Abstract

Induced surface polarizations are shown to cause significant modifications of the Coulomb interaction potential in photonic crystals. Because the optical properties are dominated by pair states, the locally varying electron–hole correlations induce a space dependence of the optical material response that strongly alters the emission and absorption characteristics. The possibility of designing the pair properties opens novel ways to manipulate the light–matter interaction in dielectric structures.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef] [PubMed]
  3. S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
    [CrossRef] [PubMed]
  4. S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
    [CrossRef] [PubMed]
  5. T. Quang, M. Woldeyohannes, S. John, and G. S. Agarwal, “Coherent control of spontaneous emission near a photonic band edge: a single-atom optical memory device,” Phys. Rev. Lett. 79, 5238–5241 (1997).
    [CrossRef]
  6. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
    [CrossRef]
  7. W. Vogel and D. G. Welsch, Quantum Optics (Akademie-Verlag, Berlin, 1994).
  8. A. Tip, “Canonical formalism and quantization for a class of classical fields with application to radiative atomic decay in dielectrics,” Phys. Rev. A 56, 5022–5041 (1997).
    [CrossRef]
  9. M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
    [CrossRef]
  10. A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563–565 (2001).
    [CrossRef]
  11. H.-Y. Ryu, J.-K. Hwang, D.-S. Song, I.-Y. Han, and Y.-H. Lee, “Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures,” Appl. Phys. Lett. 78, 1174–1176 (2001).
    [CrossRef]
  12. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).
  13. L. V. Kulik, V. D. Kulakovskii, M. Bayer, A. Forchel, N. A. Gippius, and S. G. Tikhodeev, “Dielectric enhancement of excitons in near-surface quantum wells,” Phys. Rev. B 54, R2335–R2338 (1996).
    [CrossRef]
  14. D. B. Tran Thoai, R. Zimmermann, M. Grundmann, and D. Bimberg, “Image charges in semiconductor quantum wells: effect on exciton binding energy,” Phys. Rev. B 42, 5906–5909 (1990).
    [CrossRef]
  15. M. Kira, I. Tittonen, and S. Stenholm, “Two-electron semiconductor gate,” Phys. Rev. B 52, 10 972–10 978 (1995).
    [CrossRef]
  16. C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comput. Phys. 94, 59–80 (1991).
    [CrossRef]

2001 (2)

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563–565 (2001).
[CrossRef]

H.-Y. Ryu, J.-K. Hwang, D.-S. Song, I.-Y. Han, and Y.-H. Lee, “Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures,” Appl. Phys. Lett. 78, 1174–1176 (2001).
[CrossRef]

1999 (1)

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
[CrossRef]

1997 (3)

T. Quang, M. Woldeyohannes, S. John, and G. S. Agarwal, “Coherent control of spontaneous emission near a photonic band edge: a single-atom optical memory device,” Phys. Rev. Lett. 79, 5238–5241 (1997).
[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
[CrossRef]

A. Tip, “Canonical formalism and quantization for a class of classical fields with application to radiative atomic decay in dielectrics,” Phys. Rev. A 56, 5022–5041 (1997).
[CrossRef]

1996 (1)

L. V. Kulik, V. D. Kulakovskii, M. Bayer, A. Forchel, N. A. Gippius, and S. G. Tikhodeev, “Dielectric enhancement of excitons in near-surface quantum wells,” Phys. Rev. B 54, R2335–R2338 (1996).
[CrossRef]

1995 (1)

M. Kira, I. Tittonen, and S. Stenholm, “Two-electron semiconductor gate,” Phys. Rev. B 52, 10 972–10 978 (1995).
[CrossRef]

1994 (1)

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[CrossRef] [PubMed]

1991 (1)

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comput. Phys. 94, 59–80 (1991).
[CrossRef]

1990 (2)

S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
[CrossRef] [PubMed]

D. B. Tran Thoai, R. Zimmermann, M. Grundmann, and D. Bimberg, “Image charges in semiconductor quantum wells: effect on exciton binding energy,” Phys. Rev. B 42, 5906–5909 (1990).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Agarwal, G. S.

T. Quang, M. Woldeyohannes, S. John, and G. S. Agarwal, “Coherent control of spontaneous emission near a photonic band edge: a single-atom optical memory device,” Phys. Rev. Lett. 79, 5238–5241 (1997).
[CrossRef]

Bardinal, V.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
[CrossRef]

Bayer, M.

L. V. Kulik, V. D. Kulakovskii, M. Bayer, A. Forchel, N. A. Gippius, and S. G. Tikhodeev, “Dielectric enhancement of excitons in near-surface quantum wells,” Phys. Rev. B 54, R2335–R2338 (1996).
[CrossRef]

Benisty, H.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
[CrossRef]

Bhat, R.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
[CrossRef]

Bimberg, D.

D. B. Tran Thoai, R. Zimmermann, M. Grundmann, and D. Bimberg, “Image charges in semiconductor quantum wells: effect on exciton binding energy,” Phys. Rev. B 42, 5906–5909 (1990).
[CrossRef]

Bisseling, R. H.

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comput. Phys. 94, 59–80 (1991).
[CrossRef]

Boroditsky, M.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
[CrossRef]

Cassagne, D.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
[CrossRef]

Cerjan, C.

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comput. Phys. 94, 59–80 (1991).
[CrossRef]

Coccioli, R.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
[CrossRef]

De La Rue, R. M.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
[CrossRef]

Erchak, A. A.

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563–565 (2001).
[CrossRef]

Fan, S.

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563–565 (2001).
[CrossRef]

Feit, M. D.

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comput. Phys. 94, 59–80 (1991).
[CrossRef]

Forchel, A.

L. V. Kulik, V. D. Kulakovskii, M. Bayer, A. Forchel, N. A. Gippius, and S. G. Tikhodeev, “Dielectric enhancement of excitons in near-surface quantum wells,” Phys. Rev. B 54, R2335–R2338 (1996).
[CrossRef]

Friesner, R.

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comput. Phys. 94, 59–80 (1991).
[CrossRef]

Gippius, N. A.

L. V. Kulik, V. D. Kulakovskii, M. Bayer, A. Forchel, N. A. Gippius, and S. G. Tikhodeev, “Dielectric enhancement of excitons in near-surface quantum wells,” Phys. Rev. B 54, R2335–R2338 (1996).
[CrossRef]

Grundmann, M.

D. B. Tran Thoai, R. Zimmermann, M. Grundmann, and D. Bimberg, “Image charges in semiconductor quantum wells: effect on exciton binding energy,” Phys. Rev. B 42, 5906–5909 (1990).
[CrossRef]

Guldberg, A.

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comput. Phys. 94, 59–80 (1991).
[CrossRef]

Hammerich, A.

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comput. Phys. 94, 59–80 (1991).
[CrossRef]

Han, I.-Y.

H.-Y. Ryu, J.-K. Hwang, D.-S. Song, I.-Y. Han, and Y.-H. Lee, “Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures,” Appl. Phys. Lett. 78, 1174–1176 (2001).
[CrossRef]

Houdré, R.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
[CrossRef]

Hwang, J.-K.

H.-Y. Ryu, J.-K. Hwang, D.-S. Song, I.-Y. Han, and Y.-H. Lee, “Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures,” Appl. Phys. Lett. 78, 1174–1176 (2001).
[CrossRef]

Ippen, E. P.

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563–565 (2001).
[CrossRef]

Joannopoulos, J. D.

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563–565 (2001).
[CrossRef]

John, S.

T. Quang, M. Woldeyohannes, S. John, and G. S. Agarwal, “Coherent control of spontaneous emission near a photonic band edge: a single-atom optical memory device,” Phys. Rev. Lett. 79, 5238–5241 (1997).
[CrossRef]

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[CrossRef] [PubMed]

S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Jolicard, G.

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comput. Phys. 94, 59–80 (1991).
[CrossRef]

Jouanin, C.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
[CrossRef]

Karrlein, W.

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comput. Phys. 94, 59–80 (1991).
[CrossRef]

Kira, M.

M. Kira, I. Tittonen, and S. Stenholm, “Two-electron semiconductor gate,” Phys. Rev. B 52, 10 972–10 978 (1995).
[CrossRef]

Kolodziejski, L. A.

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563–565 (2001).
[CrossRef]

Kosloff, R.

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comput. Phys. 94, 59–80 (1991).
[CrossRef]

Krauss, T. F.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
[CrossRef]

Kulakovskii, V. D.

L. V. Kulik, V. D. Kulakovskii, M. Bayer, A. Forchel, N. A. Gippius, and S. G. Tikhodeev, “Dielectric enhancement of excitons in near-surface quantum wells,” Phys. Rev. B 54, R2335–R2338 (1996).
[CrossRef]

Kulik, L. V.

L. V. Kulik, V. D. Kulakovskii, M. Bayer, A. Forchel, N. A. Gippius, and S. G. Tikhodeev, “Dielectric enhancement of excitons in near-surface quantum wells,” Phys. Rev. B 54, R2335–R2338 (1996).
[CrossRef]

Labilloy, D.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
[CrossRef]

Lee, Y.-H.

H.-Y. Ryu, J.-K. Hwang, D.-S. Song, I.-Y. Han, and Y.-H. Lee, “Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures,” Appl. Phys. Lett. 78, 1174–1176 (2001).
[CrossRef]

Leforestier, C.

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comput. Phys. 94, 59–80 (1991).
[CrossRef]

Lipkin, N.

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comput. Phys. 94, 59–80 (1991).
[CrossRef]

Meyer, H.-D.

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comput. Phys. 94, 59–80 (1991).
[CrossRef]

Oesterle, U.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
[CrossRef]

Petrich, G. S.

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563–565 (2001).
[CrossRef]

Quang, T.

T. Quang, M. Woldeyohannes, S. John, and G. S. Agarwal, “Coherent control of spontaneous emission near a photonic band edge: a single-atom optical memory device,” Phys. Rev. Lett. 79, 5238–5241 (1997).
[CrossRef]

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[CrossRef] [PubMed]

Rakich, P.

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563–565 (2001).
[CrossRef]

Ripin, D. J.

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563–565 (2001).
[CrossRef]

Roncero, O.

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comput. Phys. 94, 59–80 (1991).
[CrossRef]

Ryu, H.-Y.

H.-Y. Ryu, J.-K. Hwang, D.-S. Song, I.-Y. Han, and Y.-H. Lee, “Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures,” Appl. Phys. Lett. 78, 1174–1176 (2001).
[CrossRef]

Song, D.-S.

H.-Y. Ryu, J.-K. Hwang, D.-S. Song, I.-Y. Han, and Y.-H. Lee, “Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures,” Appl. Phys. Lett. 78, 1174–1176 (2001).
[CrossRef]

Stenholm, S.

M. Kira, I. Tittonen, and S. Stenholm, “Two-electron semiconductor gate,” Phys. Rev. B 52, 10 972–10 978 (1995).
[CrossRef]

Thoai, D. B. Tran

D. B. Tran Thoai, R. Zimmermann, M. Grundmann, and D. Bimberg, “Image charges in semiconductor quantum wells: effect on exciton binding energy,” Phys. Rev. B 42, 5906–5909 (1990).
[CrossRef]

Tikhodeev, S. G.

L. V. Kulik, V. D. Kulakovskii, M. Bayer, A. Forchel, N. A. Gippius, and S. G. Tikhodeev, “Dielectric enhancement of excitons in near-surface quantum wells,” Phys. Rev. B 54, R2335–R2338 (1996).
[CrossRef]

Tip, A.

A. Tip, “Canonical formalism and quantization for a class of classical fields with application to radiative atomic decay in dielectrics,” Phys. Rev. A 56, 5022–5041 (1997).
[CrossRef]

Tittonen, I.

M. Kira, I. Tittonen, and S. Stenholm, “Two-electron semiconductor gate,” Phys. Rev. B 52, 10 972–10 978 (1995).
[CrossRef]

Vrijen, R.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
[CrossRef]

Wang, J.

S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
[CrossRef] [PubMed]

Weisbuch, C.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
[CrossRef]

Woldeyohannes, M.

T. Quang, M. Woldeyohannes, S. John, and G. S. Agarwal, “Coherent control of spontaneous emission near a photonic band edge: a single-atom optical memory device,” Phys. Rev. Lett. 79, 5238–5241 (1997).
[CrossRef]

Yablonovitch, E.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Zimmermann, R.

D. B. Tran Thoai, R. Zimmermann, M. Grundmann, and D. Bimberg, “Image charges in semiconductor quantum wells: effect on exciton binding energy,” Phys. Rev. B 42, 5906–5909 (1990).
[CrossRef]

Appl. Phys. Lett. (3)

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
[CrossRef]

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563–565 (2001).
[CrossRef]

H.-Y. Ryu, J.-K. Hwang, D.-S. Song, I.-Y. Han, and Y.-H. Lee, “Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures,” Appl. Phys. Lett. 78, 1174–1176 (2001).
[CrossRef]

J. Comput. Phys. (1)

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comput. Phys. 94, 59–80 (1991).
[CrossRef]

Phys. Rev. A (2)

A. Tip, “Canonical formalism and quantization for a class of classical fields with application to radiative atomic decay in dielectrics,” Phys. Rev. A 56, 5022–5041 (1997).
[CrossRef]

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[CrossRef] [PubMed]

Phys. Rev. B (3)

L. V. Kulik, V. D. Kulakovskii, M. Bayer, A. Forchel, N. A. Gippius, and S. G. Tikhodeev, “Dielectric enhancement of excitons in near-surface quantum wells,” Phys. Rev. B 54, R2335–R2338 (1996).
[CrossRef]

D. B. Tran Thoai, R. Zimmermann, M. Grundmann, and D. Bimberg, “Image charges in semiconductor quantum wells: effect on exciton binding energy,” Phys. Rev. B 42, 5906–5909 (1990).
[CrossRef]

M. Kira, I. Tittonen, and S. Stenholm, “Two-electron semiconductor gate,” Phys. Rev. B 52, 10 972–10 978 (1995).
[CrossRef]

Phys. Rev. Lett. (5)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
[CrossRef] [PubMed]

T. Quang, M. Woldeyohannes, S. John, and G. S. Agarwal, “Coherent control of spontaneous emission near a photonic band edge: a single-atom optical memory device,” Phys. Rev. Lett. 79, 5238–5241 (1997).
[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
[CrossRef]

Other (2)

W. Vogel and D. G. Welsch, Quantum Optics (Akademie-Verlag, Berlin, 1994).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Calculated absorption spectra of excitons in a QW located at distance D from a semiconductor–air interface. The blueshift of the excitonic peak with decreasing D (from bottommost to topmost curves) is clearly visible and is particularly pronounced for small D.

Fig. 2
Fig. 2

Calculated binding energies EB of QW excitons located at distance D from a semiconductor–air interface. The binding energy is enhanced by a factor of 2 for small D, compared with the usual two-dimensional result, EB=-4E0.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

·D(r, t)=-·(r)1c t A(r, t)+ϕ(r, t).
=4πρ(r, t).
·[(r)A(r, t)]=0.
××(r) 1c2 2t2A(r)=4π 1c jT(r, t),
-·[(r)ϕ(r, t)]=4πρ(r, t).
-·[(r)VC(r, r)]=4πδ(r-r),
ϕ(r, t)= drVC(r, r)ρ(r, t).
VC(r, r)=-14π  dr1|r-r|·El(r,r),
(r)=i(r),rDi,
ni(r)·Di(r, r)=ni(r)·Dj(r, r),rDij,
ni(r)×Ei(r, r)=ni(r)×Ej(r, r)rDij,
VC(r, r)=i 14π Didr 1|r-r|·Eli(r,r)-i 14π Dida 1|r-r| n·Eli(r, r)=1|r-r|+i Di dr 1|r-r|·Pli(r, r)-ij 14π Dijda 1|r-r| ni·[Eli(r, r)-Elj(r, r)],
VC(r, r)=1(r) 1|r-r|-14π ij 1i 1-ij×Dijda 1|r-r| ni·Dl(r, r)=V0(r, r)+δV(r, r).
(r)=B,rsemiconductor=1rair,
VC(r, r)=1B 1|r-r|-14π 1-BB ×D da 1|r-r| ni·Dl(r, r)=V0(r, r)+δV(r, r),
HC=12  drdr[ρ(r, t)VC(r, r)ρ(r, t)]N+e22  dr[ne(r, t)+nh(r, t)]δVC(r,r),
itP(ρc, ρh, t)
=Egap-12mee2-12mhh2-e2V2D(ρe, ρh)+e22δV(ρe)+e22δV(ρh)P(ρe, ρh, t)-d·ET(ρe, 0, t)δ(ρe-ρh),
δV2D(ρ, ρ)=1 -1+1 1(|ρ-ρ|2+4D2)1/2,

Metrics