Abstract

The self-pulsing instability in inhomogeneously broadened unidirectional traveling-wave single-mode lasers is discussed in detail. The analytic linear stability analysis of the stationary solutions shows that, in the case of a good-cavity limit and a large inhomogeneous linewidth, no self-pulsing instability occurs. On the other hand, in the case of a bad-cavity limit, there are two instabilities. At the same time, in the intermediate-cavity case two self-pulsing instabilities also exist; one corresponds to a lower threshold value, and the other to a higher one.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Haken, Z. Phys. 190, 327 (1966).
    [Crossref]
  2. H. Risken, C. Schmid, and W. Weidlich, Z. Phys. 194, 337 (1966).
    [Crossref]
  3. H. Risken and K. Nummedal, J. Appl. Phys. 39, 4662 (1966).
    [Crossref]
  4. R. Graham and H. Haken, Z. Phys. 213, 420 (1968).
    [Crossref]
  5. H. Haken and H. Ohno, Opt. Commun. 16, 205 (1976).
    [Crossref]
  6. M. Mayr, H. Risken, and H. D. Vollmer, Opt. Commun. 36, 480 (1981).
    [Crossref]
  7. H. Haken, Phys. Lett. 53A, 77 (1975).
  8. E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963).
    [Crossref]
  9. L. W. Casperson, IEEE J. Quantum Electron. QE-14, 756 (1978).
    [Crossref]
  10. L. W. Casperson, Phys. Rev. A 21, 911 (1980).
    [Crossref]
  11. S. T. Hendow and M. Sargent, Opt. Commun. 40, 385 (1982).
    [Crossref]
  12. J. Bentley and N. B. Abraham, Opt. Commun. 41, 52 (1982).
    [Crossref]
  13. P. Mandel, Opt. Commun. 44, 400 (1983).
    [Crossref]
  14. P. Mandel, Opt. Commun. 45, 269 (1983).
    [Crossref]
  15. L. A. Lugiato, L. M. Narducci, D. K. Bandy, and N. B. Abraham, Opt. Commun. 46, 115 (1983).
    [Crossref]
  16. H. Haken, in Encyclopedia of Physics, Laser Theory (Springer-Verlag, Berlin, 1983), Vol. XXV/2c.
  17. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).
  18. H. Haken, Advanced Synergetics (Springer-Verlag, Berlin, 1983).

1983 (3)

P. Mandel, Opt. Commun. 44, 400 (1983).
[Crossref]

P. Mandel, Opt. Commun. 45, 269 (1983).
[Crossref]

L. A. Lugiato, L. M. Narducci, D. K. Bandy, and N. B. Abraham, Opt. Commun. 46, 115 (1983).
[Crossref]

1982 (2)

S. T. Hendow and M. Sargent, Opt. Commun. 40, 385 (1982).
[Crossref]

J. Bentley and N. B. Abraham, Opt. Commun. 41, 52 (1982).
[Crossref]

1981 (1)

M. Mayr, H. Risken, and H. D. Vollmer, Opt. Commun. 36, 480 (1981).
[Crossref]

1980 (1)

L. W. Casperson, Phys. Rev. A 21, 911 (1980).
[Crossref]

1978 (1)

L. W. Casperson, IEEE J. Quantum Electron. QE-14, 756 (1978).
[Crossref]

1976 (1)

H. Haken and H. Ohno, Opt. Commun. 16, 205 (1976).
[Crossref]

1975 (1)

H. Haken, Phys. Lett. 53A, 77 (1975).

1968 (1)

R. Graham and H. Haken, Z. Phys. 213, 420 (1968).
[Crossref]

1966 (3)

H. Haken, Z. Phys. 190, 327 (1966).
[Crossref]

H. Risken, C. Schmid, and W. Weidlich, Z. Phys. 194, 337 (1966).
[Crossref]

H. Risken and K. Nummedal, J. Appl. Phys. 39, 4662 (1966).
[Crossref]

1963 (1)

E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963).
[Crossref]

Abraham, N. B.

L. A. Lugiato, L. M. Narducci, D. K. Bandy, and N. B. Abraham, Opt. Commun. 46, 115 (1983).
[Crossref]

J. Bentley and N. B. Abraham, Opt. Commun. 41, 52 (1982).
[Crossref]

Abramowitz, M.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).

Bandy, D. K.

L. A. Lugiato, L. M. Narducci, D. K. Bandy, and N. B. Abraham, Opt. Commun. 46, 115 (1983).
[Crossref]

Bentley, J.

J. Bentley and N. B. Abraham, Opt. Commun. 41, 52 (1982).
[Crossref]

Casperson, L. W.

L. W. Casperson, Phys. Rev. A 21, 911 (1980).
[Crossref]

L. W. Casperson, IEEE J. Quantum Electron. QE-14, 756 (1978).
[Crossref]

Graham, R.

R. Graham and H. Haken, Z. Phys. 213, 420 (1968).
[Crossref]

Haken, H.

H. Haken and H. Ohno, Opt. Commun. 16, 205 (1976).
[Crossref]

H. Haken, Phys. Lett. 53A, 77 (1975).

R. Graham and H. Haken, Z. Phys. 213, 420 (1968).
[Crossref]

H. Haken, Z. Phys. 190, 327 (1966).
[Crossref]

H. Haken, in Encyclopedia of Physics, Laser Theory (Springer-Verlag, Berlin, 1983), Vol. XXV/2c.

H. Haken, Advanced Synergetics (Springer-Verlag, Berlin, 1983).

Hendow, S. T.

S. T. Hendow and M. Sargent, Opt. Commun. 40, 385 (1982).
[Crossref]

Lorenz, E. N.

E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963).
[Crossref]

Lugiato, L. A.

L. A. Lugiato, L. M. Narducci, D. K. Bandy, and N. B. Abraham, Opt. Commun. 46, 115 (1983).
[Crossref]

Mandel, P.

P. Mandel, Opt. Commun. 44, 400 (1983).
[Crossref]

P. Mandel, Opt. Commun. 45, 269 (1983).
[Crossref]

Mayr, M.

M. Mayr, H. Risken, and H. D. Vollmer, Opt. Commun. 36, 480 (1981).
[Crossref]

Narducci, L. M.

L. A. Lugiato, L. M. Narducci, D. K. Bandy, and N. B. Abraham, Opt. Commun. 46, 115 (1983).
[Crossref]

Nummedal, K.

H. Risken and K. Nummedal, J. Appl. Phys. 39, 4662 (1966).
[Crossref]

Ohno, H.

H. Haken and H. Ohno, Opt. Commun. 16, 205 (1976).
[Crossref]

Risken, H.

M. Mayr, H. Risken, and H. D. Vollmer, Opt. Commun. 36, 480 (1981).
[Crossref]

H. Risken and K. Nummedal, J. Appl. Phys. 39, 4662 (1966).
[Crossref]

H. Risken, C. Schmid, and W. Weidlich, Z. Phys. 194, 337 (1966).
[Crossref]

Sargent, M.

S. T. Hendow and M. Sargent, Opt. Commun. 40, 385 (1982).
[Crossref]

Schmid, C.

H. Risken, C. Schmid, and W. Weidlich, Z. Phys. 194, 337 (1966).
[Crossref]

Stegun, I. A.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).

Vollmer, H. D.

M. Mayr, H. Risken, and H. D. Vollmer, Opt. Commun. 36, 480 (1981).
[Crossref]

Weidlich, W.

H. Risken, C. Schmid, and W. Weidlich, Z. Phys. 194, 337 (1966).
[Crossref]

IEEE J. Quantum Electron. (1)

L. W. Casperson, IEEE J. Quantum Electron. QE-14, 756 (1978).
[Crossref]

J. Appl. Phys. (1)

H. Risken and K. Nummedal, J. Appl. Phys. 39, 4662 (1966).
[Crossref]

J. Atmos. Sci. (1)

E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963).
[Crossref]

Opt. Commun. (7)

H. Haken and H. Ohno, Opt. Commun. 16, 205 (1976).
[Crossref]

M. Mayr, H. Risken, and H. D. Vollmer, Opt. Commun. 36, 480 (1981).
[Crossref]

S. T. Hendow and M. Sargent, Opt. Commun. 40, 385 (1982).
[Crossref]

J. Bentley and N. B. Abraham, Opt. Commun. 41, 52 (1982).
[Crossref]

P. Mandel, Opt. Commun. 44, 400 (1983).
[Crossref]

P. Mandel, Opt. Commun. 45, 269 (1983).
[Crossref]

L. A. Lugiato, L. M. Narducci, D. K. Bandy, and N. B. Abraham, Opt. Commun. 46, 115 (1983).
[Crossref]

Phys. Lett. (1)

H. Haken, Phys. Lett. 53A, 77 (1975).

Phys. Rev. A (1)

L. W. Casperson, Phys. Rev. A 21, 911 (1980).
[Crossref]

Z. Phys. (3)

R. Graham and H. Haken, Z. Phys. 213, 420 (1968).
[Crossref]

H. Haken, Z. Phys. 190, 327 (1966).
[Crossref]

H. Risken, C. Schmid, and W. Weidlich, Z. Phys. 194, 337 (1966).
[Crossref]

Other (3)

H. Haken, in Encyclopedia of Physics, Laser Theory (Springer-Verlag, Berlin, 1983), Vol. XXV/2c.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).

H. Haken, Advanced Synergetics (Springer-Verlag, Berlin, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Threshold pump parameter ζζc versus cavity loss δ.

Fig. 2
Fig. 2

Critical self-pulsing frequency Ω versus cavity loss δ.

Fig. 3
Fig. 3

Threshold pump parameter ζζc versus cavity loss δ.

Fig. 4
Fig. 4

Critical self-pulsing frequency Ω versus cavity loss δ.

Fig. 5
Fig. 5

Threshold pump parameter ζ′ζ′c versus cavity loss δ.

Fig. 6
Fig. 6

Critical self-pulsing frequency Ω′ versus cavity loss δ.

Fig. 7
Fig. 7

Threshold pump parameter ζ′ ζ′c versus cavity loss δ.

Fig. 8
Fig. 8

Critical self-pulsing frequency Ω′ versus cavity loss δ.

Fig. 9
Fig. 9

Threshold pump parameter versus cavity loss. Solid curve denotes the second threshold, and dashed curve denotes the third one.

Fig. 10
Fig. 10

Critical self-pulsing frequency versus cavity loss. Solid curve denotes the second threshold, and dashed curve denotes the third one.

Fig. 11
Fig. 11

Threshold pump parameter versus cavity loss. Solid curve denotes the second threshold, and dashed curve denotes the third one.

Fig. 12
Fig. 12

Critical self-pulsing frequency versus cavity loss. Solid curve denotes the second threshold, and dashed curve denotes the third one.

Equations (79)

Equations on this page are rendered with MathJax. Learn more.

d b d t = ( i ω κ ) b i g μ α μ ,
d α μ d t = ( i ω μ γ ) α μ + i g μ * σ μ b ,
d σ μ d t = γ ( d 0 μ σ μ ) 2 i ( g μ α μ b * g μ * α μ * b ) ,
g μ = g exp ( i k x μ ) ,
g μ * g μ = g 2 .
b = γ 2 g E exp ( i ϕ ) ,
α μ = κ γ 2 g 2 ( P + i Q ) exp ( i ϕ ) exp ( i k x μ ) ,
σ μ = κ γ g 2 D ,
d 0 μ = κ γ g 2 D ¯ f ,
t = τ γ .
d E d τ = κ γ E + κ γ Q d ω ¯ ,
d ϕ d τ = ω γ + κ γ E P d ω ¯ ,
d P d τ = P + ( ω ¯ γ d ϕ d τ ) Q ,
d Q d τ = Q + D E ( ω ¯ γ d ϕ d τ ) P ,
d D d τ = γ γ ( D ¯ f D ) E Q .
d ϕ d τ = Ω γ
E = P = Q = 0 ,
D = D ¯ f ,
ϕ = Ω γ τ ,
E = [ γ γ ( π D ¯ 2 γ 2 α 2 Re 2 W ( x + i y ) 1 ) ] 1 / 2 ,
P = γ N a D ¯ E ( ω ¯ Ω ) f ,
Q = γ N a D ¯ E f ,
D = 1 N a [ γ 2 + ( ω ¯ Ω ) 2 ] D ¯ f ,
ϕ = Ω γ τ ,
f = 1 α π exp [ ( ω ¯ ω 0 ) 2 α 2 ] ,
W ( x + i y ) = exp [ ( x + i y ) 2 ] erfc [ i ( x + i y ) ] ,
x = Ω ω 0 α ,
y = a α ,
a 2 = γ 2 + γ 3 γ E 2 ,
N a = ( ω ¯ Ω ) 2 + a 2 .
X ¯ = X + X e λ τ
( λ + κ γ ) E = κ γ Q d ω ¯ ,
λ E ϕ = ω Ω γ E + κ γ P d ω ¯ ,
( λ + 1 ) P = ω ¯ Ω γ Q λ Q ϕ ,
( λ + 1 ) Q = ω ¯ Ω γ P + D E + E D + λ P ϕ ,
( λ + γ λ ) D = E Q Q E .
γ λ + κ κ γ 2 ( λ + 1 ) + E 2 λ ( λ + 1 ) π D α a ( 1 + E 2 λ ( λ + 1 ) ) π D α b = 0 ,
1 + κ γ π D ( λ + 1 ) α a + κ a λ ( λ + 1 ) π D α γ ( λ + 2 ) κ γ π D ( λ + 1 ) α b κ a 2 λ ( λ + 1 ) π D γ α b = 0 ,
b 2 = γ 2 E 2 + γ 2 ( λ + 1 ) 2 .
γ = γ = γ ,
Ω = ω 0 ,
a 2 α 2 1 , b 2 α 2 1 .
i = 1 5 C i λ i = 0 ,
C 0 = 2 δ 2 ( ζ 1 ) 2 ,
C 1 = ζ 2 ( 2 δ δ 2 ) + ζ ( 4 δ 2 2 δ ) 3 δ 2 ,
C 2 = 6 ζ δ 4 δ ,
C 3 = ζ ( 1 + 2 δ δ 2 ) + δ 2 + 2 δ ,
C 4 = 2 δ + 2 ,
C 5 = 1 .
δ = κ / γ ,
ζ = π D ¯ 2 γ 2 / α 2 .
( λ 2 + Ω 2 ) n = 0 3 b n λ n = 0 .
Ω 2 = a ζ 2 b ζ + c a ζ b ,
ζ 4 + a 3 ζ 3 + a 2 ζ 2 + a 1 ζ + a 0 = 0 ,
λ 3 + b 2 λ 2 + b 1 λ + b 0 = 0 ,
a = δ 3 2 δ ,
b = 4 δ 3 + 4 δ 2 2 δ ,
c = 3 δ 3 + 4 δ 2 ,
a = δ 3 δ 2 1 ,
b = δ 3 + 3 δ 2 + 4 δ ,
b 0 = 1 Ω 2 [ 2 δ 2 ( ζ 1 ) 2 ] ,
b 1 = 1 Ω 2 [ ζ 2 ( 2 δ δ 2 ) + ζ ( 4 δ 2 2 δ ) 3 δ 2 ] ,
b 2 = 2 δ + 2 ,
b 3 = 1 ,
a 0 = 1 B ( 16 δ 5 + 24 δ 6 + 9 δ 7 + δ 8 ) ,
a 1 = 1 B ( 32 δ 4 + 2 δ 5 43 δ 6 17 δ 7 4 δ 8 ) ,
a 2 = 1 B ( δ 2 + 16 δ 3 43 δ 4 28 δ 5 + 27 δ 6 + 3 δ 7 + 6 δ 8 ) ,
a 3 = 1 B ( 20 δ 3 + 16 δ 4 + 10 δ 5 13 δ 6 + 9 δ 7 4 δ 8 ) ,
B = δ 2 + 4 δ 3 5 δ 4 + 5 δ 6 4 δ 7 + δ 8 .
i = 1 3 A i λ i = 0 ,
A 0 = 2 ζ δ ,
A 1 = ζ ( 2 δ δ 2 ) + ( δ + 1 ) 2 ,
A 2 = 2 δ + 2 ,
A 3 = 1 .
( λ 2 + Ω 2 ) ( λ h ) = 0 .
Ω 2 = ( δ + 1 ) 2 δ 2 δ 1 ,
ζ = ( δ + 1 ) 3 δ ( δ 2 δ 1 ) ,
h = 2 δ 2 .
X ( τ ) = X n exp ( i n Ω τ ) .

Metrics