Abstract

Complex spontaneous-pulsation phenomena have been reported in xenon lasers operating at 3.51-μm wavelength, and a theoretical explanation for these effects has been given. However, the published models contain various simplifications and have so far yielded only qualitative agreement with xenon-laser experiments. Reported here is a more rigorous analytical model, which for the first time provides quantitative agreement with experimental observations. This model should also find direct application in interpreting or predicting the behavior of other spontaneously pulsing laser systems.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Gurtovnik, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 1, 83 (1958).
  2. A. V. Uspenskii, Radio Eng. Electron. Phys. 8, 1145 (1963).
  3. V. V. Korobkin and A. V. Uspenskii, Sov. Phys. JETP 18, 693 (1964).
  4. A. V. Uspenskii, Radio Eng. Electron. Phys. 9, 605 (1964).
  5. A. Z. Grasyuk and A. N. Oraevskii, Radio Eng. Electron. Phys. 9, 424 (1964).
  6. A. Z. Grasyuk and A. N. Oraevskii, in Quantum Electronics and Coherent Light, P. A. Miles, ed. (Academic, New York, 1964),p. 192.
  7. See, for example, E. M. Belenov, V. N. Morozov, and A. N. Oraevskii, in Quantum Electronics in Lasers and Masers,Part 2, D. V. Skolbel’tsyn, ed. (Plenum, New York, 1972), p. 217.
  8. L. W. Casperson, in Third New Zealand Symposium on Laser Physics, Vol. 182 of Springer Lecture Notes in Physics (Springer-Verlag, Berlin, 1983), p. 88.
  9. L. W. Casperson, “Modes and spectra of high gain lasers,” Ph.D. dissertation (California Institute of Technology, 1971; University Microfilms, Ann Arbor, Mich., no.72-469).
  10. L. W. Casperson and A. Yariv, IEEE J. Quantum Electron. QE-8, 69 (1972).
    [CrossRef]
  11. L. W. Casperson, IEEE J. Quantum Electron. QE-14, 756 (1978).
    [CrossRef]
  12. N. B. Abraham and et al., in Third New Zealand Symposium on Laser Physics, Vol. 182 of Springer Lecture Notes in Physics (Springer-Verlag, Berlin, 1983), p. 107.
  13. H. Statz and G. DeMars, in Quantum Electronics, C. H. Townes, ed. (Columbia U. Press, New York, 1960),p. 530.
  14. R. Dunsmuir, J. Electron. Control 10, 453 (1961).
  15. G. Makhov, J. Appl. Phys. 33, 202 (1962).
    [CrossRef]
  16. D. M. Sinnett, J. Appl. Phys. 33, 1578 (1962).
    [CrossRef]
  17. L. W. Casperson, Phys. Rev. A 21, 911 (1980).
    [CrossRef]
  18. L. W. Casperson, Phys. Rev. A 23, 248 (1981).
    [CrossRef]
  19. L. W. Casperson, “Modes and spectra of high gain lasers,” Ph.D. dissertation (California Institute of Technology, 1981; University Microfilms, Ann Arbor, Mich., no. 72-469), pp.76 and 236.
  20. J. Bentley and N. B. Abraham, Opt. Commun. 41, 52 (1982).
    [CrossRef]
  21. S. T. Hendow and M. Sargent, Opt. Commun. 40, 385 (1982).
    [CrossRef]
  22. S. T. Hendow and M. Sargent, Opt. Commun. 43, 59 (1982).
    [CrossRef]
  23. M. L. Minden and L. W. Casperson, IEEE J. Quantum Electron. QE-18, 1952 (1982).
    [CrossRef]
  24. M. Maeda and N. B. Abraham, Phys. Rev. A 26, 3395 (1982).
    [CrossRef]
  25. J. D. Gibbon and M. J. McGuinness, Physica 5D, 108 (1982).
  26. P. Mandel, Opt. Commun. 44, 400 (1983).
    [CrossRef]
  27. P. Mandel, Opt. Commun. 45, 269 (1983).
    [CrossRef]
  28. N. B. Abraham, Laser Focus 19, 73 (1983).
  29. R. Graham and Y. Cho, Opt. Commun. 47, 52 (1983).
    [CrossRef]
  30. P. Mandel and H. Zeghlache, Opt. Commun. 47, 146 (1983).
    [CrossRef]
  31. R. S. Gioggia and N. B. Abraham, Phys. Rev. Lett. 51, 650 (1983).
    [CrossRef]
  32. R. S. Gioggia and N. B. Abraham, Opt. Commun. 47, 278 (1983).
    [CrossRef]
  33. W. E. Lamb, Phys. Rev. 134, 1429 (1964).
    [CrossRef]
  34. P. W. Smith and T. Hänsen, Phys. Rev. Lett. 26, 740 (1971).
    [CrossRef]
  35. P. W. Smith, IEEE J. Quantum Electron. QE-8, 704 (1972).
    [CrossRef]
  36. H. Granek, C. Freed, and H. A. Haus, IEEE J. Quantum Electron. QE-8, 404 (1972).
    [CrossRef]
  37. C. Freed and H. A. Haus, IEEE J. Quantum Electron. QE-9, 219 (1973).
    [CrossRef]
  38. E. R. Peressini and G. J. Linford, IEEE J. Quantum Electron. QE-4, 657 (1968).
    [CrossRef]
  39. P. Cahuzac, O. Robaux, and R. Vetter, J. Phys. B 9, 3165 (1976).
    [CrossRef]
  40. P. Cahuzac, E. Marie, O. Robaux, R. Vetter, and P. R. Berman, J. Phys. B 11, 645 (1978).
    [CrossRef]
  41. J. L. Le Gouet, J. Phys. B 11, 3001 (1978).
    [CrossRef]
  42. See, for example, T. Yajima and H. Souma, Phys. Rev. A 17, 309 (1978).
    [CrossRef]
  43. E. I. Gordon, A. D. White, and J. D. Rigden, in Proceedings of the Symposium on Optical Masers (Polytechnic Institute of Brooklyn, New York, 1963).
  44. P.O. Clark, R. A. Huback, and J. Y. Wada, JPL Contract No. 950803, Final Report, April1965.
  45. L. Allen, D. G. C. Jones, and D. G. Schofield, J. Opt. Soc. Am. 59, 842 (1969).
    [CrossRef]
  46. X. Husson and M. Margerie, Opt. Commun. 5, 139 (1972).
    [CrossRef]
  47. M. Aymar, Ph.D. Thesis, University of Paris (1973).
  48. R. Vetter and E. Marie, J. Phys. B 11, 2845 (1978).
    [CrossRef]
  49. W. L. Faust, R. A. McFarlane, C. K. N. Patel, and C. G. B. Garrett, Appl. Phys. Lett. 1, 85 (1962).
    [CrossRef]
  50. W. L. Faust and R. A. McFarlane, J. Appl. Phys. 35, 2010 (1964).
    [CrossRef]
  51. J. Nella, S. Y. Szeto, P. Rabinowitz, and J. T. La Tourrette, IEEE J. Quantum Electron. QE-12, 543 (1976).
    [CrossRef]
  52. D. R. Armstrong, IEEE J. Quantum Electron. QE-4, 968 (1968).
    [CrossRef]
  53. C. K. N. Patel, Phys. Rev. 131, 1582 (1963).
    [CrossRef]
  54. J. W. Klüver, J. Appl. Phys. 37, 2987 (1966).
    [CrossRef]
  55. A. Dienes, Phys. Rev. 174, 414 (1968).
    [CrossRef]
  56. C. L. Tang and H. Statz, J. Appl. Phys. 38, 2963 (1967).
    [CrossRef]
  57. S. E. Schwartz and P. L. Gordon, J. Appl. Phys. 40, 4441 (1969).
    [CrossRef]

1983 (7)

P. Mandel, Opt. Commun. 44, 400 (1983).
[CrossRef]

P. Mandel, Opt. Commun. 45, 269 (1983).
[CrossRef]

N. B. Abraham, Laser Focus 19, 73 (1983).

R. Graham and Y. Cho, Opt. Commun. 47, 52 (1983).
[CrossRef]

P. Mandel and H. Zeghlache, Opt. Commun. 47, 146 (1983).
[CrossRef]

R. S. Gioggia and N. B. Abraham, Phys. Rev. Lett. 51, 650 (1983).
[CrossRef]

R. S. Gioggia and N. B. Abraham, Opt. Commun. 47, 278 (1983).
[CrossRef]

1982 (6)

J. Bentley and N. B. Abraham, Opt. Commun. 41, 52 (1982).
[CrossRef]

S. T. Hendow and M. Sargent, Opt. Commun. 40, 385 (1982).
[CrossRef]

S. T. Hendow and M. Sargent, Opt. Commun. 43, 59 (1982).
[CrossRef]

M. L. Minden and L. W. Casperson, IEEE J. Quantum Electron. QE-18, 1952 (1982).
[CrossRef]

M. Maeda and N. B. Abraham, Phys. Rev. A 26, 3395 (1982).
[CrossRef]

J. D. Gibbon and M. J. McGuinness, Physica 5D, 108 (1982).

1981 (1)

L. W. Casperson, Phys. Rev. A 23, 248 (1981).
[CrossRef]

1980 (1)

L. W. Casperson, Phys. Rev. A 21, 911 (1980).
[CrossRef]

1978 (5)

P. Cahuzac, E. Marie, O. Robaux, R. Vetter, and P. R. Berman, J. Phys. B 11, 645 (1978).
[CrossRef]

J. L. Le Gouet, J. Phys. B 11, 3001 (1978).
[CrossRef]

See, for example, T. Yajima and H. Souma, Phys. Rev. A 17, 309 (1978).
[CrossRef]

L. W. Casperson, IEEE J. Quantum Electron. QE-14, 756 (1978).
[CrossRef]

R. Vetter and E. Marie, J. Phys. B 11, 2845 (1978).
[CrossRef]

1976 (2)

P. Cahuzac, O. Robaux, and R. Vetter, J. Phys. B 9, 3165 (1976).
[CrossRef]

J. Nella, S. Y. Szeto, P. Rabinowitz, and J. T. La Tourrette, IEEE J. Quantum Electron. QE-12, 543 (1976).
[CrossRef]

1973 (1)

C. Freed and H. A. Haus, IEEE J. Quantum Electron. QE-9, 219 (1973).
[CrossRef]

1972 (4)

P. W. Smith, IEEE J. Quantum Electron. QE-8, 704 (1972).
[CrossRef]

H. Granek, C. Freed, and H. A. Haus, IEEE J. Quantum Electron. QE-8, 404 (1972).
[CrossRef]

L. W. Casperson and A. Yariv, IEEE J. Quantum Electron. QE-8, 69 (1972).
[CrossRef]

X. Husson and M. Margerie, Opt. Commun. 5, 139 (1972).
[CrossRef]

1971 (1)

P. W. Smith and T. Hänsen, Phys. Rev. Lett. 26, 740 (1971).
[CrossRef]

1969 (2)

L. Allen, D. G. C. Jones, and D. G. Schofield, J. Opt. Soc. Am. 59, 842 (1969).
[CrossRef]

S. E. Schwartz and P. L. Gordon, J. Appl. Phys. 40, 4441 (1969).
[CrossRef]

1968 (3)

A. Dienes, Phys. Rev. 174, 414 (1968).
[CrossRef]

D. R. Armstrong, IEEE J. Quantum Electron. QE-4, 968 (1968).
[CrossRef]

E. R. Peressini and G. J. Linford, IEEE J. Quantum Electron. QE-4, 657 (1968).
[CrossRef]

1967 (1)

C. L. Tang and H. Statz, J. Appl. Phys. 38, 2963 (1967).
[CrossRef]

1966 (1)

J. W. Klüver, J. Appl. Phys. 37, 2987 (1966).
[CrossRef]

1964 (5)

W. L. Faust and R. A. McFarlane, J. Appl. Phys. 35, 2010 (1964).
[CrossRef]

V. V. Korobkin and A. V. Uspenskii, Sov. Phys. JETP 18, 693 (1964).

A. V. Uspenskii, Radio Eng. Electron. Phys. 9, 605 (1964).

A. Z. Grasyuk and A. N. Oraevskii, Radio Eng. Electron. Phys. 9, 424 (1964).

W. E. Lamb, Phys. Rev. 134, 1429 (1964).
[CrossRef]

1963 (2)

A. V. Uspenskii, Radio Eng. Electron. Phys. 8, 1145 (1963).

C. K. N. Patel, Phys. Rev. 131, 1582 (1963).
[CrossRef]

1962 (3)

W. L. Faust, R. A. McFarlane, C. K. N. Patel, and C. G. B. Garrett, Appl. Phys. Lett. 1, 85 (1962).
[CrossRef]

G. Makhov, J. Appl. Phys. 33, 202 (1962).
[CrossRef]

D. M. Sinnett, J. Appl. Phys. 33, 1578 (1962).
[CrossRef]

1961 (1)

R. Dunsmuir, J. Electron. Control 10, 453 (1961).

1958 (1)

A. G. Gurtovnik, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 1, 83 (1958).

Abraham, N. B.

R. S. Gioggia and N. B. Abraham, Opt. Commun. 47, 278 (1983).
[CrossRef]

R. S. Gioggia and N. B. Abraham, Phys. Rev. Lett. 51, 650 (1983).
[CrossRef]

N. B. Abraham, Laser Focus 19, 73 (1983).

M. Maeda and N. B. Abraham, Phys. Rev. A 26, 3395 (1982).
[CrossRef]

J. Bentley and N. B. Abraham, Opt. Commun. 41, 52 (1982).
[CrossRef]

N. B. Abraham and et al., in Third New Zealand Symposium on Laser Physics, Vol. 182 of Springer Lecture Notes in Physics (Springer-Verlag, Berlin, 1983), p. 107.

Allen, L.

Armstrong, D. R.

D. R. Armstrong, IEEE J. Quantum Electron. QE-4, 968 (1968).
[CrossRef]

Aymar, M.

M. Aymar, Ph.D. Thesis, University of Paris (1973).

Belenov, E. M.

See, for example, E. M. Belenov, V. N. Morozov, and A. N. Oraevskii, in Quantum Electronics in Lasers and Masers,Part 2, D. V. Skolbel’tsyn, ed. (Plenum, New York, 1972), p. 217.

Bentley, J.

J. Bentley and N. B. Abraham, Opt. Commun. 41, 52 (1982).
[CrossRef]

Berman, P. R.

P. Cahuzac, E. Marie, O. Robaux, R. Vetter, and P. R. Berman, J. Phys. B 11, 645 (1978).
[CrossRef]

Cahuzac, P.

P. Cahuzac, E. Marie, O. Robaux, R. Vetter, and P. R. Berman, J. Phys. B 11, 645 (1978).
[CrossRef]

P. Cahuzac, O. Robaux, and R. Vetter, J. Phys. B 9, 3165 (1976).
[CrossRef]

Casperson, L. W.

M. L. Minden and L. W. Casperson, IEEE J. Quantum Electron. QE-18, 1952 (1982).
[CrossRef]

L. W. Casperson, Phys. Rev. A 23, 248 (1981).
[CrossRef]

L. W. Casperson, Phys. Rev. A 21, 911 (1980).
[CrossRef]

L. W. Casperson, IEEE J. Quantum Electron. QE-14, 756 (1978).
[CrossRef]

L. W. Casperson and A. Yariv, IEEE J. Quantum Electron. QE-8, 69 (1972).
[CrossRef]

L. W. Casperson, “Modes and spectra of high gain lasers,” Ph.D. dissertation (California Institute of Technology, 1981; University Microfilms, Ann Arbor, Mich., no. 72-469), pp.76 and 236.

L. W. Casperson, “Modes and spectra of high gain lasers,” Ph.D. dissertation (California Institute of Technology, 1971; University Microfilms, Ann Arbor, Mich., no.72-469).

L. W. Casperson, in Third New Zealand Symposium on Laser Physics, Vol. 182 of Springer Lecture Notes in Physics (Springer-Verlag, Berlin, 1983), p. 88.

Cho, Y.

R. Graham and Y. Cho, Opt. Commun. 47, 52 (1983).
[CrossRef]

Clark, P.O.

P.O. Clark, R. A. Huback, and J. Y. Wada, JPL Contract No. 950803, Final Report, April1965.

DeMars, G.

H. Statz and G. DeMars, in Quantum Electronics, C. H. Townes, ed. (Columbia U. Press, New York, 1960),p. 530.

Dienes, A.

A. Dienes, Phys. Rev. 174, 414 (1968).
[CrossRef]

Dunsmuir, R.

R. Dunsmuir, J. Electron. Control 10, 453 (1961).

Faust, W. L.

W. L. Faust and R. A. McFarlane, J. Appl. Phys. 35, 2010 (1964).
[CrossRef]

W. L. Faust, R. A. McFarlane, C. K. N. Patel, and C. G. B. Garrett, Appl. Phys. Lett. 1, 85 (1962).
[CrossRef]

Freed, C.

C. Freed and H. A. Haus, IEEE J. Quantum Electron. QE-9, 219 (1973).
[CrossRef]

H. Granek, C. Freed, and H. A. Haus, IEEE J. Quantum Electron. QE-8, 404 (1972).
[CrossRef]

Garrett, C. G. B.

W. L. Faust, R. A. McFarlane, C. K. N. Patel, and C. G. B. Garrett, Appl. Phys. Lett. 1, 85 (1962).
[CrossRef]

Gibbon, J. D.

J. D. Gibbon and M. J. McGuinness, Physica 5D, 108 (1982).

Gioggia, R. S.

R. S. Gioggia and N. B. Abraham, Opt. Commun. 47, 278 (1983).
[CrossRef]

R. S. Gioggia and N. B. Abraham, Phys. Rev. Lett. 51, 650 (1983).
[CrossRef]

Gordon, E. I.

E. I. Gordon, A. D. White, and J. D. Rigden, in Proceedings of the Symposium on Optical Masers (Polytechnic Institute of Brooklyn, New York, 1963).

Gordon, P. L.

S. E. Schwartz and P. L. Gordon, J. Appl. Phys. 40, 4441 (1969).
[CrossRef]

Graham, R.

R. Graham and Y. Cho, Opt. Commun. 47, 52 (1983).
[CrossRef]

Granek, H.

H. Granek, C. Freed, and H. A. Haus, IEEE J. Quantum Electron. QE-8, 404 (1972).
[CrossRef]

Grasyuk, A. Z.

A. Z. Grasyuk and A. N. Oraevskii, Radio Eng. Electron. Phys. 9, 424 (1964).

A. Z. Grasyuk and A. N. Oraevskii, in Quantum Electronics and Coherent Light, P. A. Miles, ed. (Academic, New York, 1964),p. 192.

Gurtovnik, A. G.

A. G. Gurtovnik, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 1, 83 (1958).

Hänsen, T.

P. W. Smith and T. Hänsen, Phys. Rev. Lett. 26, 740 (1971).
[CrossRef]

Haus, H. A.

C. Freed and H. A. Haus, IEEE J. Quantum Electron. QE-9, 219 (1973).
[CrossRef]

H. Granek, C. Freed, and H. A. Haus, IEEE J. Quantum Electron. QE-8, 404 (1972).
[CrossRef]

Hendow, S. T.

S. T. Hendow and M. Sargent, Opt. Commun. 43, 59 (1982).
[CrossRef]

S. T. Hendow and M. Sargent, Opt. Commun. 40, 385 (1982).
[CrossRef]

Huback, R. A.

P.O. Clark, R. A. Huback, and J. Y. Wada, JPL Contract No. 950803, Final Report, April1965.

Husson, X.

X. Husson and M. Margerie, Opt. Commun. 5, 139 (1972).
[CrossRef]

Jones, D. G. C.

Klüver, J. W.

J. W. Klüver, J. Appl. Phys. 37, 2987 (1966).
[CrossRef]

Korobkin, V. V.

V. V. Korobkin and A. V. Uspenskii, Sov. Phys. JETP 18, 693 (1964).

La Tourrette, J. T.

J. Nella, S. Y. Szeto, P. Rabinowitz, and J. T. La Tourrette, IEEE J. Quantum Electron. QE-12, 543 (1976).
[CrossRef]

Lamb, W. E.

W. E. Lamb, Phys. Rev. 134, 1429 (1964).
[CrossRef]

Le Gouet, J. L.

J. L. Le Gouet, J. Phys. B 11, 3001 (1978).
[CrossRef]

Linford, G. J.

E. R. Peressini and G. J. Linford, IEEE J. Quantum Electron. QE-4, 657 (1968).
[CrossRef]

Maeda, M.

M. Maeda and N. B. Abraham, Phys. Rev. A 26, 3395 (1982).
[CrossRef]

Makhov, G.

G. Makhov, J. Appl. Phys. 33, 202 (1962).
[CrossRef]

Mandel, P.

P. Mandel, Opt. Commun. 45, 269 (1983).
[CrossRef]

P. Mandel, Opt. Commun. 44, 400 (1983).
[CrossRef]

P. Mandel and H. Zeghlache, Opt. Commun. 47, 146 (1983).
[CrossRef]

Margerie, M.

X. Husson and M. Margerie, Opt. Commun. 5, 139 (1972).
[CrossRef]

Marie, E.

R. Vetter and E. Marie, J. Phys. B 11, 2845 (1978).
[CrossRef]

P. Cahuzac, E. Marie, O. Robaux, R. Vetter, and P. R. Berman, J. Phys. B 11, 645 (1978).
[CrossRef]

McFarlane, R. A.

W. L. Faust and R. A. McFarlane, J. Appl. Phys. 35, 2010 (1964).
[CrossRef]

W. L. Faust, R. A. McFarlane, C. K. N. Patel, and C. G. B. Garrett, Appl. Phys. Lett. 1, 85 (1962).
[CrossRef]

McGuinness, M. J.

J. D. Gibbon and M. J. McGuinness, Physica 5D, 108 (1982).

Minden, M. L.

M. L. Minden and L. W. Casperson, IEEE J. Quantum Electron. QE-18, 1952 (1982).
[CrossRef]

Morozov, V. N.

See, for example, E. M. Belenov, V. N. Morozov, and A. N. Oraevskii, in Quantum Electronics in Lasers and Masers,Part 2, D. V. Skolbel’tsyn, ed. (Plenum, New York, 1972), p. 217.

Nella, J.

J. Nella, S. Y. Szeto, P. Rabinowitz, and J. T. La Tourrette, IEEE J. Quantum Electron. QE-12, 543 (1976).
[CrossRef]

Oraevskii, A. N.

A. Z. Grasyuk and A. N. Oraevskii, Radio Eng. Electron. Phys. 9, 424 (1964).

A. Z. Grasyuk and A. N. Oraevskii, in Quantum Electronics and Coherent Light, P. A. Miles, ed. (Academic, New York, 1964),p. 192.

See, for example, E. M. Belenov, V. N. Morozov, and A. N. Oraevskii, in Quantum Electronics in Lasers and Masers,Part 2, D. V. Skolbel’tsyn, ed. (Plenum, New York, 1972), p. 217.

Patel, C. K. N.

C. K. N. Patel, Phys. Rev. 131, 1582 (1963).
[CrossRef]

W. L. Faust, R. A. McFarlane, C. K. N. Patel, and C. G. B. Garrett, Appl. Phys. Lett. 1, 85 (1962).
[CrossRef]

Peressini, E. R.

E. R. Peressini and G. J. Linford, IEEE J. Quantum Electron. QE-4, 657 (1968).
[CrossRef]

Rabinowitz, P.

J. Nella, S. Y. Szeto, P. Rabinowitz, and J. T. La Tourrette, IEEE J. Quantum Electron. QE-12, 543 (1976).
[CrossRef]

Rigden, J. D.

E. I. Gordon, A. D. White, and J. D. Rigden, in Proceedings of the Symposium on Optical Masers (Polytechnic Institute of Brooklyn, New York, 1963).

Robaux, O.

P. Cahuzac, E. Marie, O. Robaux, R. Vetter, and P. R. Berman, J. Phys. B 11, 645 (1978).
[CrossRef]

P. Cahuzac, O. Robaux, and R. Vetter, J. Phys. B 9, 3165 (1976).
[CrossRef]

Sargent, M.

S. T. Hendow and M. Sargent, Opt. Commun. 43, 59 (1982).
[CrossRef]

S. T. Hendow and M. Sargent, Opt. Commun. 40, 385 (1982).
[CrossRef]

Schofield, D. G.

Schwartz, S. E.

S. E. Schwartz and P. L. Gordon, J. Appl. Phys. 40, 4441 (1969).
[CrossRef]

Sinnett, D. M.

D. M. Sinnett, J. Appl. Phys. 33, 1578 (1962).
[CrossRef]

Smith, P. W.

P. W. Smith, IEEE J. Quantum Electron. QE-8, 704 (1972).
[CrossRef]

P. W. Smith and T. Hänsen, Phys. Rev. Lett. 26, 740 (1971).
[CrossRef]

Souma, H.

See, for example, T. Yajima and H. Souma, Phys. Rev. A 17, 309 (1978).
[CrossRef]

Statz, H.

C. L. Tang and H. Statz, J. Appl. Phys. 38, 2963 (1967).
[CrossRef]

H. Statz and G. DeMars, in Quantum Electronics, C. H. Townes, ed. (Columbia U. Press, New York, 1960),p. 530.

Szeto, S. Y.

J. Nella, S. Y. Szeto, P. Rabinowitz, and J. T. La Tourrette, IEEE J. Quantum Electron. QE-12, 543 (1976).
[CrossRef]

Tang, C. L.

C. L. Tang and H. Statz, J. Appl. Phys. 38, 2963 (1967).
[CrossRef]

Uspenskii, A. V.

A. V. Uspenskii, Radio Eng. Electron. Phys. 9, 605 (1964).

V. V. Korobkin and A. V. Uspenskii, Sov. Phys. JETP 18, 693 (1964).

A. V. Uspenskii, Radio Eng. Electron. Phys. 8, 1145 (1963).

Vetter, R.

P. Cahuzac, E. Marie, O. Robaux, R. Vetter, and P. R. Berman, J. Phys. B 11, 645 (1978).
[CrossRef]

R. Vetter and E. Marie, J. Phys. B 11, 2845 (1978).
[CrossRef]

P. Cahuzac, O. Robaux, and R. Vetter, J. Phys. B 9, 3165 (1976).
[CrossRef]

Wada, J. Y.

P.O. Clark, R. A. Huback, and J. Y. Wada, JPL Contract No. 950803, Final Report, April1965.

White, A. D.

E. I. Gordon, A. D. White, and J. D. Rigden, in Proceedings of the Symposium on Optical Masers (Polytechnic Institute of Brooklyn, New York, 1963).

Yajima, T.

See, for example, T. Yajima and H. Souma, Phys. Rev. A 17, 309 (1978).
[CrossRef]

Yariv, A.

L. W. Casperson and A. Yariv, IEEE J. Quantum Electron. QE-8, 69 (1972).
[CrossRef]

Zeghlache, H.

P. Mandel and H. Zeghlache, Opt. Commun. 47, 146 (1983).
[CrossRef]

Appl. Phys. Lett. (1)

W. L. Faust, R. A. McFarlane, C. K. N. Patel, and C. G. B. Garrett, Appl. Phys. Lett. 1, 85 (1962).
[CrossRef]

IEEE J. Quantum Electron. (9)

J. Nella, S. Y. Szeto, P. Rabinowitz, and J. T. La Tourrette, IEEE J. Quantum Electron. QE-12, 543 (1976).
[CrossRef]

D. R. Armstrong, IEEE J. Quantum Electron. QE-4, 968 (1968).
[CrossRef]

L. W. Casperson and A. Yariv, IEEE J. Quantum Electron. QE-8, 69 (1972).
[CrossRef]

L. W. Casperson, IEEE J. Quantum Electron. QE-14, 756 (1978).
[CrossRef]

M. L. Minden and L. W. Casperson, IEEE J. Quantum Electron. QE-18, 1952 (1982).
[CrossRef]

P. W. Smith, IEEE J. Quantum Electron. QE-8, 704 (1972).
[CrossRef]

H. Granek, C. Freed, and H. A. Haus, IEEE J. Quantum Electron. QE-8, 404 (1972).
[CrossRef]

C. Freed and H. A. Haus, IEEE J. Quantum Electron. QE-9, 219 (1973).
[CrossRef]

E. R. Peressini and G. J. Linford, IEEE J. Quantum Electron. QE-4, 657 (1968).
[CrossRef]

Izv. Vyssh. Uchebn. Zaved. Radiofiz. (1)

A. G. Gurtovnik, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 1, 83 (1958).

J. Appl. Phys. (6)

G. Makhov, J. Appl. Phys. 33, 202 (1962).
[CrossRef]

D. M. Sinnett, J. Appl. Phys. 33, 1578 (1962).
[CrossRef]

J. W. Klüver, J. Appl. Phys. 37, 2987 (1966).
[CrossRef]

C. L. Tang and H. Statz, J. Appl. Phys. 38, 2963 (1967).
[CrossRef]

S. E. Schwartz and P. L. Gordon, J. Appl. Phys. 40, 4441 (1969).
[CrossRef]

W. L. Faust and R. A. McFarlane, J. Appl. Phys. 35, 2010 (1964).
[CrossRef]

J. Electron. Control (1)

R. Dunsmuir, J. Electron. Control 10, 453 (1961).

J. Opt. Soc. Am. (1)

J. Phys. B (4)

R. Vetter and E. Marie, J. Phys. B 11, 2845 (1978).
[CrossRef]

P. Cahuzac, O. Robaux, and R. Vetter, J. Phys. B 9, 3165 (1976).
[CrossRef]

P. Cahuzac, E. Marie, O. Robaux, R. Vetter, and P. R. Berman, J. Phys. B 11, 645 (1978).
[CrossRef]

J. L. Le Gouet, J. Phys. B 11, 3001 (1978).
[CrossRef]

Laser Focus (1)

N. B. Abraham, Laser Focus 19, 73 (1983).

Opt. Commun. (9)

R. Graham and Y. Cho, Opt. Commun. 47, 52 (1983).
[CrossRef]

P. Mandel and H. Zeghlache, Opt. Commun. 47, 146 (1983).
[CrossRef]

P. Mandel, Opt. Commun. 44, 400 (1983).
[CrossRef]

P. Mandel, Opt. Commun. 45, 269 (1983).
[CrossRef]

J. Bentley and N. B. Abraham, Opt. Commun. 41, 52 (1982).
[CrossRef]

S. T. Hendow and M. Sargent, Opt. Commun. 40, 385 (1982).
[CrossRef]

S. T. Hendow and M. Sargent, Opt. Commun. 43, 59 (1982).
[CrossRef]

X. Husson and M. Margerie, Opt. Commun. 5, 139 (1972).
[CrossRef]

R. S. Gioggia and N. B. Abraham, Opt. Commun. 47, 278 (1983).
[CrossRef]

Phys. Rev. (3)

W. E. Lamb, Phys. Rev. 134, 1429 (1964).
[CrossRef]

A. Dienes, Phys. Rev. 174, 414 (1968).
[CrossRef]

C. K. N. Patel, Phys. Rev. 131, 1582 (1963).
[CrossRef]

Phys. Rev. A (4)

L. W. Casperson, Phys. Rev. A 21, 911 (1980).
[CrossRef]

L. W. Casperson, Phys. Rev. A 23, 248 (1981).
[CrossRef]

M. Maeda and N. B. Abraham, Phys. Rev. A 26, 3395 (1982).
[CrossRef]

See, for example, T. Yajima and H. Souma, Phys. Rev. A 17, 309 (1978).
[CrossRef]

Phys. Rev. Lett. (2)

R. S. Gioggia and N. B. Abraham, Phys. Rev. Lett. 51, 650 (1983).
[CrossRef]

P. W. Smith and T. Hänsen, Phys. Rev. Lett. 26, 740 (1971).
[CrossRef]

Physica (1)

J. D. Gibbon and M. J. McGuinness, Physica 5D, 108 (1982).

Radio Eng. Electron. Phys. (3)

A. V. Uspenskii, Radio Eng. Electron. Phys. 8, 1145 (1963).

A. V. Uspenskii, Radio Eng. Electron. Phys. 9, 605 (1964).

A. Z. Grasyuk and A. N. Oraevskii, Radio Eng. Electron. Phys. 9, 424 (1964).

Sov. Phys. JETP (1)

V. V. Korobkin and A. V. Uspenskii, Sov. Phys. JETP 18, 693 (1964).

Other (10)

L. W. Casperson, “Modes and spectra of high gain lasers,” Ph.D. dissertation (California Institute of Technology, 1981; University Microfilms, Ann Arbor, Mich., no. 72-469), pp.76 and 236.

A. Z. Grasyuk and A. N. Oraevskii, in Quantum Electronics and Coherent Light, P. A. Miles, ed. (Academic, New York, 1964),p. 192.

See, for example, E. M. Belenov, V. N. Morozov, and A. N. Oraevskii, in Quantum Electronics in Lasers and Masers,Part 2, D. V. Skolbel’tsyn, ed. (Plenum, New York, 1972), p. 217.

L. W. Casperson, in Third New Zealand Symposium on Laser Physics, Vol. 182 of Springer Lecture Notes in Physics (Springer-Verlag, Berlin, 1983), p. 88.

L. W. Casperson, “Modes and spectra of high gain lasers,” Ph.D. dissertation (California Institute of Technology, 1971; University Microfilms, Ann Arbor, Mich., no.72-469).

N. B. Abraham and et al., in Third New Zealand Symposium on Laser Physics, Vol. 182 of Springer Lecture Notes in Physics (Springer-Verlag, Berlin, 1983), p. 107.

H. Statz and G. DeMars, in Quantum Electronics, C. H. Townes, ed. (Columbia U. Press, New York, 1960),p. 530.

E. I. Gordon, A. D. White, and J. D. Rigden, in Proceedings of the Symposium on Optical Masers (Polytechnic Institute of Brooklyn, New York, 1963).

P.O. Clark, R. A. Huback, and J. Y. Wada, JPL Contract No. 950803, Final Report, April1965.

M. Aymar, Ph.D. Thesis, University of Paris (1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental pulsation waveforms for (a) a discharge current of 40 mA and (b) a discharge current of 50 mA in a xenon laser. These curves are reproduced from Ref. 11, and further experimental details are in that reference.

Fig. 2
Fig. 2

Theoretical spontaneous-pulsation waveforms for a single-mode xenon laser with line-center tuning and the threshold-parameter values: (a) r = 3.0, (b) r = 2.5, (c) r = 2.0, (d) r = 1.2, (e) r = 1.1, and (f) r = 1.06. Generally, the pulsation amplitude, frequency, and waveform complexity decrease with decreasing values of r. Transitions between periodic waveform types are usually chaotic.

Fig. 3
Fig. 3

Theoretical (lines) and experimental (circles) pulsation frequencies as a function of threshold parameter (discharge current). Dashed lines indicate the regions of chaotic output, and the dotted line is meant to emphasize the fact that in the double-burst region the true repetition frequency is half of what is indicated by the solid line.

Fig. 4
Fig. 4

Theoretical normalized-average output intensity as a function of threshold parameter for a laser tuned to line center. Dashed lines indicate the regions of chaos, and the lower curve shows the steady-state intensity that would result if all time derivatives were set to zero.

Fig. 5
Fig. 5

Theoretical spontaneous-pulsation waveforms for a single-mode xenon laser with a threshold parameter of r = 1.7 and detunings of (a) Δν = 0, (b) Δν = 2.5Δνh, (c) Δν = 5Δνh, and (d) Δν = 7.5Δνh.

Fig. 6
Fig. 6

Theoretical spontaneous-pulsation waveforms for a higher-pressure (50-mTorr) single-mode xenon laser with line-center tuning and the threshold-parameter values (a) r = 2.0, (b) r = 1.8, (c) r = 1.6, (d) r = 1.4, (e) r = 1.2, and (f) r = 1.1. Pulsations are faster, exhibit less ringing, and have a higher instability threshold than the lower-pressure situation represented in Fig. 2.

Tables (1)

Tables Icon

Table 1 Xenon-Laser Lifetimes

Equations (54)

Equations on this page are rendered with MathJax. Learn more.

( t + υ z ) ρ a b ( υ , ω α , z , t ) = ( i ω α + γ ) ρ a b ( υ , ω α , z , t ) i μ E ( z , t ) [ ρ a a ( υ , ω α , z , t ) ρ b b ( υ , ω α , z , t ) ] ,
( t + υ z ) ρ a a ( υ , ω α , z , t ) = λ a ( υ , ω α , z , t ) γ a ρ a a ( υ , ω α , z , t ) + [ i μ E ( z , t ) ρ b a ( υ , ω α , z , t ) + c . c . ] Γ a ( υ , υ ) ρ a a ( υ , ω α , z , t ) d υ + Γ a ( υ , υ ) ρ a a ( υ , ω α , z , t ) d υ ,
( t + υ z ) ρ b b ( υ , ω α , z , t ) = λ b ( υ , ω α , z , t ) γ b ρ b b ( υ , ω α , z , t ) + γ ab ρ a a ( υ , ω α , z , t ) + [ i μ E ( z , t ) ρ b a ( υ , ω a , z , t ) + c . c . ] Γ b ( υ , υ ) ρ b b ( υ , ω α , z , t ) d υ + Γ b ( υ , υ ) ρ b b ( υ , ω α , z , t ) d υ
ρ b a ( υ , ω α , z , t ) = ρ a b * ( υ , ω α , z , t ) ,
2 E ( z , t ) z 2 μ 0 σ E ( z , t ) t μ 0 0 2 E ( z , t ) t 2 = μ 0 2 P ( z , t ) t 2 .
P ( z , t ) = 0 μ p a b ( υ , ω α , z , t ) d υ d ω α + c . c .
E ( z , t ) = 1 2 E ( t ) exp ( i k z i ω t ) + c . c . ,
ρ a b ( υ , ω α , z , t ) = P ( υ , ω α , t ) exp ( i k z i ω t ) / 2 μ .
P ( υ , ω α , t ) t = i ( ω ω α k υ ) P ( υ , ω α , t ) γ P ( υ , ω α , t ) i μ 2 E ( z , t ) [ ρ b b ( υ , ω α , t ) ρ b b ( υ , ω α , t ) ] ,
ρ a a ( υ , w α , t ) t = λ a ( υ , w α , t ) γ a ρ a a ( υ , w α , t ) + i 4 [ E ( t ) P * ( υ , w α , t ) E * ( t ) P ( υ , w α , t ) ] Γ a ( υ , υ ) ρ a a ( υ , w α , t ) d υ + Γ a ( υ , υ ) ρ a a ( υ , w α , t ) d υ ,
ρ b b ( υ , ω α , t ) t = λ b ( υ , ω α , t ) γ b ρ b b ( υ , ω α , t ) + γ a b ρ a a ( v , ω α , t ) i 4 [ E ( t ) P * ( υ , ω α , t ) E * ( t ) P ( υ , ω α , t ) ] Γ b ( υ , υ ) ρ b b ( υ , ω α , t ) d υ + Γ b ( υ , υ ) ρ b b ( υ , ω α , t ) d υ ,
d E ( t ) d t = E ( t ) 2 t c + i ( ω Ω ) E ( t ) + i ω 0 l 2 0 L 0 P ( υ , ω α , t ) d υ d ω α .
P r t = ( ω ω α k υ ) P i γ P r + μ 2 E i D ,
P i t = ( ω ω α k υ ) P r γ P i + μ 2 E r D ,
D t = λ a λ b γ a + γ a b + γ b 2 D γ a + γ a b γ b 2 M + 1 ( E r P i E i P r ) 1 2 Γ a ( υ , υ ) ( M + D ) d υ + 1 2 Γ a ( υ , υ ) ( M + D ) d υ + 1 2 Γ b ( υ , υ ) ( M D ) d υ 1 2 Γ b ( υ , υ ) ( M D ) d υ ,
M t = λ a + λ b γ a γ a b γ b 2 D γ a γ a b + γ b 2 M 1 2 Γ a ( υ , υ ) ( M + D ) d υ + 1 2 Γ a ( υ , υ ) ( M + D ) d υ 1 2 Γ b ( υ , υ ) ( M D ) d υ + 1 2 Γ b ( υ , υ ) ( M D ) d υ ,
d E r d t = E r 2 t c ( ω Ω ) E i ω 0 l 2 0 L 0 P i d υ d ω α ,
d E i d t = E i 2 t c + ( ω Ω ) E r + ω 0 l 2 0 L 0 P r d υ d ω α ,
Γ a ( υ , υ ) = Γ a u π 1 / 2 exp ( υ 2 / u 2 ) ,
Γ b ( υ , υ ) = Γ b u π 1 / 2 exp ( υ 2 / u 2 ) ,
D t = λ a λ b γ a + γ a b + γ b 2 D γ a + γ a b γ b 2 M + 1 ( E r P i E i P r ) + Γ a 2 u π 1 / 2 exp ( υ 2 / u 2 ) ( M + D ) d υ Γ b 2 u π 1 / 2 exp ( υ 2 / u 2 ) ( M D ) d υ ,
M t = λ a + λ b γ a γ a b γ b 2 D γ a γ a b + γ b 2 M + Γ a 2 u π 1 / 2 exp ( υ 2 / u 2 ) ( M + D ) d υ + Γ b 2 u π 1 / 2 exp ( υ 2 / u 2 ) ( M D ) d υ ,
0 = ( ω ω α k υ ) P i γ P r + μ 2 E i D ,
0 = ( ω ω α k υ ) P r γ P i + μ 2 E r D ,
0 = λ a λ b γ a + γ a b + γ b 2 D γ a + γ a b γ b 2 M + 1 ( E r P i E i P r ) + Γ a 2 u π 1 / 2 exp ( υ 2 / u 2 ) ( M + D ) d υ Γ b 2 u π 1 / 2 exp ( υ 2 / u 2 ) ( M D ) d υ ,
0 = λ a + λ b γ a γ a b γ b 2 D γ a γ a b + γ b 2 M + Γ a 2 u π 1 / 2 exp ( υ 2 / u 2 ) ( M + D ) d υ + Γ b 2 u π 1 / 2 exp ( υ 2 / u 2 ) ( M D ) d υ .
P r = μ 2 D γ [ ( ω ω α k υ ) / γ ] E r + E i 1 + [ ( ω ω α k υ ) / γ ] 2 ,
P i = μ 2 D γ [ ( ω ω α k υ ) / γ ] E i + E r 1 + [ ( ω ω α k υ ) / γ ] 2 .
0 = λ a λ b γ a + γ a b + γ b 2 D γ a + γ a b γ b 2 M μ 2 D γ 2 E r 2 + E i 2 1 + [ ( ω ω α k υ ) / γ ] 2 + Γ a 2 u π 1 / 2 exp ( υ 2 / u 2 ) ( M + D ) d υ Γ b 2 u π 1 / 2 exp ( υ 2 / u 2 ) ( M D ) d υ ,
0 = λ a + λ b γ a γ a b γ b 2 D γ a γ a b + γ b 2 M + Γ a 2 u π 1 / 2 exp ( υ 2 / u 2 ) ( M + D ) d υ , + Γ b 2 u π 1 / 2 exp ( υ 2 / u 2 ) ( M D ) d υ ,
λ a = [ L a + Γ a 2 ( M + D ) d υ ] exp ( υ 2 / u 2 ) u π 1 / 2 ,
λ b = [ L b + Γ b 2 ( M D ) d υ ] exp ( υ 2 / u 2 ) u π 1 / 2 ,
λ a = L a exp ( υ 2 / u 2 ) / u π 1 / 2 ,
λ b = L b exp ( υ 2 / u 2 ) / u π 1 / 2 .
0 = λ a + λ b γ a + γ a b + γ b 2 D γ a + γ a b γ b 2 M μ 2 D γ 2 E r 2 + E i 2 1 + [ ( ω ω α k υ ) / γ ] 2 ,
0 = λ a + λ b γ a γ a b γ b 2 D γ a γ a b + γ b 2 M .
D = ( 1 γ a b / γ b ) ( λ a / γ a ) γ b / γ a 1 + ( A r 2 + A i 2 ) / [ 1 + [ ( ω ω α k υ ) 2 / γ 2 ] ,
A r = ( γ a γ a b + γ b 2 γ γ a γ b ) 1 / 2 μ E r ,
A i = ( γ a γ a b + γ b 2 γ γ a γ b ) 1 / 2 μ E i .
P i ( V , U ) = u γ t c ω 0 l 0 L μ ( γ a γ a b + γ b 2 γ γ a γ b ) 1 / 2 P i ( υ , ω α ) ,
P r ( V , U ) = u γ t c ω 0 l 0 L μ ( γ a γ a b + γ b 2 γ γ a γ b ) 1 / 2 P r ( υ , ω α ) ,
D ( V , U ) = u t c ω 0 l μ 2 0 L D ( υ , ω α ) ,
M ( V , U ) = u t c ω 0 l μ 2 0 L M ( υ , ω α ) ,
λ a ( V , U ) = u t c ω 0 l μ 2 0 L λ a ( υ , ω α ) ,
λ b ( V , U ) = u t c ω 0 l μ 2 0 L λ b ( υ , ω α ) ,
V = υ u = k υ γ ,
U = ω a ω 0 γ ,
P r t = γ [ P r + ( y U V ) P i A i D ] ,
P i t = γ [ P i ( y U V ) P r A r D ] ,
D t = λ a λ b γ a + γ a b + γ b 2 D γ a + γ a b γ b 2 M + 2 γ a γ b γ a γ a b + γ b ( A r P i A i P r ) + Γ a 2 π 1 / 2 exp ( 2 V 2 ) ( M + D ) d V Γ b 2 π 1 / 2 exp ( 2 V 2 ) ( M D ) d V ,
M t = λ a + λ b γ a γ a b γ b 2 D γ a γ a b + γ b 2 M + Γ a 2 π 1 / 2 exp ( 2 V 2 ) ( M + D ) d V + Γ b 2 π 1 / 2 exp ( 2 V 2 ) ( M D ) d V ,
A r t = 1 2 t c [ A r + δ ( y y 0 ) A i + P i d V d U ] ,
A i t = 1 2 t c [ A i δ ( y y 0 ) A r P r d V d U ] ,
λ b λ a = γ b n b γ a n a 1 .

Metrics