Abstract

We report the generation of ultraviolet (253.7-nm) sub-Poisson light from Hg vapor excited by inelastic collisions with a space-charge-limited (quiet) electron beam. This first stationary sub-Poisson light source is only weakly so, with a Fano factor that is between two and three standard deviations below that for Poisson light. This is principally because of optical losses in the experimental apparatus. There does not appear to be any fundamental limit that impedes the techniques from being used to produce an intense cw light source that is also arbitrarily sub-Poisson.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529–2539 (1963).
    [Crossref]
  2. R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766–2788 (1963).
    [Crossref]
  3. B. R. Mollow and R. J. Glauber, “Quantum theory of parametric amplification. I,” Phys. Rev. 160, 1076–1096 (1967).
    [Crossref]
  4. B. R. Mollow and R. J. Glauber, “Quantum theory of parametric amplification. II,” Phys. Rev. 160, 1097–1108 (1967).
    [Crossref]
  5. D. Stoler, “Equivalence classes of minimum uncertainty packets,” Phys. Rev. D 1, 3217–3219 (1970).
    [Crossref]
  6. D. Stoler, “Photon antibunching and possible ways to observe it,” Phys. Rev. Lett. 33, 1397–1400 (1974).
    [Crossref]
  7. A number of review papers on this topic have appeared recently. For example, see R. Loudon, “Non-classical effects in the statistical properties of light,” Rep. Prog. Phys.43, 913–949 (1980);H. Paul, “Photon antibunching,” Rev. Mod. Phys. 54, 1061–1102 (1982).See also J. Peřina, Coherence of Light, 2nd ed. (Reidel, Dordrecht, The Netherlands, 1984);Quantum Statistics of Linear and Nonlinear Optical Phenomena (Reidel, Dordrecht, The Netherlands, 1984).
    [Crossref]
  8. M. C. Teich, B. E. A. Saleh, and J. Peřina, “Role of primary excitation statistics in the generation of antibunched and sub-Poisson light,” J. Opt. Soc. Am. B 1, 366–389 (1984).
    [Crossref]
  9. M. C. Teich, B. E. A. Saleh, and D. Stoler, “Antibunching in the Franck–Hertz experiment,” Opt. Commun. 46, 244–248 (1983).
    [Crossref]
  10. O. W. Richardson and C. B. Bazzoni, “Experiments with electron currents in different gases. (1) Mercury vapour,” Phil. Mag. Ser. 6, 32, 426–440 (1916).
  11. J. Franck and P. Jordan, “Anregung von Quantenspruengen durch Stoesse,” in Struktur der Materie in Einzeldarstellungen, III (Springer-Verlag, Berlin, 1926).
  12. B. J. Thompson, D. O. North, and W. A. Harris, “Fluctuations in space-charge-limited currents at moderately high frequencies,” RCA Rev. 4, 269–285, 441–472 (1940);RCA Rev. 5, 106–124, 244–260 (1940);RCA Rev. 5, 371–388, 505–524 (1941);RCA Rev. 6, 114–124 (1941).
  13. J. Franck and G. Hertz, “Ueber Zusammenstoesse zwischen Elektronen und den Molekuelen des Quecksilberdampfes und die Ionisierungsspannung desselben,” Ver. Dtsch. Phys. Ges. 16, 457–467 (1914).
  14. J. Franck and G. Hertz, “Ueber die Erregung der Quecksilber-resonanzlinie 253,6 μμ durch Elektronenstoesse,” Ver. Dtsch. Phys. Ges. 16, 512–517 (1914).
  15. B. E. A. Saleh, D. Stoler, and M. C. Teich, “Coherence and photon statistics for optical fields generated by Poisson random emissions,” Phys. Rev. A 27, 360–374 (1983).
    [Crossref]
  16. M. C. Teich and B. E. A. Saleh, “Effects of random deletion and additive noise on bunched and antibunched photon-counting statistics,” Opt. Lett. 7, 365–367 (1982).In this reference, the definition of antibunching was taken to be identical with that of sub-Poisson. The definition of antibunching used in the current work [g(2)(0) < 1] is in accord with the more usual usage of the term. The relationship between antibunching and sub-Poisson behavior is elucidated in Ref. 9.
    [Crossref] [PubMed]
  17. J. Peřina, B. E. A. Saleh, and M. C. Teich, “Independent photon deletions from quantized boson fields: the quantum analog of the Burgess variance theorem,” Opt. Commun. 48, 212–214 (1983).
    [Crossref]
  18. H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39, 691–695 (1977).
    [Crossref]
  19. H. J. Kimble, M. Dagenais, and L. Mandel, “Multiatom and transit-time effects on photon-correlation measurements in resonance fluorescence,” Phys. Rev. A 18, 201–207 (1978).
    [Crossref]
  20. M. Dagenais and L. Mandel, “Investigation of two-time correlations in photon emissions from a single atom,” Phys. Rev. A 18, 2217–2228 (1978).
    [Crossref]
  21. J. D. Cresser, J. Haeger, G. Leuchs, M. Rateike, and H. Walther, “Resonance fluorescence of atoms in strong monochromatic laser fields,” in Dissipative Systems in Quantum Optics, Vol. 27 of Topics in Current Physics, R. Bonifacio, ed. (Springer-Verlag, Berlin, 1982), pp. 21–59.
    [Crossref]
  22. R. Short and L. Mandel, “Observation of sub-Poissonian photon statistics,” Phys. Rev. Lett. 51, 384–387 (1983).
    [Crossref]
  23. L. Mandel, “Photon interference and correlation effects produced by independent quantum sources,” Phys. Rev. A 28, 929–943 (1983).
    [Crossref]
  24. A. Aspect, P. Grangier, and G. Roger, “Experimental realization of Einstein–Podolsky–Rosen–Bohm gedankenexperiment: a new violation of Bell’s inequalities,” Phys. Rev. Lett. 49, 91–94 (1982).
    [Crossref]
  25. A configuration for generating such light, based on two-photon cascaded emissions, is presented in B.E.A. Saleh and M. C. Teich, “Sub-Poisson light generation by selective deletion from cascaded emissions,” Opt. Commun. (to be published).
  26. It is interesting to note that the violation of Bell’s inequalities was recently shown by Reid and Walls to be associated with nonclassical light (i.e., the nonexistence of a well-behaved positive Glauber P function).See M. D. Reid and D. F. Walls, “Violation of Bell’s inequalities in quantum optics,” Phys. Rev. Lett. 53, 955–957 (1984).
    [Crossref]
  27. M. C. Teich, P. R. Prucnal, G. Vannucci, M. E. Breton, and W. J. McGill, “Multiplication noise in the human visual system at threshold: 3. The role of non-Poisson quantum fluctuations,” Biol. Cybern. 44, 157–165 (1982).
    [Crossref]
  28. M. C. Teich, B. E. A. Saleh, and T. Larchuk, “Observation of sub-Poisson Franck–Hertz light at 253.7 nm,” in Digest of the Thirteenth International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1984), postdeadline paper PD-A6.
  29. D. R. Cox, Renewal Theory (Methuen, London, 1962).
  30. P. R. Prucnal and M. C. Teich, “Refractory effects in neural counting processes with exponentially decaying rates,” IEEE Trans. Syst. Man Cybern. SMC-13, 1028–1033 (1983).
    [Crossref]
  31. J. N. Dodd, W. J. Sandle, and O. M. Williams, “A study of the transients in resonance fluorescence following a step or a pulse of magnetic field,” J. Phys. B 3, 256–270 (1970).
    [Crossref]
  32. M. Stock, R. E. Drullinger, and M. M. Hessel, “Comparison between electron beam and optically produced mercury excimer fluorescence,” Chem. Phys. Lett. 45, 592–594 (1977).
    [Crossref]
  33. W. Buhr, W. Klein, and S. Pressler, “Electron impact excitation and UV emission in the Franck–Hertz experiment,” Am. J. Phys. 51, 810–814 (1983).
    [Crossref]
  34. M. C. Teich, J. M. Schroeer, and G. J. Wolga, “Double-quantum photoelectric emission from sodium metal,” Phys. Rev. Lett. 13, 611–614 (1964).
    [Crossref]

1984 (2)

M. C. Teich, B. E. A. Saleh, and J. Peřina, “Role of primary excitation statistics in the generation of antibunched and sub-Poisson light,” J. Opt. Soc. Am. B 1, 366–389 (1984).
[Crossref]

It is interesting to note that the violation of Bell’s inequalities was recently shown by Reid and Walls to be associated with nonclassical light (i.e., the nonexistence of a well-behaved positive Glauber P function).See M. D. Reid and D. F. Walls, “Violation of Bell’s inequalities in quantum optics,” Phys. Rev. Lett. 53, 955–957 (1984).
[Crossref]

1983 (7)

R. Short and L. Mandel, “Observation of sub-Poissonian photon statistics,” Phys. Rev. Lett. 51, 384–387 (1983).
[Crossref]

L. Mandel, “Photon interference and correlation effects produced by independent quantum sources,” Phys. Rev. A 28, 929–943 (1983).
[Crossref]

P. R. Prucnal and M. C. Teich, “Refractory effects in neural counting processes with exponentially decaying rates,” IEEE Trans. Syst. Man Cybern. SMC-13, 1028–1033 (1983).
[Crossref]

W. Buhr, W. Klein, and S. Pressler, “Electron impact excitation and UV emission in the Franck–Hertz experiment,” Am. J. Phys. 51, 810–814 (1983).
[Crossref]

M. C. Teich, B. E. A. Saleh, and D. Stoler, “Antibunching in the Franck–Hertz experiment,” Opt. Commun. 46, 244–248 (1983).
[Crossref]

B. E. A. Saleh, D. Stoler, and M. C. Teich, “Coherence and photon statistics for optical fields generated by Poisson random emissions,” Phys. Rev. A 27, 360–374 (1983).
[Crossref]

J. Peřina, B. E. A. Saleh, and M. C. Teich, “Independent photon deletions from quantized boson fields: the quantum analog of the Burgess variance theorem,” Opt. Commun. 48, 212–214 (1983).
[Crossref]

1982 (3)

M. C. Teich and B. E. A. Saleh, “Effects of random deletion and additive noise on bunched and antibunched photon-counting statistics,” Opt. Lett. 7, 365–367 (1982).In this reference, the definition of antibunching was taken to be identical with that of sub-Poisson. The definition of antibunching used in the current work [g(2)(0) < 1] is in accord with the more usual usage of the term. The relationship between antibunching and sub-Poisson behavior is elucidated in Ref. 9.
[Crossref] [PubMed]

A. Aspect, P. Grangier, and G. Roger, “Experimental realization of Einstein–Podolsky–Rosen–Bohm gedankenexperiment: a new violation of Bell’s inequalities,” Phys. Rev. Lett. 49, 91–94 (1982).
[Crossref]

M. C. Teich, P. R. Prucnal, G. Vannucci, M. E. Breton, and W. J. McGill, “Multiplication noise in the human visual system at threshold: 3. The role of non-Poisson quantum fluctuations,” Biol. Cybern. 44, 157–165 (1982).
[Crossref]

1978 (2)

H. J. Kimble, M. Dagenais, and L. Mandel, “Multiatom and transit-time effects on photon-correlation measurements in resonance fluorescence,” Phys. Rev. A 18, 201–207 (1978).
[Crossref]

M. Dagenais and L. Mandel, “Investigation of two-time correlations in photon emissions from a single atom,” Phys. Rev. A 18, 2217–2228 (1978).
[Crossref]

1977 (2)

H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39, 691–695 (1977).
[Crossref]

M. Stock, R. E. Drullinger, and M. M. Hessel, “Comparison between electron beam and optically produced mercury excimer fluorescence,” Chem. Phys. Lett. 45, 592–594 (1977).
[Crossref]

1974 (1)

D. Stoler, “Photon antibunching and possible ways to observe it,” Phys. Rev. Lett. 33, 1397–1400 (1974).
[Crossref]

1970 (2)

D. Stoler, “Equivalence classes of minimum uncertainty packets,” Phys. Rev. D 1, 3217–3219 (1970).
[Crossref]

J. N. Dodd, W. J. Sandle, and O. M. Williams, “A study of the transients in resonance fluorescence following a step or a pulse of magnetic field,” J. Phys. B 3, 256–270 (1970).
[Crossref]

1967 (2)

B. R. Mollow and R. J. Glauber, “Quantum theory of parametric amplification. I,” Phys. Rev. 160, 1076–1096 (1967).
[Crossref]

B. R. Mollow and R. J. Glauber, “Quantum theory of parametric amplification. II,” Phys. Rev. 160, 1097–1108 (1967).
[Crossref]

1964 (1)

M. C. Teich, J. M. Schroeer, and G. J. Wolga, “Double-quantum photoelectric emission from sodium metal,” Phys. Rev. Lett. 13, 611–614 (1964).
[Crossref]

1963 (2)

R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529–2539 (1963).
[Crossref]

R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766–2788 (1963).
[Crossref]

1940 (1)

B. J. Thompson, D. O. North, and W. A. Harris, “Fluctuations in space-charge-limited currents at moderately high frequencies,” RCA Rev. 4, 269–285, 441–472 (1940);RCA Rev. 5, 106–124, 244–260 (1940);RCA Rev. 5, 371–388, 505–524 (1941);RCA Rev. 6, 114–124 (1941).

1916 (1)

O. W. Richardson and C. B. Bazzoni, “Experiments with electron currents in different gases. (1) Mercury vapour,” Phil. Mag. Ser. 6, 32, 426–440 (1916).

1914 (2)

J. Franck and G. Hertz, “Ueber Zusammenstoesse zwischen Elektronen und den Molekuelen des Quecksilberdampfes und die Ionisierungsspannung desselben,” Ver. Dtsch. Phys. Ges. 16, 457–467 (1914).

J. Franck and G. Hertz, “Ueber die Erregung der Quecksilber-resonanzlinie 253,6 μμ durch Elektronenstoesse,” Ver. Dtsch. Phys. Ges. 16, 512–517 (1914).

Aspect, A.

A. Aspect, P. Grangier, and G. Roger, “Experimental realization of Einstein–Podolsky–Rosen–Bohm gedankenexperiment: a new violation of Bell’s inequalities,” Phys. Rev. Lett. 49, 91–94 (1982).
[Crossref]

Bazzoni, C. B.

O. W. Richardson and C. B. Bazzoni, “Experiments with electron currents in different gases. (1) Mercury vapour,” Phil. Mag. Ser. 6, 32, 426–440 (1916).

Breton, M. E.

M. C. Teich, P. R. Prucnal, G. Vannucci, M. E. Breton, and W. J. McGill, “Multiplication noise in the human visual system at threshold: 3. The role of non-Poisson quantum fluctuations,” Biol. Cybern. 44, 157–165 (1982).
[Crossref]

Buhr, W.

W. Buhr, W. Klein, and S. Pressler, “Electron impact excitation and UV emission in the Franck–Hertz experiment,” Am. J. Phys. 51, 810–814 (1983).
[Crossref]

Cox, D. R.

D. R. Cox, Renewal Theory (Methuen, London, 1962).

Cresser, J. D.

J. D. Cresser, J. Haeger, G. Leuchs, M. Rateike, and H. Walther, “Resonance fluorescence of atoms in strong monochromatic laser fields,” in Dissipative Systems in Quantum Optics, Vol. 27 of Topics in Current Physics, R. Bonifacio, ed. (Springer-Verlag, Berlin, 1982), pp. 21–59.
[Crossref]

Dagenais, M.

M. Dagenais and L. Mandel, “Investigation of two-time correlations in photon emissions from a single atom,” Phys. Rev. A 18, 2217–2228 (1978).
[Crossref]

H. J. Kimble, M. Dagenais, and L. Mandel, “Multiatom and transit-time effects on photon-correlation measurements in resonance fluorescence,” Phys. Rev. A 18, 201–207 (1978).
[Crossref]

H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39, 691–695 (1977).
[Crossref]

Dodd, J. N.

J. N. Dodd, W. J. Sandle, and O. M. Williams, “A study of the transients in resonance fluorescence following a step or a pulse of magnetic field,” J. Phys. B 3, 256–270 (1970).
[Crossref]

Drullinger, R. E.

M. Stock, R. E. Drullinger, and M. M. Hessel, “Comparison between electron beam and optically produced mercury excimer fluorescence,” Chem. Phys. Lett. 45, 592–594 (1977).
[Crossref]

Franck, J.

J. Franck and G. Hertz, “Ueber die Erregung der Quecksilber-resonanzlinie 253,6 μμ durch Elektronenstoesse,” Ver. Dtsch. Phys. Ges. 16, 512–517 (1914).

J. Franck and G. Hertz, “Ueber Zusammenstoesse zwischen Elektronen und den Molekuelen des Quecksilberdampfes und die Ionisierungsspannung desselben,” Ver. Dtsch. Phys. Ges. 16, 457–467 (1914).

J. Franck and P. Jordan, “Anregung von Quantenspruengen durch Stoesse,” in Struktur der Materie in Einzeldarstellungen, III (Springer-Verlag, Berlin, 1926).

Glauber, R. J.

B. R. Mollow and R. J. Glauber, “Quantum theory of parametric amplification. I,” Phys. Rev. 160, 1076–1096 (1967).
[Crossref]

B. R. Mollow and R. J. Glauber, “Quantum theory of parametric amplification. II,” Phys. Rev. 160, 1097–1108 (1967).
[Crossref]

R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529–2539 (1963).
[Crossref]

R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766–2788 (1963).
[Crossref]

Grangier, P.

A. Aspect, P. Grangier, and G. Roger, “Experimental realization of Einstein–Podolsky–Rosen–Bohm gedankenexperiment: a new violation of Bell’s inequalities,” Phys. Rev. Lett. 49, 91–94 (1982).
[Crossref]

Haeger, J.

J. D. Cresser, J. Haeger, G. Leuchs, M. Rateike, and H. Walther, “Resonance fluorescence of atoms in strong monochromatic laser fields,” in Dissipative Systems in Quantum Optics, Vol. 27 of Topics in Current Physics, R. Bonifacio, ed. (Springer-Verlag, Berlin, 1982), pp. 21–59.
[Crossref]

Harris, W. A.

B. J. Thompson, D. O. North, and W. A. Harris, “Fluctuations in space-charge-limited currents at moderately high frequencies,” RCA Rev. 4, 269–285, 441–472 (1940);RCA Rev. 5, 106–124, 244–260 (1940);RCA Rev. 5, 371–388, 505–524 (1941);RCA Rev. 6, 114–124 (1941).

Hertz, G.

J. Franck and G. Hertz, “Ueber Zusammenstoesse zwischen Elektronen und den Molekuelen des Quecksilberdampfes und die Ionisierungsspannung desselben,” Ver. Dtsch. Phys. Ges. 16, 457–467 (1914).

J. Franck and G. Hertz, “Ueber die Erregung der Quecksilber-resonanzlinie 253,6 μμ durch Elektronenstoesse,” Ver. Dtsch. Phys. Ges. 16, 512–517 (1914).

Hessel, M. M.

M. Stock, R. E. Drullinger, and M. M. Hessel, “Comparison between electron beam and optically produced mercury excimer fluorescence,” Chem. Phys. Lett. 45, 592–594 (1977).
[Crossref]

Jordan, P.

J. Franck and P. Jordan, “Anregung von Quantenspruengen durch Stoesse,” in Struktur der Materie in Einzeldarstellungen, III (Springer-Verlag, Berlin, 1926).

Kimble, H. J.

H. J. Kimble, M. Dagenais, and L. Mandel, “Multiatom and transit-time effects on photon-correlation measurements in resonance fluorescence,” Phys. Rev. A 18, 201–207 (1978).
[Crossref]

H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39, 691–695 (1977).
[Crossref]

Klein, W.

W. Buhr, W. Klein, and S. Pressler, “Electron impact excitation and UV emission in the Franck–Hertz experiment,” Am. J. Phys. 51, 810–814 (1983).
[Crossref]

Larchuk, T.

M. C. Teich, B. E. A. Saleh, and T. Larchuk, “Observation of sub-Poisson Franck–Hertz light at 253.7 nm,” in Digest of the Thirteenth International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1984), postdeadline paper PD-A6.

Leuchs, G.

J. D. Cresser, J. Haeger, G. Leuchs, M. Rateike, and H. Walther, “Resonance fluorescence of atoms in strong monochromatic laser fields,” in Dissipative Systems in Quantum Optics, Vol. 27 of Topics in Current Physics, R. Bonifacio, ed. (Springer-Verlag, Berlin, 1982), pp. 21–59.
[Crossref]

Loudon, R.

A number of review papers on this topic have appeared recently. For example, see R. Loudon, “Non-classical effects in the statistical properties of light,” Rep. Prog. Phys.43, 913–949 (1980);H. Paul, “Photon antibunching,” Rev. Mod. Phys. 54, 1061–1102 (1982).See also J. Peřina, Coherence of Light, 2nd ed. (Reidel, Dordrecht, The Netherlands, 1984);Quantum Statistics of Linear and Nonlinear Optical Phenomena (Reidel, Dordrecht, The Netherlands, 1984).
[Crossref]

Mandel, L.

R. Short and L. Mandel, “Observation of sub-Poissonian photon statistics,” Phys. Rev. Lett. 51, 384–387 (1983).
[Crossref]

L. Mandel, “Photon interference and correlation effects produced by independent quantum sources,” Phys. Rev. A 28, 929–943 (1983).
[Crossref]

M. Dagenais and L. Mandel, “Investigation of two-time correlations in photon emissions from a single atom,” Phys. Rev. A 18, 2217–2228 (1978).
[Crossref]

H. J. Kimble, M. Dagenais, and L. Mandel, “Multiatom and transit-time effects on photon-correlation measurements in resonance fluorescence,” Phys. Rev. A 18, 201–207 (1978).
[Crossref]

H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39, 691–695 (1977).
[Crossref]

McGill, W. J.

M. C. Teich, P. R. Prucnal, G. Vannucci, M. E. Breton, and W. J. McGill, “Multiplication noise in the human visual system at threshold: 3. The role of non-Poisson quantum fluctuations,” Biol. Cybern. 44, 157–165 (1982).
[Crossref]

Mollow, B. R.

B. R. Mollow and R. J. Glauber, “Quantum theory of parametric amplification. I,” Phys. Rev. 160, 1076–1096 (1967).
[Crossref]

B. R. Mollow and R. J. Glauber, “Quantum theory of parametric amplification. II,” Phys. Rev. 160, 1097–1108 (1967).
[Crossref]

North, D. O.

B. J. Thompson, D. O. North, and W. A. Harris, “Fluctuations in space-charge-limited currents at moderately high frequencies,” RCA Rev. 4, 269–285, 441–472 (1940);RCA Rev. 5, 106–124, 244–260 (1940);RCA Rev. 5, 371–388, 505–524 (1941);RCA Rev. 6, 114–124 (1941).

Perina, J.

M. C. Teich, B. E. A. Saleh, and J. Peřina, “Role of primary excitation statistics in the generation of antibunched and sub-Poisson light,” J. Opt. Soc. Am. B 1, 366–389 (1984).
[Crossref]

J. Peřina, B. E. A. Saleh, and M. C. Teich, “Independent photon deletions from quantized boson fields: the quantum analog of the Burgess variance theorem,” Opt. Commun. 48, 212–214 (1983).
[Crossref]

Pressler, S.

W. Buhr, W. Klein, and S. Pressler, “Electron impact excitation and UV emission in the Franck–Hertz experiment,” Am. J. Phys. 51, 810–814 (1983).
[Crossref]

Prucnal, P. R.

P. R. Prucnal and M. C. Teich, “Refractory effects in neural counting processes with exponentially decaying rates,” IEEE Trans. Syst. Man Cybern. SMC-13, 1028–1033 (1983).
[Crossref]

M. C. Teich, P. R. Prucnal, G. Vannucci, M. E. Breton, and W. J. McGill, “Multiplication noise in the human visual system at threshold: 3. The role of non-Poisson quantum fluctuations,” Biol. Cybern. 44, 157–165 (1982).
[Crossref]

Rateike, M.

J. D. Cresser, J. Haeger, G. Leuchs, M. Rateike, and H. Walther, “Resonance fluorescence of atoms in strong monochromatic laser fields,” in Dissipative Systems in Quantum Optics, Vol. 27 of Topics in Current Physics, R. Bonifacio, ed. (Springer-Verlag, Berlin, 1982), pp. 21–59.
[Crossref]

Reid, M. D.

It is interesting to note that the violation of Bell’s inequalities was recently shown by Reid and Walls to be associated with nonclassical light (i.e., the nonexistence of a well-behaved positive Glauber P function).See M. D. Reid and D. F. Walls, “Violation of Bell’s inequalities in quantum optics,” Phys. Rev. Lett. 53, 955–957 (1984).
[Crossref]

Richardson, O. W.

O. W. Richardson and C. B. Bazzoni, “Experiments with electron currents in different gases. (1) Mercury vapour,” Phil. Mag. Ser. 6, 32, 426–440 (1916).

Roger, G.

A. Aspect, P. Grangier, and G. Roger, “Experimental realization of Einstein–Podolsky–Rosen–Bohm gedankenexperiment: a new violation of Bell’s inequalities,” Phys. Rev. Lett. 49, 91–94 (1982).
[Crossref]

Saleh, B. E. A.

M. C. Teich, B. E. A. Saleh, and J. Peřina, “Role of primary excitation statistics in the generation of antibunched and sub-Poisson light,” J. Opt. Soc. Am. B 1, 366–389 (1984).
[Crossref]

J. Peřina, B. E. A. Saleh, and M. C. Teich, “Independent photon deletions from quantized boson fields: the quantum analog of the Burgess variance theorem,” Opt. Commun. 48, 212–214 (1983).
[Crossref]

M. C. Teich, B. E. A. Saleh, and D. Stoler, “Antibunching in the Franck–Hertz experiment,” Opt. Commun. 46, 244–248 (1983).
[Crossref]

B. E. A. Saleh, D. Stoler, and M. C. Teich, “Coherence and photon statistics for optical fields generated by Poisson random emissions,” Phys. Rev. A 27, 360–374 (1983).
[Crossref]

M. C. Teich and B. E. A. Saleh, “Effects of random deletion and additive noise on bunched and antibunched photon-counting statistics,” Opt. Lett. 7, 365–367 (1982).In this reference, the definition of antibunching was taken to be identical with that of sub-Poisson. The definition of antibunching used in the current work [g(2)(0) < 1] is in accord with the more usual usage of the term. The relationship between antibunching and sub-Poisson behavior is elucidated in Ref. 9.
[Crossref] [PubMed]

M. C. Teich, B. E. A. Saleh, and T. Larchuk, “Observation of sub-Poisson Franck–Hertz light at 253.7 nm,” in Digest of the Thirteenth International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1984), postdeadline paper PD-A6.

Saleh, B.E.A.

A configuration for generating such light, based on two-photon cascaded emissions, is presented in B.E.A. Saleh and M. C. Teich, “Sub-Poisson light generation by selective deletion from cascaded emissions,” Opt. Commun. (to be published).

Sandle, W. J.

J. N. Dodd, W. J. Sandle, and O. M. Williams, “A study of the transients in resonance fluorescence following a step or a pulse of magnetic field,” J. Phys. B 3, 256–270 (1970).
[Crossref]

Schroeer, J. M.

M. C. Teich, J. M. Schroeer, and G. J. Wolga, “Double-quantum photoelectric emission from sodium metal,” Phys. Rev. Lett. 13, 611–614 (1964).
[Crossref]

Short, R.

R. Short and L. Mandel, “Observation of sub-Poissonian photon statistics,” Phys. Rev. Lett. 51, 384–387 (1983).
[Crossref]

Stock, M.

M. Stock, R. E. Drullinger, and M. M. Hessel, “Comparison between electron beam and optically produced mercury excimer fluorescence,” Chem. Phys. Lett. 45, 592–594 (1977).
[Crossref]

Stoler, D.

B. E. A. Saleh, D. Stoler, and M. C. Teich, “Coherence and photon statistics for optical fields generated by Poisson random emissions,” Phys. Rev. A 27, 360–374 (1983).
[Crossref]

M. C. Teich, B. E. A. Saleh, and D. Stoler, “Antibunching in the Franck–Hertz experiment,” Opt. Commun. 46, 244–248 (1983).
[Crossref]

D. Stoler, “Photon antibunching and possible ways to observe it,” Phys. Rev. Lett. 33, 1397–1400 (1974).
[Crossref]

D. Stoler, “Equivalence classes of minimum uncertainty packets,” Phys. Rev. D 1, 3217–3219 (1970).
[Crossref]

Teich, M. C.

M. C. Teich, B. E. A. Saleh, and J. Peřina, “Role of primary excitation statistics in the generation of antibunched and sub-Poisson light,” J. Opt. Soc. Am. B 1, 366–389 (1984).
[Crossref]

B. E. A. Saleh, D. Stoler, and M. C. Teich, “Coherence and photon statistics for optical fields generated by Poisson random emissions,” Phys. Rev. A 27, 360–374 (1983).
[Crossref]

M. C. Teich, B. E. A. Saleh, and D. Stoler, “Antibunching in the Franck–Hertz experiment,” Opt. Commun. 46, 244–248 (1983).
[Crossref]

P. R. Prucnal and M. C. Teich, “Refractory effects in neural counting processes with exponentially decaying rates,” IEEE Trans. Syst. Man Cybern. SMC-13, 1028–1033 (1983).
[Crossref]

J. Peřina, B. E. A. Saleh, and M. C. Teich, “Independent photon deletions from quantized boson fields: the quantum analog of the Burgess variance theorem,” Opt. Commun. 48, 212–214 (1983).
[Crossref]

M. C. Teich, P. R. Prucnal, G. Vannucci, M. E. Breton, and W. J. McGill, “Multiplication noise in the human visual system at threshold: 3. The role of non-Poisson quantum fluctuations,” Biol. Cybern. 44, 157–165 (1982).
[Crossref]

M. C. Teich and B. E. A. Saleh, “Effects of random deletion and additive noise on bunched and antibunched photon-counting statistics,” Opt. Lett. 7, 365–367 (1982).In this reference, the definition of antibunching was taken to be identical with that of sub-Poisson. The definition of antibunching used in the current work [g(2)(0) < 1] is in accord with the more usual usage of the term. The relationship between antibunching and sub-Poisson behavior is elucidated in Ref. 9.
[Crossref] [PubMed]

M. C. Teich, J. M. Schroeer, and G. J. Wolga, “Double-quantum photoelectric emission from sodium metal,” Phys. Rev. Lett. 13, 611–614 (1964).
[Crossref]

A configuration for generating such light, based on two-photon cascaded emissions, is presented in B.E.A. Saleh and M. C. Teich, “Sub-Poisson light generation by selective deletion from cascaded emissions,” Opt. Commun. (to be published).

M. C. Teich, B. E. A. Saleh, and T. Larchuk, “Observation of sub-Poisson Franck–Hertz light at 253.7 nm,” in Digest of the Thirteenth International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1984), postdeadline paper PD-A6.

Thompson, B. J.

B. J. Thompson, D. O. North, and W. A. Harris, “Fluctuations in space-charge-limited currents at moderately high frequencies,” RCA Rev. 4, 269–285, 441–472 (1940);RCA Rev. 5, 106–124, 244–260 (1940);RCA Rev. 5, 371–388, 505–524 (1941);RCA Rev. 6, 114–124 (1941).

Vannucci, G.

M. C. Teich, P. R. Prucnal, G. Vannucci, M. E. Breton, and W. J. McGill, “Multiplication noise in the human visual system at threshold: 3. The role of non-Poisson quantum fluctuations,” Biol. Cybern. 44, 157–165 (1982).
[Crossref]

Walls, D. F.

It is interesting to note that the violation of Bell’s inequalities was recently shown by Reid and Walls to be associated with nonclassical light (i.e., the nonexistence of a well-behaved positive Glauber P function).See M. D. Reid and D. F. Walls, “Violation of Bell’s inequalities in quantum optics,” Phys. Rev. Lett. 53, 955–957 (1984).
[Crossref]

Walther, H.

J. D. Cresser, J. Haeger, G. Leuchs, M. Rateike, and H. Walther, “Resonance fluorescence of atoms in strong monochromatic laser fields,” in Dissipative Systems in Quantum Optics, Vol. 27 of Topics in Current Physics, R. Bonifacio, ed. (Springer-Verlag, Berlin, 1982), pp. 21–59.
[Crossref]

Williams, O. M.

J. N. Dodd, W. J. Sandle, and O. M. Williams, “A study of the transients in resonance fluorescence following a step or a pulse of magnetic field,” J. Phys. B 3, 256–270 (1970).
[Crossref]

Wolga, G. J.

M. C. Teich, J. M. Schroeer, and G. J. Wolga, “Double-quantum photoelectric emission from sodium metal,” Phys. Rev. Lett. 13, 611–614 (1964).
[Crossref]

Am. J. Phys. (1)

W. Buhr, W. Klein, and S. Pressler, “Electron impact excitation and UV emission in the Franck–Hertz experiment,” Am. J. Phys. 51, 810–814 (1983).
[Crossref]

Biol. Cybern. (1)

M. C. Teich, P. R. Prucnal, G. Vannucci, M. E. Breton, and W. J. McGill, “Multiplication noise in the human visual system at threshold: 3. The role of non-Poisson quantum fluctuations,” Biol. Cybern. 44, 157–165 (1982).
[Crossref]

Chem. Phys. Lett. (1)

M. Stock, R. E. Drullinger, and M. M. Hessel, “Comparison between electron beam and optically produced mercury excimer fluorescence,” Chem. Phys. Lett. 45, 592–594 (1977).
[Crossref]

IEEE Trans. Syst. Man Cybern. (1)

P. R. Prucnal and M. C. Teich, “Refractory effects in neural counting processes with exponentially decaying rates,” IEEE Trans. Syst. Man Cybern. SMC-13, 1028–1033 (1983).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

J. N. Dodd, W. J. Sandle, and O. M. Williams, “A study of the transients in resonance fluorescence following a step or a pulse of magnetic field,” J. Phys. B 3, 256–270 (1970).
[Crossref]

Opt. Commun. (2)

M. C. Teich, B. E. A. Saleh, and D. Stoler, “Antibunching in the Franck–Hertz experiment,” Opt. Commun. 46, 244–248 (1983).
[Crossref]

J. Peřina, B. E. A. Saleh, and M. C. Teich, “Independent photon deletions from quantized boson fields: the quantum analog of the Burgess variance theorem,” Opt. Commun. 48, 212–214 (1983).
[Crossref]

Opt. Lett. (1)

Phil. Mag. Ser. (1)

O. W. Richardson and C. B. Bazzoni, “Experiments with electron currents in different gases. (1) Mercury vapour,” Phil. Mag. Ser. 6, 32, 426–440 (1916).

Phys. Rev. (4)

R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529–2539 (1963).
[Crossref]

R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766–2788 (1963).
[Crossref]

B. R. Mollow and R. J. Glauber, “Quantum theory of parametric amplification. I,” Phys. Rev. 160, 1076–1096 (1967).
[Crossref]

B. R. Mollow and R. J. Glauber, “Quantum theory of parametric amplification. II,” Phys. Rev. 160, 1097–1108 (1967).
[Crossref]

Phys. Rev. A (4)

B. E. A. Saleh, D. Stoler, and M. C. Teich, “Coherence and photon statistics for optical fields generated by Poisson random emissions,” Phys. Rev. A 27, 360–374 (1983).
[Crossref]

H. J. Kimble, M. Dagenais, and L. Mandel, “Multiatom and transit-time effects on photon-correlation measurements in resonance fluorescence,” Phys. Rev. A 18, 201–207 (1978).
[Crossref]

M. Dagenais and L. Mandel, “Investigation of two-time correlations in photon emissions from a single atom,” Phys. Rev. A 18, 2217–2228 (1978).
[Crossref]

L. Mandel, “Photon interference and correlation effects produced by independent quantum sources,” Phys. Rev. A 28, 929–943 (1983).
[Crossref]

Phys. Rev. D (1)

D. Stoler, “Equivalence classes of minimum uncertainty packets,” Phys. Rev. D 1, 3217–3219 (1970).
[Crossref]

Phys. Rev. Lett. (6)

D. Stoler, “Photon antibunching and possible ways to observe it,” Phys. Rev. Lett. 33, 1397–1400 (1974).
[Crossref]

H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39, 691–695 (1977).
[Crossref]

A. Aspect, P. Grangier, and G. Roger, “Experimental realization of Einstein–Podolsky–Rosen–Bohm gedankenexperiment: a new violation of Bell’s inequalities,” Phys. Rev. Lett. 49, 91–94 (1982).
[Crossref]

R. Short and L. Mandel, “Observation of sub-Poissonian photon statistics,” Phys. Rev. Lett. 51, 384–387 (1983).
[Crossref]

It is interesting to note that the violation of Bell’s inequalities was recently shown by Reid and Walls to be associated with nonclassical light (i.e., the nonexistence of a well-behaved positive Glauber P function).See M. D. Reid and D. F. Walls, “Violation of Bell’s inequalities in quantum optics,” Phys. Rev. Lett. 53, 955–957 (1984).
[Crossref]

M. C. Teich, J. M. Schroeer, and G. J. Wolga, “Double-quantum photoelectric emission from sodium metal,” Phys. Rev. Lett. 13, 611–614 (1964).
[Crossref]

RCA Rev. (1)

B. J. Thompson, D. O. North, and W. A. Harris, “Fluctuations in space-charge-limited currents at moderately high frequencies,” RCA Rev. 4, 269–285, 441–472 (1940);RCA Rev. 5, 106–124, 244–260 (1940);RCA Rev. 5, 371–388, 505–524 (1941);RCA Rev. 6, 114–124 (1941).

Ver. Dtsch. Phys. Ges. (2)

J. Franck and G. Hertz, “Ueber Zusammenstoesse zwischen Elektronen und den Molekuelen des Quecksilberdampfes und die Ionisierungsspannung desselben,” Ver. Dtsch. Phys. Ges. 16, 457–467 (1914).

J. Franck and G. Hertz, “Ueber die Erregung der Quecksilber-resonanzlinie 253,6 μμ durch Elektronenstoesse,” Ver. Dtsch. Phys. Ges. 16, 512–517 (1914).

Other (6)

J. D. Cresser, J. Haeger, G. Leuchs, M. Rateike, and H. Walther, “Resonance fluorescence of atoms in strong monochromatic laser fields,” in Dissipative Systems in Quantum Optics, Vol. 27 of Topics in Current Physics, R. Bonifacio, ed. (Springer-Verlag, Berlin, 1982), pp. 21–59.
[Crossref]

A number of review papers on this topic have appeared recently. For example, see R. Loudon, “Non-classical effects in the statistical properties of light,” Rep. Prog. Phys.43, 913–949 (1980);H. Paul, “Photon antibunching,” Rev. Mod. Phys. 54, 1061–1102 (1982).See also J. Peřina, Coherence of Light, 2nd ed. (Reidel, Dordrecht, The Netherlands, 1984);Quantum Statistics of Linear and Nonlinear Optical Phenomena (Reidel, Dordrecht, The Netherlands, 1984).
[Crossref]

J. Franck and P. Jordan, “Anregung von Quantenspruengen durch Stoesse,” in Struktur der Materie in Einzeldarstellungen, III (Springer-Verlag, Berlin, 1926).

A configuration for generating such light, based on two-photon cascaded emissions, is presented in B.E.A. Saleh and M. C. Teich, “Sub-Poisson light generation by selective deletion from cascaded emissions,” Opt. Commun. (to be published).

M. C. Teich, B. E. A. Saleh, and T. Larchuk, “Observation of sub-Poisson Franck–Hertz light at 253.7 nm,” in Digest of the Thirteenth International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1984), postdeadline paper PD-A6.

D. R. Cox, Renewal Theory (Methuen, London, 1962).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic representation of photoemission and inverse photoemission (Franck–Hertz effect). Electrons and photons behave like classical particles in photon counting, provided that Ms ≫ 1, TτP, τe.

Fig. 2
Fig. 2

Block diagram of the experimental arrangement.

Fig. 3
Fig. 3

Average photon-count variance-to-mean ratio Fn(T) versus detected photon count rate μ (kcnt/sec) for experiment 0323:3-15. Raw data are shown for Poisson filament light (open circle), Poisson laser-plus-filament light (solid circles and solid line segments), and sub-Poisson FH-plus-filament light (triangles and dashed line segments). Each data point is based on approximately 107 samples. The error bracket is the same for all data points. The Fano factors for FH light are seen to lie below those for Poisson light at sufficiently small values of the count rate. The overall negative slope of the data is due to dead time in the photon-counting apparatus. Numerical parameter values are given in Table 1.

Fig. 4
Fig. 4

Normalized photon-counting distribution [n!p(n)] versus count number n for experiment 0504:2-3. Raw data are shown for Poisson laser-plus-filament light (solid line segments) and sub-Poisson FH-plus-filament light (dashed line segments). Numerical values for the photon count rates and Fano factors are presented in Table 1.

Tables (1)

Tables Icon

Table 1 Comparison of Uncorrected and Corrected Fano Factors for Experiments with Comparable Count Rates

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

q = ( F n 1 ) / ( 3 F n ) .
F DTMP ( 1 μ τ d ) 2 .
d F DTMP / d μ 2 τ d + 2 τ d 2 μ 2 τ d ,
τ d ½ m ( Poisson ) .
F n = 1 η β ( 1 F e ) , T τ p , τ e ; M s 1 .

Metrics