Abstract

We describe a simple imaging technique that can be used to photograph ultrafast processes with time resolution determined by the duration of pump and probe laser pulses. We demonstrate this technique by photographs having 100-fsec time resolution of a silicon surface undergoing melting and evaporation following intense excitation by an ultrashort laser pulse. These photographs resolve the increase in surface reflectivity caused by surface melting both temporally and spatially. Material evaporation from the melted surface further alters the image of the surface by absorbing and scattering the illuminating laser light. Our analysis of this selectively imaged light suggests that the evaporated material emerges as liquid droplets several hundred angstroms in diameter, which atomize in less than a nanosecond.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription