Abstract

The dynamics of pulsed line-tunable NH3 lasers are investigated by measuring small-signal gain as a function of NH3 transition, NH3 concentration, and pump intensity. Under typical experimental conditions, it is shown that the rotational populations in NH3 thermalize and that consequently the relative gain distribution can be described by a ratio of vibrational populations. Peak gains of 20% cm−1 are reported for mixtures of 4% NH3 in N2 pumped by the 9R(30) CO2 laser line. Heating that is due to increased pump absorption reduces the gain in mixtures of higher NH3 concentrations. The experimental results are in good agreement with the predictions of a rate-equation model, which can be applied to optimize line-tunable NH3 lasers.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription