Abstract

The transverse cooling of a beam of sodium atoms in an axisymmetric light field formed by a reflecting axicon is studied. It is shown that transverse cooling leads to a decrease in angular divergence (collimation) of the atomic beam. The transverse velocities of the beam are reduced from 5.5 × 102 to 1.6 × 102 cm/sec, which corresponds to the decrease in effective transverse temperature of the beam from T = 42 to T = 3.3 mK. The spatial and velocity distributions of the atomic beam are calculated numerically. It is found that theory and experiment are in good agreement.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription