Magnitskii, V. B. Morozov, A. P. Tarasevich, V. G. Tunkin, “Nonstationary picosecond CARS of molecular gases, III. Symposium on ultrafast phenomena, Minsk,October 1983,” Izvestia Akad. Nauk SSSR, 48, 534–539 (1984).
  9. Yu. E. Dyakov, “Dephasing effects in stationary and nonstationary spectroscopy, Pis’ma Zh. Eksp. Teor. Fiz. 37, 14–17 (1983).
  10. S. A. Akhmanov, N. I. Koroteev, S. A. Magnitskii, V. B. Morozov, A. P. Tarasevich, V. G. Tunkin, “Vibrational dephasing kinetics of N2 molecules in supersonic stream,” Pis’ma Zh. Eksp. Teor. Fiz. 39, 409–412 (1984).
  11. O. P. Judd, J. Lyman, “Interpretation of measurements of collisionless intramolecular energy transfer and dephasing rates for SF6,” Opt. Lett. 6, 595–597 (1981).
    [CrossRef] [PubMed]
  12. S. A. Magnitskii, V. I. Malachova, A. P. Tarasevich, V. G. Tunkin, B. G. Shakirov, S. D. Yakubovich, D. V. Yakovlev, “Production of bandwidth-limited tunable picosecond pulses by injection-locked optical parametric oscillator,” Opt. Lett. (to be published).
  13. V. I. Malachova, A. A. Rivlin, Yu. A. Tandiev, S. D. Yakubovich, “Stationary single-mode generation in injection semiconductor laser with nonselective resonator,” Kvantovaya Elektron. (Moscow) 7, 1252–1254 (1980).
  14. S. G. Rautian, I. I. Sobelman, “The influence of collisions on Doppler broadening of spectral lines,” Usp. Fiz. Nauk 90, 209–236 (1966).
  15. We can, of course, neglect time-of-flight effects. Indeed, the maximum speed of the stream is less than 1 μm/nsec, while the diameter of the excited volume is about 100 μm. (In our case it is the dimensions of the excited volume that are of importance rather than those of the probed volume, which was 20 μm in diameter.) The absence of mean decay in Fig. 6 and Figs. 7A, 7C, and 7D proves directly that we do not have to take the time-of-flight effects into account and that our delay line is aligned well (see also the dephasing curve of H2 in Fig. 2).
  16. N. V. Karelov, R. G. Sharafutdinov, “Rotational relaxation in condensing gas stream,” in Molecular Gas Dynamics, Proceedings of All-Soviet Conference on Rarefied Gas Dynamics (Novosibirsk State U. Publishing House, Novosibirsk, 1980), Vol. 3, pp. 28–33.
  17. R. G. Sharafutdinov, “Rotational relaxation of gases in free jets,” Doctoral dissertation (Institute for Thermal Physics, Novosibirsk, 1984).
  18. J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).
  19. B. F. Gordiez, A. I. Osipov, A. A. Shelepin, Gaseous Kinetics and Molecular Lasers (Nauka, Moscow, 1980).
  20. D. H. Levy, “Supersonics molecular beams and Van der Waals molecules,” in Quantum Dynamics of Molecules, R. J. Woolley, ed. (Plenum, New York, 1980).
    [CrossRef]
  21. n is not so sensitive to condensation as T. See, for example, Ref. 16 or Ref.17.
  22. πσdeph2 values are obtained with more accuracy than in Ref. 10, where πσdeph2 was calculated with T of isentropic expansion in spite of Trot (see the difference between T and Trot in Fig. 8).
  23. H. Graener, A. Laubereau, J. W. Nibler, “Picosecond coherent anti-Stokes Raman spectroscopy of molecules in free jet expansion,” Opt. Lett. 9, 165–167 (1984).
    [CrossRef] [PubMed]
  24. A. N. Brodnikovsky, S. M. Gladkov, N. I. Koroteev, “Strong selective excitation of Raman active vibrations and energy transfer between low-lying vibrational states of a CO2 molecule studied by CARS and PARS,” Opt. Commun. 40, 312–314 (1982).
    [CrossRef]

1984 (3)

S. A. Akhmanov, N. I. Koroteev, S. A. Magnitskii, V. B. Morozov, A. P. Tarasevich, V. G. Tunkin, “Vibrational dephasing kinetics of N2 molecules in supersonic stream,” Pis’ma Zh. Eksp. Teor. Fiz. 39, 409–412 (1984).

S. A. Akhmanov, N. I. Koroteev, S. A. Magnitskii, V. B. Morozov, A. P. Tarasevich, V. G. Tunkin, “Nonstationary picosecond CARS of molecular gases, III. Symposium on ultrafast phenomena, Minsk,October 1983,” Izvestia Akad. Nauk SSSR, 48, 534–539 (1984).

H. Graener, A. Laubereau, J. W. Nibler, “Picosecond coherent anti-Stokes Raman spectroscopy of molecules in free jet expansion,” Opt. Lett. 9, 165–167 (1984).
[CrossRef] [PubMed]

1983 (2)

Yu. E. Dyakov, “Dephasing effects in stationary and nonstationary spectroscopy, Pis’ma Zh. Eksp. Teor. Fiz. 37, 14–17 (1983).

Yu. E. Dyakov, S. A. Krikunov, S. A. Magnitskii, S. Yu. Nikitin, V. G. Tunkin, “Time-domain coherent anti-Stokes Raman spectroscopy of gaseous hydrogen in the Dicke narrowing region,” Zh. Eksp. Teor. Fiz. 84, 2013–2025 (1983).

1982 (1)

A. N. Brodnikovsky, S. M. Gladkov, N. I. Koroteev, “Strong selective excitation of Raman active vibrations and energy transfer between low-lying vibrational states of a CO2 molecule studied by CARS and PARS,” Opt. Commun. 40, 312–314 (1982).
[CrossRef]

1981 (3)

M. S. Dzhidzhoev, S. A. Magnitskii, S. M. Saltiel, A. P. Tarasevich, V. G. Tunkin, A. I. Kholodnykh, “Elimination of nonresonant background in coherent picosecond active Raman spectroscopy of molecular gases,” Kvantovaya Elektron. (Moscow), 8, 1136–1138 (1981).

S. A. Magnitskii, V. G. Tunkin, “Registration of Dicke narrowing in gaseous hydrogen by direct measurement of dephasing time,” Sov. J. Quantum Electron. 11, 1218–1220 (1981).
[CrossRef]

O. P. Judd, J. Lyman, “Interpretation of measurements of collisionless intramolecular energy transfer and dephasing rates for SF6,” Opt. Lett. 6, 595–597 (1981).
[CrossRef] [PubMed]

1980 (1)

V. I. Malachova, A. A. Rivlin, Yu. A. Tandiev, S. D. Yakubovich, “Stationary single-mode generation in injection semiconductor laser with nonselective resonator,” Kvantovaya Elektron. (Moscow) 7, 1252–1254 (1980).

1978 (1)

A. Laubereau, W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50, 607–665 (1978).
[CrossRef]

1966 (1)

S. G. Rautian, I. I. Sobelman, “The influence of collisions on Doppler broadening of spectral lines,” Usp. Fiz. Nauk 90, 209–236 (1966).

Akhmanov, S. A.

S. A. Akhmanov, N. I. Koroteev, S. A. Magnitskii, V. B. Morozov, A. P. Tarasevich, V. G. Tunkin, “Nonstationary picosecond CARS of molecular gases, III. Symposium on ultrafast phenomena, Minsk,October 1983,” Izvestia Akad. Nauk SSSR, 48, 534–539 (1984).

S. A. Akhmanov, N. I. Koroteev, S. A. Magnitskii, V. B. Morozov, A. P. Tarasevich, V. G. Tunkin, “Vibrational dephasing kinetics of N2 molecules in supersonic stream,” Pis’ma Zh. Eksp. Teor. Fiz. 39, 409–412 (1984).

S. A. Akhmanov, N. I. Koroteev, Methods of Nonlinear Optics in Light Scattering Spectroscopy (Nauka, Moscow, 1981).

Bird, R. B.

J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

Brewer, R. G.

R. G. Brewer, “Coherent optical spectroscopy,” in Nonlinear Spectroscopy, N. Bloembergen, ed. (North-Holland, Amsterdam, 1977).

Brodnikovsky, A. N.

A. N. Brodnikovsky, S. M. Gladkov, N. I. Koroteev, “Strong selective excitation of Raman active vibrations and energy transfer between low-lying vibrational states of a CO2 molecule studied by CARS and PARS,” Opt. Commun. 40, 312–314 (1982).
[CrossRef]

Curtiss, C. F.

J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

Dyakov, Yu. E.

Yu. E. Dyakov, S. A. Krikunov, S. A. Magnitskii, S. Yu. Nikitin, V. G. Tunkin, “Time-domain coherent anti-Stokes Raman spectroscopy of gaseous hydrogen in the Dicke narrowing region,” Zh. Eksp. Teor. Fiz. 84, 2013–2025 (1983).

Yu. E. Dyakov, “Dephasing effects in stationary and nonstationary spectroscopy, Pis’ma Zh. Eksp. Teor. Fiz. 37, 14–17 (1983).

Dzhidzhoev, M. S.

M. S. Dzhidzhoev, S. A. Magnitskii, S. M. Saltiel, A. P. Tarasevich, V. G. Tunkin, A. I. Kholodnykh, “Elimination of nonresonant background in coherent picosecond active Raman spectroscopy of molecular gases,” Kvantovaya Elektron. (Moscow), 8, 1136–1138 (1981).

Gladkov, S. M.

A. N. Brodnikovsky, S. M. Gladkov, N. I. Koroteev, “Strong selective excitation of Raman active vibrations and energy transfer between low-lying vibrational states of a CO2 molecule studied by CARS and PARS,” Opt. Commun. 40, 312–314 (1982).
[CrossRef]

Gordiez, B. F.

B. F. Gordiez, A. I. Osipov, A. A. Shelepin, Gaseous Kinetics and Molecular Lasers (Nauka, Moscow, 1980).

Graener, H.

Hirschfelder, J. O.

J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

Judd, O. P.

Kaiser, W.

A. Laubereau, W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50, 607–665 (1978).
[CrossRef]

Karelov, N. V.

N. V. Karelov, R. G. Sharafutdinov, “Rotational relaxation in condensing gas stream,” in Molecular Gas Dynamics, Proceedings of All-Soviet Conference on Rarefied Gas Dynamics (Novosibirsk State U. Publishing House, Novosibirsk, 1980), Vol. 3, pp. 28–33.

Kholodnykh, A. I.

M. S. Dzhidzhoev, S. A. Magnitskii, S. M. Saltiel, A. P. Tarasevich, V. G. Tunkin, A. I. Kholodnykh, “Elimination of nonresonant background in coherent picosecond active Raman spectroscopy of molecular gases,” Kvantovaya Elektron. (Moscow), 8, 1136–1138 (1981).

Koroteev, N. I.

S. A. Akhmanov, N. I. Koroteev, S. A. Magnitskii, V. B. Morozov, A. P. Tarasevich, V. G. Tunkin, “Vibrational dephasing kinetics of N2 molecules in supersonic stream,” Pis’ma Zh. Eksp. Teor. Fiz. 39, 409–412 (1984).

S. A. Akhmanov, N. I. Koroteev, S. A. Magnitskii, V. B. Morozov, A. P. Tarasevich, V. G. Tunkin, “Nonstationary picosecond CARS of molecular gases, III. Symposium on ultrafast phenomena, Minsk,October 1983,” Izvestia Akad. Nauk SSSR, 48, 534–539 (1984).

A. N. Brodnikovsky, S. M. Gladkov, N. I. Koroteev, “Strong selective excitation of Raman active vibrations and energy transfer between low-lying vibrational states of a CO2 molecule studied by CARS and PARS,” Opt. Commun. 40, 312–314 (1982).
[CrossRef]

S. A. Akhmanov, N. I. Koroteev, Methods of Nonlinear Optics in Light Scattering Spectroscopy (Nauka, Moscow, 1981).

Krikunov, S. A.

Yu. E. Dyakov, S. A. Krikunov, S. A. Magnitskii, S. Yu. Nikitin, V. G. Tunkin, “Time-domain coherent anti-Stokes Raman spectroscopy of gaseous hydrogen in the Dicke narrowing region,” Zh. Eksp. Teor. Fiz. 84, 2013–2025 (1983).

Laubereau, A.

H. Graener, A. Laubereau, J. W. Nibler, “Picosecond coherent anti-Stokes Raman spectroscopy of molecules in free jet expansion,” Opt. Lett. 9, 165–167 (1984).
[CrossRef] [PubMed]

A. Laubereau, W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50, 607–665 (1978).
[CrossRef]

Levy, D. H.

D. H. Levy, “Supersonics molecular beams and Van der Waals molecules,” in Quantum Dynamics of Molecules, R. J. Woolley, ed. (Plenum, New York, 1980).
[CrossRef]

Lyman, J.

Magnitskii, S. A.

S. A. Akhmanov, N. I. Koroteev, S. A. Magnitskii, V. B. Morozov, A. P. Tarasevich, V. G. Tunkin, “Nonstationary picosecond CARS of molecular gases, III. Symposium on ultrafast phenomena, Minsk,October 1983,” Izvestia Akad. Nauk SSSR, 48, 534–539 (1984).

S. A. Akhmanov, N. I. Koroteev, S. A. Magnitskii, V. B. Morozov, A. P. Tarasevich, V. G. Tunkin, “Vibrational dephasing kinetics of N2 molecules in supersonic stream,” Pis’ma Zh. Eksp. Teor. Fiz. 39, 409–412 (1984).

Yu. E. Dyakov, S. A. Krikunov, S. A. Magnitskii, S. Yu. Nikitin, V. G. Tunkin, “Time-domain coherent anti-Stokes Raman spectroscopy of gaseous hydrogen in the Dicke narrowing region,” Zh. Eksp. Teor. Fiz. 84, 2013–2025 (1983).

S. A. Magnitskii, V. G. Tunkin, “Registration of Dicke narrowing in gaseous hydrogen by direct measurement of dephasing time,” Sov. J. Quantum Electron. 11, 1218–1220 (1981).
[CrossRef]

M. S. Dzhidzhoev, S. A. Magnitskii, S. M. Saltiel, A. P. Tarasevich, V. G. Tunkin, A. I. Kholodnykh, “Elimination of nonresonant background in coherent picosecond active Raman spectroscopy of molecular gases,” Kvantovaya Elektron. (Moscow), 8, 1136–1138 (1981).

S. A. Magnitskii, V. I. Malachova, A. P. Tarasevich, V. G. Tunkin, B. G. Shakirov, S. D. Yakubovich, D. V. Yakovlev, “Production of bandwidth-limited tunable picosecond pulses by injection-locked optical parametric oscillator,” Opt. Lett. (to be published).

Malachova, V. I.

V. I. Malachova, A. A. Rivlin, Yu. A. Tandiev, S. D. Yakubovich, “Stationary single-mode generation in injection semiconductor laser with nonselective resonator,” Kvantovaya Elektron. (Moscow) 7, 1252–1254 (1980).

S. A. Magnitskii, V. I. Malachova, A. P. Tarasevich, V. G. Tunkin, B. G. Shakirov, S. D. Yakubovich, D. V. Yakovlev, “Production of bandwidth-limited tunable picosecond pulses by injection-locked optical parametric oscillator,” Opt. Lett. (to be published).

Morozov, V. B.

S. A. Akhmanov, N. I. Koroteev, S. A. Magnitskii, V. B. Morozov, A. P. Tarasevich, V. G. Tunkin, “Vibrational dephasing kinetics of N2 molecules in supersonic stream,” Pis’ma Zh. Eksp. Teor. Fiz. 39, 409–412 (1984).

S. A. Akhmanov, N. I. Koroteev, S. A. Magnitskii, V. B. Morozov, A. P. Tarasevich, V. G. Tunkin, “Nonstationary picosecond CARS of molecular gases, III. Symposium on ultrafast phenomena, Minsk,October 1983,” Izvestia Akad. Nauk SSSR, 48, 534–539 (1984).

Nibler, J. W.

Nikitin, S. Yu.

Yu. E. Dyakov, S. A. Krikunov, S. A. Magnitskii, S. Yu. Nikitin, V. G. Tunkin, “Time-domain coherent anti-Stokes Raman spectroscopy of gaseous hydrogen in the Dicke narrowing region,” Zh. Eksp. Teor. Fiz. 84, 2013–2025 (1983).

Osipov, A. I.

B. F. Gordiez, A. I. Osipov, A. A. Shelepin, Gaseous Kinetics and Molecular Lasers (Nauka, Moscow, 1980).

Rautian, S. G.

S. G. Rautian, I. I. Sobelman, “The influence of collisions on Doppler broadening of spectral lines,” Usp. Fiz. Nauk 90, 209–236 (1966).

Rivlin, A. A.

V. I. Malachova, A. A. Rivlin, Yu. A. Tandiev, S. D. Yakubovich, “Stationary single-mode generation in injection semiconductor laser with nonselective resonator,” Kvantovaya Elektron. (Moscow) 7, 1252–1254 (1980).

Saltiel, S. M.

M. S. Dzhidzhoev, S. A. Magnitskii, S. M. Saltiel, A. P. Tarasevich, V. G. Tunkin, A. I. Kholodnykh, “Elimination of nonresonant background in coherent picosecond active Raman spectroscopy of molecular gases,” Kvantovaya Elektron. (Moscow), 8, 1136–1138 (1981).

Shakirov, B. G.

S. A. Magnitskii, V. I. Malachova, A. P. Tarasevich, V. G. Tunkin, B. G. Shakirov, S. D. Yakubovich, D. V. Yakovlev, “Production of bandwidth-limited tunable picosecond pulses by injection-locked optical parametric oscillator,” Opt. Lett. (to be published).

Sharafutdinov, R. G.

N. V. Karelov, R. G. Sharafutdinov, “Rotational relaxation in condensing gas stream,” in Molecular Gas Dynamics, Proceedings of All-Soviet Conference on Rarefied Gas Dynamics (Novosibirsk State U. Publishing House, Novosibirsk, 1980), Vol. 3, pp. 28–33.

R. G. Sharafutdinov, “Rotational relaxation of gases in free jets,” Doctoral dissertation (Institute for Thermal Physics, Novosibirsk, 1984).

Shelepin, A. A.

B. F. Gordiez, A. I. Osipov, A. A. Shelepin, Gaseous Kinetics and Molecular Lasers (Nauka, Moscow, 1980).

Shoemaker, P.

P. Shoemaker, “Coherent infrared spectroscopy of nonstationary processes,” in Laser and Coherent Spectroscopy, J. Steinfeld, ed. (Plenum, New York, 1978).
[CrossRef]

Sobelman, I. I.

S. G. Rautian, I. I. Sobelman, “The influence of collisions on Doppler broadening of spectral lines,” Usp. Fiz. Nauk 90, 209–236 (1966).

Tandiev, Yu. A.

V. I. Malachova, A. A. Rivlin, Yu. A. Tandiev, S. D. Yakubovich, “Stationary single-mode generation in injection semiconductor laser with nonselective resonator,” Kvantovaya Elektron. (Moscow) 7, 1252–1254 (1980).

Tarasevich, A. P.

S. A. Akhmanov, N. I. Koroteev, S. A. Magnitskii, V. B. Morozov, A. P. Tarasevich, V. G. Tunkin, “Nonstationary picosecond CARS of molecular gases, III. Symposium on ultrafast phenomena, Minsk,October 1983,” Izvestia Akad. Nauk SSSR, 48, 534–539 (1984).

S. A. Akhmanov, N. I. Koroteev, S. A. Magnitskii, V. B. Morozov, A. P. Tarasevich, V. G. Tunkin, “Vibrational dephasing kinetics of N2 molecules in supersonic stream,” Pis’ma Zh. Eksp. Teor. Fiz. 39, 409–412 (1984).

M. S. Dzhidzhoev, S. A. Magnitskii, S. M. Saltiel, A. P. Tarasevich, V. G. Tunkin, A. I. Kholodnykh, “Elimination of nonresonant background in coherent picosecond active Raman spectroscopy of molecular gases,” Kvantovaya Elektron. (Moscow), 8, 1136–1138 (1981).

S. A. Magnitskii, V. I. Malachova, A. P. Tarasevich, V. G. Tunkin, B. G. Shakirov, S. D. Yakubovich, D. V. Yakovlev, “Production of bandwidth-limited tunable picosecond pulses by injection-locked optical parametric oscillator,” Opt. Lett. (to be published).

Tunkin, V. G.

S. A. Akhmanov, N. I. Koroteev, S. A. Magnitskii, V. B. Morozov, A. P. Tarasevich, V. G. Tunkin, “Vibrational dephasing kinetics of N2 molecules in supersonic stream,” Pis’ma Zh. Eksp. Teor. Fiz. 39, 409–412 (1984).

S. A. Akhmanov, N. I. Koroteev, S. A. Magnitskii, V. B. Morozov, A. P. Tarasevich, V. G. Tunkin, “Nonstationary picosecond CARS of molecular gases, III. Symposium on ultrafast phenomena, Minsk,October 1983,” Izvestia Akad. Nauk SSSR, 48, 534–539 (1984).

Yu. E. Dyakov, S. A. Krikunov, S. A. Magnitskii, S. Yu. Nikitin, V. G. Tunkin, “Time-domain coherent anti-Stokes Raman spectroscopy of gaseous hydrogen in the Dicke narrowing region,” Zh. Eksp. Teor. Fiz. 84, 2013–2025 (1983).

S. A. Magnitskii, V. G. Tunkin, “Registration of Dicke narrowing in gaseous hydrogen by direct measurement of dephasing time,” Sov. J. Quantum Electron. 11, 1218–1220 (1981).
[CrossRef]

M. S. Dzhidzhoev, S. A. Magnitskii, S. M. Saltiel, A. P. Tarasevich, V. G. Tunkin, A. I. Kholodnykh, “Elimination of nonresonant background in coherent picosecond active Raman spectroscopy of molecular gases,” Kvantovaya Elektron. (Moscow), 8, 1136–1138 (1981).

S. A. Magnitskii, V. I. Malachova, A. P. Tarasevich, V. G. Tunkin, B. G. Shakirov, S. D. Yakubovich, D. V. Yakovlev, “Production of bandwidth-limited tunable picosecond pulses by injection-locked optical parametric oscillator,” Opt. Lett. (to be published).

Yakovlev, D. V.

S. A. Magnitskii, V. I. Malachova, A. P. Tarasevich, V. G. Tunkin, B. G. Shakirov, S. D. Yakubovich, D. V. Yakovlev, “Production of bandwidth-limited tunable picosecond pulses by injection-locked optical parametric oscillator,” Opt. Lett. (to be published).

Yakubovich, S. D.

V. I. Malachova, A. A. Rivlin, Yu. A. Tandiev, S. D. Yakubovich, “Stationary single-mode generation in injection semiconductor laser with nonselective resonator,” Kvantovaya Elektron. (Moscow) 7, 1252–1254 (1980).

S. A. Magnitskii, V. I. Malachova, A. P. Tarasevich, V. G. Tunkin, B. G. Shakirov, S. D. Yakubovich, D. V. Yakovlev, “Production of bandwidth-limited tunable picosecond pulses by injection-locked optical parametric oscillator,” Opt. Lett. (to be published).

Izvestia Akad. Nauk SSSR (1)

S. A. Akhmanov, N. I. Koroteev, S. A. Magnitskii, V. B. Morozov, A. P. Tarasevich, V. G. Tunkin, “Nonstationary picosecond CARS of molecular gases, III. Symposium on ultrafast phenomena, Minsk,October 1983,” Izvestia Akad. Nauk SSSR, 48, 534–539 (1984).

Kvantovaya Elektron. (Moscow) (2)

M. S. Dzhidzhoev, S. A. Magnitskii, S. M. Saltiel, A. P. Tarasevich, V. G. Tunkin, A. I. Kholodnykh, “Elimination of nonresonant background in coherent picosecond active Raman spectroscopy of molecular gases,” Kvantovaya Elektron. (Moscow), 8, 1136–1138 (1981).

V. I. Malachova, A. A. Rivlin, Yu. A. Tandiev, S. D. Yakubovich, “Stationary single-mode generation in injection semiconductor laser with nonselective resonator,” Kvantovaya Elektron. (Moscow) 7, 1252–1254 (1980).

Opt. Commun. (1)

A. N. Brodnikovsky, S. M. Gladkov, N. I. Koroteev, “Strong selective excitation of Raman active vibrations and energy transfer between low-lying vibrational states of a CO2 molecule studied by CARS and PARS,” Opt. Commun. 40, 312–314 (1982).
[CrossRef]

Opt. Lett. (2)

Pis’ma Zh. Eksp. Teor. Fiz. (2)

Yu. E. Dyakov, “Dephasing effects in stationary and nonstationary spectroscopy, Pis’ma Zh. Eksp. Teor. Fiz. 37, 14–17 (1983).

S. A. Akhmanov, N. I. Koroteev, S. A. Magnitskii, V. B. Morozov, A. P. Tarasevich, V. G. Tunkin, “Vibrational dephasing kinetics of N2 molecules in supersonic stream,” Pis’ma Zh. Eksp. Teor. Fiz. 39, 409–412 (1984).

Rev. Mod. Phys. (1)

A. Laubereau, W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50, 607–665 (1978).
[CrossRef]

Sov. J. Quantum Electron. (1)

S. A. Magnitskii, V. G. Tunkin, “Registration of Dicke narrowing in gaseous hydrogen by direct measurement of dephasing time,” Sov. J. Quantum Electron. 11, 1218–1220 (1981).
[CrossRef]

Usp. Fiz. Nauk (1)

S. G. Rautian, I. I. Sobelman, “The influence of collisions on Doppler broadening of spectral lines,” Usp. Fiz. Nauk 90, 209–236 (1966).

Zh. Eksp. Teor. Fiz. (1)

Yu. E. Dyakov, S. A. Krikunov, S. A. Magnitskii, S. Yu. Nikitin, V. G. Tunkin, “Time-domain coherent anti-Stokes Raman spectroscopy of gaseous hydrogen in the Dicke narrowing region,” Zh. Eksp. Teor. Fiz. 84, 2013–2025 (1983).

Other (12)

S. A. Akhmanov, N. I. Koroteev, Methods of Nonlinear Optics in Light Scattering Spectroscopy (Nauka, Moscow, 1981).

R. G. Brewer, “Coherent optical spectroscopy,” in Nonlinear Spectroscopy, N. Bloembergen, ed. (North-Holland, Amsterdam, 1977).

P. Shoemaker, “Coherent infrared spectroscopy of nonstationary processes,” in Laser and Coherent Spectroscopy, J. Steinfeld, ed. (Plenum, New York, 1978).
[CrossRef]

We can, of course, neglect time-of-flight effects. Indeed, the maximum speed of the stream is less than 1 μm/nsec, while the diameter of the excited volume is about 100 μm. (In our case it is the dimensions of the excited volume that are of importance rather than those of the probed volume, which was 20 μm in diameter.) The absence of mean decay in Fig. 6 and Figs. 7A, 7C, and 7D proves directly that we do not have to take the time-of-flight effects into account and that our delay line is aligned well (see also the dephasing curve of H2 in Fig. 2).

N. V. Karelov, R. G. Sharafutdinov, “Rotational relaxation in condensing gas stream,” in Molecular Gas Dynamics, Proceedings of All-Soviet Conference on Rarefied Gas Dynamics (Novosibirsk State U. Publishing House, Novosibirsk, 1980), Vol. 3, pp. 28–33.

R. G. Sharafutdinov, “Rotational relaxation of gases in free jets,” Doctoral dissertation (Institute for Thermal Physics, Novosibirsk, 1984).

J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

B. F. Gordiez, A. I. Osipov, A. A. Shelepin, Gaseous Kinetics and Molecular Lasers (Nauka, Moscow, 1980).

D. H. Levy, “Supersonics molecular beams and Van der Waals molecules,” in Quantum Dynamics of Molecules, R. J. Woolley, ed. (Plenum, New York, 1980).
[CrossRef]

n is not so sensitive to condensation as T. See, for example, Ref. 16 or Ref.17.

πσdeph2 values are obtained with more accuracy than in Ref. 10, where πσdeph2 was calculated with T of isentropic expansion in spite of Trot (see the difference between T and Trot in Fig. 8).

S. A. Magnitskii, V. I. Malachova, A. P. Tarasevich, V. G. Tunkin, B. G. Shakirov, S. D. Yakubovich, D. V. Yakovlev, “Production of bandwidth-limited tunable picosecond pulses by injection-locked optical parametric oscillator,” Opt. Lett. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Picosecond time-domain CARS probing of N2 supersonic jet.

Fig. 2
Fig. 2

Schematic of picosecond CARS spectrometer. The transient response of the Q01(1) rovibrational transition of hydrogen is shown in the inset.

Fig. 3
Fig. 3

Schematic of picosecond injection-locked OPO. The tunable cw single-frequency GaAs semiconductor laser is used as a source of injection radiation.

Fig. 4
Fig. 4

Spectra of picosecond OPO pulses at λ = 1.4 μm after upconversion. A, semiconductor laser on; B, C, semiconductor laser off (in B and C the vertical scale is stretched).

Fig. 5
Fig. 5

Transient responses of N2 gas for various values of rotational temperatures (theory).

Fig. 6
Fig. 6

Transient response of N2 in supersonic jet just before and just after the Mach disk. Open circles, experiment. Parabolic solid curve Doppler dephasing for 300 K (theory).

Fig. 7
Fig. 7

Transient responses of N2 in supersonic jet for various values of X/D and p0 (open circles, experimental data; solid curves, theory). Dashed line in B, Doppler dephasing curve for T = 100 K. X is the distance from the nozzle, D is the diameter of the nozzle, p0 is the source pressure.

Fig. 8
Fig. 8

Dependence of rotational (experiment) and translational (theory) temperatures on the distance from the nozzle.

Fig. 9
Fig. 9

Some of the transient response curves measured with full-time delay.

Tables (1)

Tables Icon

Table 1 Measured Rotational Temperatures Trot, Dephasing Times T2, and Dephasing Cross Sections π σ deph 2 for Various Distances from the Nozzle ×10a

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

q j = ½ Q j exp ( i Ω t t ) + c . c .
q j = ½ Q j exp [ i K Ω r ( τ ) i φ ( τ ) ] exp ( i Ω j t ) + c . c = ½ Q j ϕ ( τ ) exp ( i Ω j t ) + c . c ,
E a ( τ ) = c 8 π | E a ( l , t , τ ) | 2 d t .
E a ( l , t , τ ) = j E a j ( l , t , τ ) exp ( i Δ Ω j t ) ,
E a j ( l , t , τ ) = i π ω a j c α q N j Q j ϕ ( τ ) E 3 ( t τ ) l
W a ( τ ) = π 2 ω ¯ a 2 c 2 ( α q ) 2 l 2 | ϕ ( τ ) | 2 S [ c 8 π | j N j Q j × exp ( i Δ Ω j t ) E 3 ( t τ ) | 2 d t ] d S ,
Q j = Q 0 = i ( 1 2 n ¯ ) 4 m Ω α q E 1 ( η ) E 2 * ( η ) d η ,

Metrics