Abstract

Saturation characteristics, polarization, and wavelength dependences of the stimulated Raman gain in polarization-preserving fibers have been studied to construct an active transmission line. In a backward-pump configuration, a Raman gain coefficient of 1.1 × 10−11 cm/W and a gain as high as 25 dB have been attained with a combination of a 1.34-μm pump and a 1.42-μm signal pulse, where the pump power is 35 W and the interaction length is 100 m. A 3-dB Raman gain at 1.51 μm has also been obtained under the same conditions. It was also found that there is a nonlinear polarization mode coupling that couples the vertical axis to the pump axis. This type of nonlinear coupling seems to be large when the linear mode-coupling coefficient of the fiber is large.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11, 2489–2494 (1972).
    [CrossRef] [PubMed]
  2. R. H. Stolen, E. P. Ippen, “Raman gain in glass optical fiber waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
    [CrossRef]
  3. C. Lin, R. H. Stolen, “Backward Raman amplification and pulse steeping in silica fiber,” Appl. Phys. Lett. 29, 428–430 (1976).
    [CrossRef]
  4. R. H. Stolen, “Phase-matched-stimulated four-photon-mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. QE-11, 100–103 (1975).
    [CrossRef]
  5. K. Washio, K. Aoki, H. Nomura, “Amplification and frequency conversion of InGaAsP laser light in optical fiber pumped in the low-dispersion region at 1.3 μ m,” in Digest of the Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1982).
  6. S. Kishida, Y. Aoki, H. Honmou, K. Washio, M. Sugimoto, “An active fiber for Raman amplification of picosecond light pulses,” presented at the International Conference on Integrated Optics and Optical Fiber Communication, Tokyo, Japan, 1983.
  7. M. Nakazawa, M. Tokuda, Y. Negishi, N. Uchida, “Active transmission line: light amplification by backward-stimulated Raman scattering in polarization-maintaining optical fiber,” J. Opt. Soc. Am. B 1, 80–85 (1984).
    [CrossRef]
  8. A. Hasegawa, Y. Kodama, “Signal transmission by optical solitons in monomode fiber,”Proc. IEEE 69, 1145–1150 (1981).
    [CrossRef]
  9. A. Hasegawa, “Signal transmission by optical solitons in a glass fiber—IV: Use of the stimulated Raman process,” Opt. Lett. 8, 650–652 (1983).
    [CrossRef] [PubMed]
  10. T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, “Low-loss single polarisation fibres with asymmetrical strain birefringence,” Electron. Lett. 17, 530–531 (1981).
    [CrossRef]
  11. R. H. Stolen, “Nonlinearity in fiber transmission,” Proc. IEEE 68, 1232–1236 (1980).
    [CrossRef]
  12. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974), Chap. 5.
  13. I. P. Kaminow, “Polarization in optical fibers,” IEEE J. Quantum Electron. QE-17, 15–27 (1981).
    [CrossRef]

1984 (1)

1983 (1)

1981 (3)

I. P. Kaminow, “Polarization in optical fibers,” IEEE J. Quantum Electron. QE-17, 15–27 (1981).
[CrossRef]

A. Hasegawa, Y. Kodama, “Signal transmission by optical solitons in monomode fiber,”Proc. IEEE 69, 1145–1150 (1981).
[CrossRef]

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, “Low-loss single polarisation fibres with asymmetrical strain birefringence,” Electron. Lett. 17, 530–531 (1981).
[CrossRef]

1980 (1)

R. H. Stolen, “Nonlinearity in fiber transmission,” Proc. IEEE 68, 1232–1236 (1980).
[CrossRef]

1976 (1)

C. Lin, R. H. Stolen, “Backward Raman amplification and pulse steeping in silica fiber,” Appl. Phys. Lett. 29, 428–430 (1976).
[CrossRef]

1975 (1)

R. H. Stolen, “Phase-matched-stimulated four-photon-mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. QE-11, 100–103 (1975).
[CrossRef]

1973 (1)

R. H. Stolen, E. P. Ippen, “Raman gain in glass optical fiber waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
[CrossRef]

1972 (1)

Aoki, K.

K. Washio, K. Aoki, H. Nomura, “Amplification and frequency conversion of InGaAsP laser light in optical fiber pumped in the low-dispersion region at 1.3 μ m,” in Digest of the Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1982).

Aoki, Y.

S. Kishida, Y. Aoki, H. Honmou, K. Washio, M. Sugimoto, “An active fiber for Raman amplification of picosecond light pulses,” presented at the International Conference on Integrated Optics and Optical Fiber Communication, Tokyo, Japan, 1983.

Edahiro, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, “Low-loss single polarisation fibres with asymmetrical strain birefringence,” Electron. Lett. 17, 530–531 (1981).
[CrossRef]

Hasegawa, A.

A. Hasegawa, “Signal transmission by optical solitons in a glass fiber—IV: Use of the stimulated Raman process,” Opt. Lett. 8, 650–652 (1983).
[CrossRef] [PubMed]

A. Hasegawa, Y. Kodama, “Signal transmission by optical solitons in monomode fiber,”Proc. IEEE 69, 1145–1150 (1981).
[CrossRef]

Honmou, H.

S. Kishida, Y. Aoki, H. Honmou, K. Washio, M. Sugimoto, “An active fiber for Raman amplification of picosecond light pulses,” presented at the International Conference on Integrated Optics and Optical Fiber Communication, Tokyo, Japan, 1983.

Hosaka, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, “Low-loss single polarisation fibres with asymmetrical strain birefringence,” Electron. Lett. 17, 530–531 (1981).
[CrossRef]

Ippen, E. P.

R. H. Stolen, E. P. Ippen, “Raman gain in glass optical fiber waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
[CrossRef]

Kaminow, I. P.

I. P. Kaminow, “Polarization in optical fibers,” IEEE J. Quantum Electron. QE-17, 15–27 (1981).
[CrossRef]

Kishida, S.

S. Kishida, Y. Aoki, H. Honmou, K. Washio, M. Sugimoto, “An active fiber for Raman amplification of picosecond light pulses,” presented at the International Conference on Integrated Optics and Optical Fiber Communication, Tokyo, Japan, 1983.

Kodama, Y.

A. Hasegawa, Y. Kodama, “Signal transmission by optical solitons in monomode fiber,”Proc. IEEE 69, 1145–1150 (1981).
[CrossRef]

Lin, C.

C. Lin, R. H. Stolen, “Backward Raman amplification and pulse steeping in silica fiber,” Appl. Phys. Lett. 29, 428–430 (1976).
[CrossRef]

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974), Chap. 5.

Miya, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, “Low-loss single polarisation fibres with asymmetrical strain birefringence,” Electron. Lett. 17, 530–531 (1981).
[CrossRef]

Nakazawa, M.

Negishi, Y.

Nomura, H.

K. Washio, K. Aoki, H. Nomura, “Amplification and frequency conversion of InGaAsP laser light in optical fiber pumped in the low-dispersion region at 1.3 μ m,” in Digest of the Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1982).

Okamoto, K.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, “Low-loss single polarisation fibres with asymmetrical strain birefringence,” Electron. Lett. 17, 530–531 (1981).
[CrossRef]

Sasaki, Y.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, “Low-loss single polarisation fibres with asymmetrical strain birefringence,” Electron. Lett. 17, 530–531 (1981).
[CrossRef]

Smith, R. G.

Stolen, R. H.

R. H. Stolen, “Nonlinearity in fiber transmission,” Proc. IEEE 68, 1232–1236 (1980).
[CrossRef]

C. Lin, R. H. Stolen, “Backward Raman amplification and pulse steeping in silica fiber,” Appl. Phys. Lett. 29, 428–430 (1976).
[CrossRef]

R. H. Stolen, “Phase-matched-stimulated four-photon-mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. QE-11, 100–103 (1975).
[CrossRef]

R. H. Stolen, E. P. Ippen, “Raman gain in glass optical fiber waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
[CrossRef]

Sugimoto, M.

S. Kishida, Y. Aoki, H. Honmou, K. Washio, M. Sugimoto, “An active fiber for Raman amplification of picosecond light pulses,” presented at the International Conference on Integrated Optics and Optical Fiber Communication, Tokyo, Japan, 1983.

Tokuda, M.

Uchida, N.

Washio, K.

K. Washio, K. Aoki, H. Nomura, “Amplification and frequency conversion of InGaAsP laser light in optical fiber pumped in the low-dispersion region at 1.3 μ m,” in Digest of the Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1982).

S. Kishida, Y. Aoki, H. Honmou, K. Washio, M. Sugimoto, “An active fiber for Raman amplification of picosecond light pulses,” presented at the International Conference on Integrated Optics and Optical Fiber Communication, Tokyo, Japan, 1983.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

R. H. Stolen, E. P. Ippen, “Raman gain in glass optical fiber waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
[CrossRef]

C. Lin, R. H. Stolen, “Backward Raman amplification and pulse steeping in silica fiber,” Appl. Phys. Lett. 29, 428–430 (1976).
[CrossRef]

Electron. Lett. (1)

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, “Low-loss single polarisation fibres with asymmetrical strain birefringence,” Electron. Lett. 17, 530–531 (1981).
[CrossRef]

IEEE J. Quantum Electron. (2)

I. P. Kaminow, “Polarization in optical fibers,” IEEE J. Quantum Electron. QE-17, 15–27 (1981).
[CrossRef]

R. H. Stolen, “Phase-matched-stimulated four-photon-mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. QE-11, 100–103 (1975).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Proc. IEEE (2)

A. Hasegawa, Y. Kodama, “Signal transmission by optical solitons in monomode fiber,”Proc. IEEE 69, 1145–1150 (1981).
[CrossRef]

R. H. Stolen, “Nonlinearity in fiber transmission,” Proc. IEEE 68, 1232–1236 (1980).
[CrossRef]

Other (3)

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974), Chap. 5.

K. Washio, K. Aoki, H. Nomura, “Amplification and frequency conversion of InGaAsP laser light in optical fiber pumped in the low-dispersion region at 1.3 μ m,” in Digest of the Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1982).

S. Kishida, Y. Aoki, H. Honmou, K. Washio, M. Sugimoto, “An active fiber for Raman amplification of picosecond light pulses,” presented at the International Conference on Integrated Optics and Optical Fiber Communication, Tokyo, Japan, 1983.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup for Raman amplification. The pump is 1.34-μm Q-switched YAG laser and the test fiber is a PANDA-type polarization-preserving fiber. ATT, optical attenuator; P1–P3, polarizers; F, bandpass fiber to remove the pump beam; B.S., beam splitter; M, monochromator.

Fig. 2
Fig. 2

(a) Block diagram of a fiber Raman laser to generate the signal pulse and (b) its output spectrum at 1.423 μm.

Fig. 3
Fig. 3

Polarization dependences of FSRS in polarization-preserving fibers, (a) and (b) fibers B and C, respectively; pump power for each is 40 W.

Fig. 4
Fig. 4

BSRS for test fiber B. The pump and the first Stokes are shown in (a), and the first Stokes is further resolved in (b).

Fig. 5
Fig. 5

Raman-gain change caused by time delay in synchronization between the pump and the signal pulses. The pump power is 35 W, and the signal wavelength is 1.423 μm.

Fig. 6
Fig. 6

Changes in the BSRS spectrum caused by increasing the pump power, a, The case without the signal pulse, where the pump power is 30 W; b, c, d, e, and f, pump powers of 14, 30, 40, 54, and 62 W, respectively. The signal wavelength is 1.423 μm.

Fig. 7
Fig. 7

Changes in the BSRS spectrum because of wavelength detunings for the signal, a and b refer to wavelength detunings toward a short-wavelength region, and d and e toward a long-wavelength region; c corresponds to Raman amplification at the first-Stokes center.

Fig. 8
Fig. 8

Pump-power dependences of backward Raman gain. The filled circles, the filled rectangles, the open rectangles, and the open circles correspond to wavelengths of 1.423 (first Stokes), 1.410, 1.431, and 1.514 μm (second Stokes), respectively.

Fig. 9
Fig. 9

Polarization dependence of the BSRS gain for fiber A. The signal wavelength is 1.432 μm, and curves a, b, and c correspond to pump powers of 30, 36, and 38 W, respectively. ∥ denotes that polarization directions between the pump and the signal pulses are the same, and ⊥ indicates that they are mutually orthogonal.

Fig. 10
Fig. 10

Polarization dependence of the BSRS gain for fiber B. Curves a, b, and c correspond to pump powers of 34, 37, and 53 W, respectively.

Fig. 11
Fig. 11

Polarization dependence of the BSRS gain for fiber C. The pump power is 50 W.

Tables (1)

Tables Icon

Table 1 Fiber Parameters of Three Test Polarization-Preserving Fibers

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

G = exp ( g P L / A ) ,
G = exp ( g P L / A ) ,
P ( z ) = ( P s / 2 ) [ 1 + cos 2 θ exp ( 2 h z ) ] exp ( α z ) ,
P ( z ) = ( P s / 2 ) [ 1 cos 2 θ exp ( 2 h z ) ] exp ( α z ) .
P out = G P + G P = G P s 2 [ 1 + cos 2 θ exp ( 2 h z ) ] exp ( α l ) + G P s 2 [ 1 cos 2 θ exp ( 2 h z ) ] exp ( α l ) ,
G t ( θ ) = ( G / 2 ) [ 1 + cos 2 θ exp ( 2 h z ) ] + ( G / 2 ) [ 1 cos 2 θ exp ( 2 h z ) ] .
G t ( θ ) = ( G 1 ) cos 2 θ + 1 .
G t ( 0 ° ) G ( 1 h z ) ,
G t ( 90 ° ) G h z + G .

Metrics