Abstract

We discuss two possible processes that may lead to unidirectional momentum transfer to atoms from a near-resonant standing-wave light field. The first is Bragg scattering of the matter waves from the tilted light grating—this process leaves the atoms unexcited. The second is a multiphoton (Doppleron) process in which the atom, by sequential absorption/emission of photons from/into the two traveling-wave components of the standing wave (which appear at different frequencies owingto the motion of the atom in the field), can complete the energy resonance condition for excitation to its excited state. Detailed consideration of the inteferring process of spontaneous emission and experimental factors such as the interplay among interaction length, angular collimation of the standing wave, and transit-time frequency broadening of the light frequency show that the two processes are both potentially observable but under considerably different experimental conditions.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription