Abstract

The structure of the line λ=613.4nm(6p32P3/2°7s2P3/2) in Bi i has been completely analyzed by means of a Fourier-transform spectrometer. From the intensity calculations it is seen that only 9 components of the possible 10 can be observed. The A and B constants are also calculated and compared with earlier results. The values of the levels 7s 2P3/2 and 6p32P3/2° have been recalculated to be 49 460.91 ±0.01 and 33 164.82 ±0.01 cm−1, respectively.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Goudsmit, E. Back, “Feinstructuren und Termordnung des Wismutspektrums,” Z. Phys. 43, 321–334 (1927).
    [CrossRef]
  2. E. U. Mintz, “A test of the interval rule in the 2D3/2state of bismuth I,” J. Franklin Inst. 222, 613–623 (1936).
    [CrossRef]
  3. H. Schüler, T. Schmidt, “Das elektrische Quadrupolmoment des 20983Bi-Kerns,” Z. Phys. 99, 717–728 (1936).
    [CrossRef]
  4. S. Mrozowski, “Arc spectrum of bismuth Bi i,” Phys. Rev. 62, 526–533 (1942).
    [CrossRef]
  5. R. Chuckrow, P. C. Magnante, H. H. Stroke, “Hyperfine structure of 209bismuth in the 6p2(3P0)7s4 P1/2state,” J. Opt. Soc. Am. 58, 922–923 (1968).
    [CrossRef]
  6. L. O. Dicke, F. M. Kelly, “Hyperfine structure in the ground configuration of bismuth,” Can. J. Phys. 45, 2249–2251 (1967).
    [CrossRef]
  7. S. George, R. A. Klingberg, “Interferometric measurements of the hyperfine structure in bismuth,” J. Opt. Soc. Am. 60, 869–870 (1970).
    [CrossRef]
  8. J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, G. Michel, “Spectroscopie de Fourier avec transformation d’un million de points,” Nouv. Rev. Opt. Appl. 1, 3–22 (1970).
    [CrossRef]
  9. J. Dembczynski, J. Frakowiak, “Hyperfine structure in immediate coupling of the first excited electron configuration 6p2 7s of 20989Bi (I= 9/2),” Acta Phys. Pol. A48, 139–155 (1975).
  10. R. J. Hull, G. O. Brink, “Hyperfine structure of Bi209,” Phys. Rev. A 1, 685–693 (1970).
    [CrossRef]
  11. J. Heldt, “Hyperfine structure of the multipole lines of bismuth (Bi i),” J. Opt. Soc. Am. 58, 1516–1519 (1968).
    [CrossRef]
  12. A. Lurio, D. Landman, La Structure Hyperfine Magnétique des Atomes et des Molecules (Editions du Centre National de la Recherche Scientifique, Paris, 1967), p. 211.
  13. D. A. Landman, A. Lurio, “Hyperfine structure of the 6p3configuration of Bi209,” Phys. Rev. A 1, 1330–1338 (1970).
    [CrossRef]

1975 (1)

J. Dembczynski, J. Frakowiak, “Hyperfine structure in immediate coupling of the first excited electron configuration 6p2 7s of 20989Bi (I= 9/2),” Acta Phys. Pol. A48, 139–155 (1975).

1970 (4)

R. J. Hull, G. O. Brink, “Hyperfine structure of Bi209,” Phys. Rev. A 1, 685–693 (1970).
[CrossRef]

D. A. Landman, A. Lurio, “Hyperfine structure of the 6p3configuration of Bi209,” Phys. Rev. A 1, 1330–1338 (1970).
[CrossRef]

J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, G. Michel, “Spectroscopie de Fourier avec transformation d’un million de points,” Nouv. Rev. Opt. Appl. 1, 3–22 (1970).
[CrossRef]

S. George, R. A. Klingberg, “Interferometric measurements of the hyperfine structure in bismuth,” J. Opt. Soc. Am. 60, 869–870 (1970).
[CrossRef]

1968 (2)

1967 (1)

L. O. Dicke, F. M. Kelly, “Hyperfine structure in the ground configuration of bismuth,” Can. J. Phys. 45, 2249–2251 (1967).
[CrossRef]

1942 (1)

S. Mrozowski, “Arc spectrum of bismuth Bi i,” Phys. Rev. 62, 526–533 (1942).
[CrossRef]

1936 (2)

E. U. Mintz, “A test of the interval rule in the 2D3/2state of bismuth I,” J. Franklin Inst. 222, 613–623 (1936).
[CrossRef]

H. Schüler, T. Schmidt, “Das elektrische Quadrupolmoment des 20983Bi-Kerns,” Z. Phys. 99, 717–728 (1936).
[CrossRef]

1927 (1)

S. Goudsmit, E. Back, “Feinstructuren und Termordnung des Wismutspektrums,” Z. Phys. 43, 321–334 (1927).
[CrossRef]

Back, E.

S. Goudsmit, E. Back, “Feinstructuren und Termordnung des Wismutspektrums,” Z. Phys. 43, 321–334 (1927).
[CrossRef]

Brink, G. O.

R. J. Hull, G. O. Brink, “Hyperfine structure of Bi209,” Phys. Rev. A 1, 685–693 (1970).
[CrossRef]

Chuckrow, R.

Connes, J.

J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, G. Michel, “Spectroscopie de Fourier avec transformation d’un million de points,” Nouv. Rev. Opt. Appl. 1, 3–22 (1970).
[CrossRef]

Connes, P.

J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, G. Michel, “Spectroscopie de Fourier avec transformation d’un million de points,” Nouv. Rev. Opt. Appl. 1, 3–22 (1970).
[CrossRef]

Delouis, H.

J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, G. Michel, “Spectroscopie de Fourier avec transformation d’un million de points,” Nouv. Rev. Opt. Appl. 1, 3–22 (1970).
[CrossRef]

Dembczynski, J.

J. Dembczynski, J. Frakowiak, “Hyperfine structure in immediate coupling of the first excited electron configuration 6p2 7s of 20989Bi (I= 9/2),” Acta Phys. Pol. A48, 139–155 (1975).

Dicke, L. O.

L. O. Dicke, F. M. Kelly, “Hyperfine structure in the ground configuration of bismuth,” Can. J. Phys. 45, 2249–2251 (1967).
[CrossRef]

Frakowiak, J.

J. Dembczynski, J. Frakowiak, “Hyperfine structure in immediate coupling of the first excited electron configuration 6p2 7s of 20989Bi (I= 9/2),” Acta Phys. Pol. A48, 139–155 (1975).

George, S.

Goudsmit, S.

S. Goudsmit, E. Back, “Feinstructuren und Termordnung des Wismutspektrums,” Z. Phys. 43, 321–334 (1927).
[CrossRef]

Guelachvili, G.

J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, G. Michel, “Spectroscopie de Fourier avec transformation d’un million de points,” Nouv. Rev. Opt. Appl. 1, 3–22 (1970).
[CrossRef]

Heldt, J.

Hull, R. J.

R. J. Hull, G. O. Brink, “Hyperfine structure of Bi209,” Phys. Rev. A 1, 685–693 (1970).
[CrossRef]

Kelly, F. M.

L. O. Dicke, F. M. Kelly, “Hyperfine structure in the ground configuration of bismuth,” Can. J. Phys. 45, 2249–2251 (1967).
[CrossRef]

Klingberg, R. A.

Landman, D.

A. Lurio, D. Landman, La Structure Hyperfine Magnétique des Atomes et des Molecules (Editions du Centre National de la Recherche Scientifique, Paris, 1967), p. 211.

Landman, D. A.

D. A. Landman, A. Lurio, “Hyperfine structure of the 6p3configuration of Bi209,” Phys. Rev. A 1, 1330–1338 (1970).
[CrossRef]

Lurio, A.

D. A. Landman, A. Lurio, “Hyperfine structure of the 6p3configuration of Bi209,” Phys. Rev. A 1, 1330–1338 (1970).
[CrossRef]

A. Lurio, D. Landman, La Structure Hyperfine Magnétique des Atomes et des Molecules (Editions du Centre National de la Recherche Scientifique, Paris, 1967), p. 211.

Magnante, P. C.

Maillard, J. P.

J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, G. Michel, “Spectroscopie de Fourier avec transformation d’un million de points,” Nouv. Rev. Opt. Appl. 1, 3–22 (1970).
[CrossRef]

Michel, G.

J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, G. Michel, “Spectroscopie de Fourier avec transformation d’un million de points,” Nouv. Rev. Opt. Appl. 1, 3–22 (1970).
[CrossRef]

Mintz, E. U.

E. U. Mintz, “A test of the interval rule in the 2D3/2state of bismuth I,” J. Franklin Inst. 222, 613–623 (1936).
[CrossRef]

Mrozowski, S.

S. Mrozowski, “Arc spectrum of bismuth Bi i,” Phys. Rev. 62, 526–533 (1942).
[CrossRef]

Schmidt, T.

H. Schüler, T. Schmidt, “Das elektrische Quadrupolmoment des 20983Bi-Kerns,” Z. Phys. 99, 717–728 (1936).
[CrossRef]

Schüler, H.

H. Schüler, T. Schmidt, “Das elektrische Quadrupolmoment des 20983Bi-Kerns,” Z. Phys. 99, 717–728 (1936).
[CrossRef]

Stroke, H. H.

Acta Phys. Pol. (1)

J. Dembczynski, J. Frakowiak, “Hyperfine structure in immediate coupling of the first excited electron configuration 6p2 7s of 20989Bi (I= 9/2),” Acta Phys. Pol. A48, 139–155 (1975).

Can. J. Phys. (1)

L. O. Dicke, F. M. Kelly, “Hyperfine structure in the ground configuration of bismuth,” Can. J. Phys. 45, 2249–2251 (1967).
[CrossRef]

J. Franklin Inst. (1)

E. U. Mintz, “A test of the interval rule in the 2D3/2state of bismuth I,” J. Franklin Inst. 222, 613–623 (1936).
[CrossRef]

J. Opt. Soc. Am. (3)

Nouv. Rev. Opt. Appl. (1)

J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, G. Michel, “Spectroscopie de Fourier avec transformation d’un million de points,” Nouv. Rev. Opt. Appl. 1, 3–22 (1970).
[CrossRef]

Phys. Rev. (1)

S. Mrozowski, “Arc spectrum of bismuth Bi i,” Phys. Rev. 62, 526–533 (1942).
[CrossRef]

Phys. Rev. A (2)

R. J. Hull, G. O. Brink, “Hyperfine structure of Bi209,” Phys. Rev. A 1, 685–693 (1970).
[CrossRef]

D. A. Landman, A. Lurio, “Hyperfine structure of the 6p3configuration of Bi209,” Phys. Rev. A 1, 1330–1338 (1970).
[CrossRef]

Z. Phys. (2)

S. Goudsmit, E. Back, “Feinstructuren und Termordnung des Wismutspektrums,” Z. Phys. 43, 321–334 (1927).
[CrossRef]

H. Schüler, T. Schmidt, “Das elektrische Quadrupolmoment des 20983Bi-Kerns,” Z. Phys. 99, 717–728 (1936).
[CrossRef]

Other (1)

A. Lurio, D. Landman, La Structure Hyperfine Magnétique des Atomes et des Molecules (Editions du Centre National de la Recherche Scientifique, Paris, 1967), p. 211.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Observed hyperfine-structure transitions in the 613.4-nm line. The dashed line indicates the component F′ = 4 to F = 4 that is too weak to be seen (see Table 1).

Fig. 2
Fig. 2

Actual plot of the line λ = 613.4 nm. The number 2 indicates the second component, which lies very close to the first one.

Tables (3)

Tables Icon

Table 1 Measured Hyperfine-Structure Components of the Line λ = 613.4 nm (16296.09 cm−1)

Tables Icon

Table 2 Hyperfine Structures (in millikaysers)a

Tables Icon

Table 3 Hyperfine Interaction Constants A and B (in millikaysers)a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

6 p 3 2 P 3 / 2 °
6 p 3 2 P 3 / 2 °

Metrics