Abstract

Detection of laser-induced fluorescence simultaneously with an optogalvanic signal in a hollow-cathode discharge provides information about the laser–atom interaction that leads to the optogalvanic effect, resulting in a better comprehension of its spectroscopic applications. Because of the high density of levels in heavy atoms, multiphoton transitions can easily occur and complicate the interpretation of saturation effects. The representative case of the 5915-Å uranium transition is reported.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. R. Carlson, J. A. Paisner, E. F. Worden, S. A. Johnson, C. A. May, R. W. Solarz, “Radiative lifetimes, absorption cross sections and the observation of new high-lying odd levels of 238U using multistep laser photoionization,” J. Opt. Soc. Am. 66, 846–853 (1976).
    [CrossRef]
  2. R. A. Keller, R. Engleman, E. F. Zalewski, “Optogalvanic spectroscopy in a uranium hollow cathode discharge,” J. Opt. Soc. Am. 69, 738–742 (1979).
    [CrossRef]
  3. M. Broglia, F. Catoni, P. Zampetti, “Simultaneous detection of optogalvanic and fluorescence signals in a uranium hollow cathode lamp,” presented at the Fourteenth European Group for Atomic Spectroscopy Conference, Liège, Belgium, 1982.
  4. M. Broglia, F. Catoni, P. Zampetti, “Optogalvanic detection of uranium high-lying levels,” J. Phys. (Paris) 44, C7–251 (1983).
    [CrossRef]
  5. P. Blancard, “Contribution à l’étude des états fortement excités de l’atome d’uranium,” Thèse (Université de Paris-Sud, Centre d’Orsay, 1979).
  6. E. Miron, R. David, G. Erez, S. Lavi, L. A. Levin, “Laser spectroscopy of U iusing stepwise excitation and fluorescence detection,” J. Opt. Soc. Am. 69, 256–264 (1979).
    [CrossRef]
  7. J. Blaise, L. J. Radziemski, “Energy levels of neutral atomic uranium (U i),” J. Opt. Soc. Am. 66, 644–659 (1976).
    [CrossRef]
  8. M. Broglia, F. Catoni, P. Zampetti, “Temporal behaviour of the optogalvanic signal in a hollow cathode lamp,” J. Phys. (Paris) 44, C7–479 (1983).
    [CrossRef]

1983 (2)

M. Broglia, F. Catoni, P. Zampetti, “Optogalvanic detection of uranium high-lying levels,” J. Phys. (Paris) 44, C7–251 (1983).
[CrossRef]

M. Broglia, F. Catoni, P. Zampetti, “Temporal behaviour of the optogalvanic signal in a hollow cathode lamp,” J. Phys. (Paris) 44, C7–479 (1983).
[CrossRef]

1979 (2)

1976 (2)

Blaise, J.

Blancard, P.

P. Blancard, “Contribution à l’étude des états fortement excités de l’atome d’uranium,” Thèse (Université de Paris-Sud, Centre d’Orsay, 1979).

Broglia, M.

M. Broglia, F. Catoni, P. Zampetti, “Optogalvanic detection of uranium high-lying levels,” J. Phys. (Paris) 44, C7–251 (1983).
[CrossRef]

M. Broglia, F. Catoni, P. Zampetti, “Temporal behaviour of the optogalvanic signal in a hollow cathode lamp,” J. Phys. (Paris) 44, C7–479 (1983).
[CrossRef]

M. Broglia, F. Catoni, P. Zampetti, “Simultaneous detection of optogalvanic and fluorescence signals in a uranium hollow cathode lamp,” presented at the Fourteenth European Group for Atomic Spectroscopy Conference, Liège, Belgium, 1982.

Carlson, L. R.

Catoni, F.

M. Broglia, F. Catoni, P. Zampetti, “Optogalvanic detection of uranium high-lying levels,” J. Phys. (Paris) 44, C7–251 (1983).
[CrossRef]

M. Broglia, F. Catoni, P. Zampetti, “Temporal behaviour of the optogalvanic signal in a hollow cathode lamp,” J. Phys. (Paris) 44, C7–479 (1983).
[CrossRef]

M. Broglia, F. Catoni, P. Zampetti, “Simultaneous detection of optogalvanic and fluorescence signals in a uranium hollow cathode lamp,” presented at the Fourteenth European Group for Atomic Spectroscopy Conference, Liège, Belgium, 1982.

David, R.

Engleman, R.

Erez, G.

Johnson, S. A.

Keller, R. A.

Lavi, S.

Levin, L. A.

May, C. A.

Miron, E.

Paisner, J. A.

Radziemski, L. J.

Solarz, R. W.

Worden, E. F.

Zalewski, E. F.

Zampetti, P.

M. Broglia, F. Catoni, P. Zampetti, “Optogalvanic detection of uranium high-lying levels,” J. Phys. (Paris) 44, C7–251 (1983).
[CrossRef]

M. Broglia, F. Catoni, P. Zampetti, “Temporal behaviour of the optogalvanic signal in a hollow cathode lamp,” J. Phys. (Paris) 44, C7–479 (1983).
[CrossRef]

M. Broglia, F. Catoni, P. Zampetti, “Simultaneous detection of optogalvanic and fluorescence signals in a uranium hollow cathode lamp,” presented at the Fourteenth European Group for Atomic Spectroscopy Conference, Liège, Belgium, 1982.

J. Opt. Soc. Am. (4)

J. Phys. (Paris) (2)

M. Broglia, F. Catoni, P. Zampetti, “Temporal behaviour of the optogalvanic signal in a hollow cathode lamp,” J. Phys. (Paris) 44, C7–479 (1983).
[CrossRef]

M. Broglia, F. Catoni, P. Zampetti, “Optogalvanic detection of uranium high-lying levels,” J. Phys. (Paris) 44, C7–251 (1983).
[CrossRef]

Other (2)

P. Blancard, “Contribution à l’étude des états fortement excités de l’atome d’uranium,” Thèse (Université de Paris-Sud, Centre d’Orsay, 1979).

M. Broglia, F. Catoni, P. Zampetti, “Simultaneous detection of optogalvanic and fluorescence signals in a uranium hollow cathode lamp,” presented at the Fourteenth European Group for Atomic Spectroscopy Conference, Liège, Belgium, 1982.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for simultaneous OG and LIF measurements.

Fig. 2
Fig. 2

OG signals versus laser intensities for some neon and uranium transitions. The uranium 5915-Å data have been scaled by multiplying them by 0.5. The horizontal full scale corresponds to about 5 MW/cm2.

Fig. 3
Fig. 3

Laser scans of the 5915-Å uranium absorption line at different laser intensities. P0 = 10 kW/cm2.

Fig. 4
Fig. 4

Sketch of the uranium energy levels and transitions in the 5915-Å absorption profile.

Fig. 5
Fig. 5

Simultaneous detection of OG and LIF signals during the laser scan. Fluorescence wavelengths: (a) 760 nm, (b) 375 nm, (c) 428 nm, (d) 494 nm.

Fig. 6
Fig. 6

OG and LIF signals versus laser intensities. Fluorescence wavelengths: (a) 760 nm; (b) 375 nm. Fluorescence data are not to scale.

Fig. 7
Fig. 7

OG detection of the 33 801-cm−1 level by excitation from two dye lasers. Laser I: 0 cm−1 → 16 900 cm−1 (fixed). Laser II: 16 900 cm−1 → 33 801 cm−1 (scanned), (a) Laser II only, (b) laser I and laser II.

Metrics