Abstract

Porous-silicon (PS) based multilayer periodic structures with photonic bandgaps (PBGs) and PS single layers that have a strong in-plane birefringence are produced by the electrochemical nanostructuring of crystalline silicon wafers of different crystallographic orientations. Calculations and experiments demonstrate the possibility of improving phase matching for second optical harmonic generation in PS-based PBG structures. Multilayer structures made of birefringent PS exhibit polarization-tunable (dichroic) PBGs, which offer much promise for various optical applications. Improved phase matching was experimentally demonstrated for second-harmonic generation in birefringent PS, suggesting that PBG and birefringent PS structures may serve to phase-match and enhance wave-mixing processes in nonlinear optical materials embedded in the pores of these matrices.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82, 909–965 (1997).
    [CrossRef]
  2. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046–1048 (1990).
    [CrossRef]
  3. P. K. Kashkarov, B. V. Kamenev, E. A. Konstantinova, A. I. Efimova, A. V. Pavlikov, and V. Yu. Timoshenko, “Dynamics of nonequilibrium charge carriers in silicon quantum wires,” Phys. Usp. 41, 511–515 (1998).
    [CrossRef]
  4. See for example, W. Theiss, “Optical properties of porous silicon,” Surf. Sci. Rep. 29, 91–192 (1997).
    [CrossRef]
  5. O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38, 1–126 (2000).
    [CrossRef]
  6. G. Vincent, “Optical properties of porous silicon superlattices,” Appl. Phys. Lett. 64, 2367–2369 (1994).
    [CrossRef]
  7. L. Pavesi, G. Panzarini, and L. C. Andreani, “All-porous silicon-coupled microcavities: experiment versus theory,” Phys. Rev. B 58, 15794–15800 (1998).
    [CrossRef]
  8. M. Krüger, M. G. Berger, M. Marso, W. Reetz, Th. Eickhoff, R. Loo, L. Vescan, M. Thönissen, H. Lüth, R. Arens-Fisher, S. Hilbrich, and W. Theiss, “Color-sensitive Si-photodiode using porous silicon interference filters,” Jpn. J. Appl. Phys., Part 2 36, L24–L26 (1997).
    [CrossRef]
  9. S. Zangooie, R. Janson, and H. Arwin, “Reversible and irreversible control of optical properties of porous silicon superlattices by thermal oxidation, vapor adsorption, and liquid penetration,” J. Vac. Sci. Technol. 16, 2901–2912 (1998).
    [CrossRef]
  10. L. Canham, M. P. Stewart, J. M. Buriak, C. L. Reeves, M. Anderson, E. K. Squire, P. Allcock, and P. A. Snow, “Derivatized porous silicon mirrors: implantable optical components with slow resorbability,” Phys. Status Solidi A 182, 521–525 (2000).
    [CrossRef]
  11. S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi A 182, 541–546 (2000).
    [CrossRef]
  12. G. Mattei, E. V. Alieva, J. E. Petrov, and V. A. Yakovlev, “Enhancement of adsorbate vibration due to interaction with microcavity mode in porous silicon superlattice,” Surf. Sci. 427–428, 235–238 (1999).
    [CrossRef]
  13. L. A. Kuzik, V. A. Yakovlev, and G. Mattei, “Raman scattering enhancement in porous silicon microcavity,” Appl. Phys. Lett. 75, 1830–1832 (1999).
    [CrossRef]
  14. G. Mattei, A. Marucci, V. A. Yakovlev, and M. Pagannone, “Porous silicon optical filters for application to laser technology,” Laser Phys. 8, 755–757 (1998).
  15. L. A. Golovan, P. K. Kashkarov, M. S. Syrchin, and A. M. Zheltikov, “One-dimensional porous-silicon photonic band-gap structures with tunable reflection and dispersion,” Phys. Status Solidi A 182, 437–442 (2000).
    [CrossRef]
  16. N. I. Koroteev, S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Compression of ultrashort light pulses in photonic crystals: when envelopes cease to be slow,” Opt. Commun. 159, 191–201 (1999).
    [CrossRef]
  17. L. A. Golovan’, A. M. Zheltikov, P. K. Kashkarov, N. I. Koroteev, M. G. Lisachenko, A. N. Naumov, D. A. Sidorov-Biryukov, V. Yu. Timoshenko, and A. B. Fedotov, “Generation of the second optical harmonic in porous-silicon-based structures with a photonic band gap,” JETP Lett. 69, 300–305 (1999).
    [CrossRef]
  18. T. V. Dolgova, A. I. Maidikovskii, M. G. Martem’yanov, G. Marovsky, G. Mattei, D. Schuhmacher, V. A. Yakovlev, A. A. Fedyanin, and O. A. Aktsipetrov, “Giant second harmonic generation in microcavities based on porous silicon photonic crystals,” JETP Lett. 73, 6–9 (2001).
    [CrossRef]
  19. M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
    [CrossRef]
  20. A. M. Zheltikov, A. V. Tarasishin, and S. A. Magnitskii, “Phase and group-velocity matching in ultrashort-pulse second-harmonic generation in one-dimensional photonic crystals,” J. Exp. Theor. Phys. 91, 298–306 (2000).
    [CrossRef]
  21. M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band-gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891–4898 (1999).
    [CrossRef]
  22. F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner, and U. Gösele, “Large birefringence in two-dimensional silicon photonic crystals,” Phys. Rev. B 63, 161101–1–161101–4 (2001).
    [CrossRef]
  23. I. Mihalcescu, G. Lerondel, R. Romestain, “Porous silicon anisotropy investigated by guided light,” Thin Solid Films 297, 245–249 (1997).
    [CrossRef]
  24. M. E. Kompan, J. Salonen, and I. Yu. Shabanov, “Anomalous birefringence of light in free-standing samples of porous silicon,” JETP 90, 324–329 (2000).
    [CrossRef]
  25. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1960).
  26. O. G. Sarbey, E. K. Frolova, R. D. Fedorovich, and D. B. Dan’ko, “Birefringence of porous silicon,” Phys. Status Solidi 42, 1240–1241 (2000).
  27. D. Kovalev, G. Polisski, J. Diener, H. Heckler, N. Künzner, V. Yu. Timoshenko, and F. Koch, “Strong in-plane birefringence in nanostructured silicon,” Appl. Phys. Lett. 78, 916–918 (2001).
    [CrossRef]
  28. N. Künzner, D. Kovalev, J. Diener, E. Gross, V. Yu. Timoshenko, G. Polisski, F. Koch, and M. Fujii, “Giant birefrin-gence in anisotropically nanostructured silicon,” Opt. Lett. 26, 1265–1268 (2001).
    [CrossRef]
  29. A. M. Zheltikov, N. I. Koroteev, and A. B. Fedotov, “Generation of optical harmonics and frequency mixing in a plasma of optical breakdown,” Laser Phys. 4, 569–581 (1994).
  30. A. B. Fedotov, N. I. Koroteev, A. N. Naumov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Coherent four-wave mixing in a laser-preproduced plasma: optical frequency conversion and two-dimensional mapping of atoms and ions,” J. Nonlinear Opt. Phys. Mater. 6, 387–410 (1997).
    [CrossRef]
  31. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  32. D. A. G. Bruggeman, “Berechnung verschiedener physikalisher Konstanten von heterogen Substanzen,” Ann. Phys. (Leipzig) 24, 634–664 (1935).
  33. L. A. Golovan, V. Yu. Timoshenko, A. B. Fedotov, L. P. Kuznetsova, D. A. Sidorov-Biryukov, P. K. Kashkarov, A. M. Zheltikov, D. Kovalev, N. Künzner, E. Gross, J. Diener, G. Polisski, and F. Koch, “Phase matching of second-harmonic generation in birefringent porous silicon,” Appl. Phys. B 73, 31–34 (2001).
    [CrossRef]
  34. E. Gross, D. Kovalev, N. Künzner, V. Yu. Timoshenko, J. Diener, and F. Koch, “Highly sensitive recognition element based on birefringent porous silicon layers,” J. Appl. Phys. 90(7), 3529–3532 (2001).
    [CrossRef]
  35. R. L. Sutherland, Handbook on Nonlinear Optics (Marcel Dekker, New York, 1996).

2001

T. V. Dolgova, A. I. Maidikovskii, M. G. Martem’yanov, G. Marovsky, G. Mattei, D. Schuhmacher, V. A. Yakovlev, A. A. Fedyanin, and O. A. Aktsipetrov, “Giant second harmonic generation in microcavities based on porous silicon photonic crystals,” JETP Lett. 73, 6–9 (2001).
[CrossRef]

F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner, and U. Gösele, “Large birefringence in two-dimensional silicon photonic crystals,” Phys. Rev. B 63, 161101–1–161101–4 (2001).
[CrossRef]

D. Kovalev, G. Polisski, J. Diener, H. Heckler, N. Künzner, V. Yu. Timoshenko, and F. Koch, “Strong in-plane birefringence in nanostructured silicon,” Appl. Phys. Lett. 78, 916–918 (2001).
[CrossRef]

N. Künzner, D. Kovalev, J. Diener, E. Gross, V. Yu. Timoshenko, G. Polisski, F. Koch, and M. Fujii, “Giant birefrin-gence in anisotropically nanostructured silicon,” Opt. Lett. 26, 1265–1268 (2001).
[CrossRef]

L. A. Golovan, V. Yu. Timoshenko, A. B. Fedotov, L. P. Kuznetsova, D. A. Sidorov-Biryukov, P. K. Kashkarov, A. M. Zheltikov, D. Kovalev, N. Künzner, E. Gross, J. Diener, G. Polisski, and F. Koch, “Phase matching of second-harmonic generation in birefringent porous silicon,” Appl. Phys. B 73, 31–34 (2001).
[CrossRef]

E. Gross, D. Kovalev, N. Künzner, V. Yu. Timoshenko, J. Diener, and F. Koch, “Highly sensitive recognition element based on birefringent porous silicon layers,” J. Appl. Phys. 90(7), 3529–3532 (2001).
[CrossRef]

2000

M. E. Kompan, J. Salonen, and I. Yu. Shabanov, “Anomalous birefringence of light in free-standing samples of porous silicon,” JETP 90, 324–329 (2000).
[CrossRef]

O. G. Sarbey, E. K. Frolova, R. D. Fedorovich, and D. B. Dan’ko, “Birefringence of porous silicon,” Phys. Status Solidi 42, 1240–1241 (2000).

A. M. Zheltikov, A. V. Tarasishin, and S. A. Magnitskii, “Phase and group-velocity matching in ultrashort-pulse second-harmonic generation in one-dimensional photonic crystals,” J. Exp. Theor. Phys. 91, 298–306 (2000).
[CrossRef]

L. A. Golovan, P. K. Kashkarov, M. S. Syrchin, and A. M. Zheltikov, “One-dimensional porous-silicon photonic band-gap structures with tunable reflection and dispersion,” Phys. Status Solidi A 182, 437–442 (2000).
[CrossRef]

L. Canham, M. P. Stewart, J. M. Buriak, C. L. Reeves, M. Anderson, E. K. Squire, P. Allcock, and P. A. Snow, “Derivatized porous silicon mirrors: implantable optical components with slow resorbability,” Phys. Status Solidi A 182, 521–525 (2000).
[CrossRef]

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi A 182, 541–546 (2000).
[CrossRef]

O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38, 1–126 (2000).
[CrossRef]

1999

G. Mattei, E. V. Alieva, J. E. Petrov, and V. A. Yakovlev, “Enhancement of adsorbate vibration due to interaction with microcavity mode in porous silicon superlattice,” Surf. Sci. 427–428, 235–238 (1999).
[CrossRef]

L. A. Kuzik, V. A. Yakovlev, and G. Mattei, “Raman scattering enhancement in porous silicon microcavity,” Appl. Phys. Lett. 75, 1830–1832 (1999).
[CrossRef]

N. I. Koroteev, S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Compression of ultrashort light pulses in photonic crystals: when envelopes cease to be slow,” Opt. Commun. 159, 191–201 (1999).
[CrossRef]

L. A. Golovan’, A. M. Zheltikov, P. K. Kashkarov, N. I. Koroteev, M. G. Lisachenko, A. N. Naumov, D. A. Sidorov-Biryukov, V. Yu. Timoshenko, and A. B. Fedotov, “Generation of the second optical harmonic in porous-silicon-based structures with a photonic band gap,” JETP Lett. 69, 300–305 (1999).
[CrossRef]

M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band-gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891–4898 (1999).
[CrossRef]

1998

S. Zangooie, R. Janson, and H. Arwin, “Reversible and irreversible control of optical properties of porous silicon superlattices by thermal oxidation, vapor adsorption, and liquid penetration,” J. Vac. Sci. Technol. 16, 2901–2912 (1998).
[CrossRef]

G. Mattei, A. Marucci, V. A. Yakovlev, and M. Pagannone, “Porous silicon optical filters for application to laser technology,” Laser Phys. 8, 755–757 (1998).

L. Pavesi, G. Panzarini, and L. C. Andreani, “All-porous silicon-coupled microcavities: experiment versus theory,” Phys. Rev. B 58, 15794–15800 (1998).
[CrossRef]

P. K. Kashkarov, B. V. Kamenev, E. A. Konstantinova, A. I. Efimova, A. V. Pavlikov, and V. Yu. Timoshenko, “Dynamics of nonequilibrium charge carriers in silicon quantum wires,” Phys. Usp. 41, 511–515 (1998).
[CrossRef]

1997

See for example, W. Theiss, “Optical properties of porous silicon,” Surf. Sci. Rep. 29, 91–192 (1997).
[CrossRef]

See, for example, A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82, 909–965 (1997).
[CrossRef]

M. Krüger, M. G. Berger, M. Marso, W. Reetz, Th. Eickhoff, R. Loo, L. Vescan, M. Thönissen, H. Lüth, R. Arens-Fisher, S. Hilbrich, and W. Theiss, “Color-sensitive Si-photodiode using porous silicon interference filters,” Jpn. J. Appl. Phys., Part 2 36, L24–L26 (1997).
[CrossRef]

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[CrossRef]

A. B. Fedotov, N. I. Koroteev, A. N. Naumov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Coherent four-wave mixing in a laser-preproduced plasma: optical frequency conversion and two-dimensional mapping of atoms and ions,” J. Nonlinear Opt. Phys. Mater. 6, 387–410 (1997).
[CrossRef]

I. Mihalcescu, G. Lerondel, R. Romestain, “Porous silicon anisotropy investigated by guided light,” Thin Solid Films 297, 245–249 (1997).
[CrossRef]

1994

A. M. Zheltikov, N. I. Koroteev, and A. B. Fedotov, “Generation of optical harmonics and frequency mixing in a plasma of optical breakdown,” Laser Phys. 4, 569–581 (1994).

G. Vincent, “Optical properties of porous silicon superlattices,” Appl. Phys. Lett. 64, 2367–2369 (1994).
[CrossRef]

1990

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046–1048 (1990).
[CrossRef]

1935

D. A. G. Bruggeman, “Berechnung verschiedener physikalisher Konstanten von heterogen Substanzen,” Ann. Phys. (Leipzig) 24, 634–664 (1935).

Aktsipetrov, O. A.

T. V. Dolgova, A. I. Maidikovskii, M. G. Martem’yanov, G. Marovsky, G. Mattei, D. Schuhmacher, V. A. Yakovlev, A. A. Fedyanin, and O. A. Aktsipetrov, “Giant second harmonic generation in microcavities based on porous silicon photonic crystals,” JETP Lett. 73, 6–9 (2001).
[CrossRef]

Alieva, E. V.

G. Mattei, E. V. Alieva, J. E. Petrov, and V. A. Yakovlev, “Enhancement of adsorbate vibration due to interaction with microcavity mode in porous silicon superlattice,” Surf. Sci. 427–428, 235–238 (1999).
[CrossRef]

Allcock, P.

L. Canham, M. P. Stewart, J. M. Buriak, C. L. Reeves, M. Anderson, E. K. Squire, P. Allcock, and P. A. Snow, “Derivatized porous silicon mirrors: implantable optical components with slow resorbability,” Phys. Status Solidi A 182, 521–525 (2000).
[CrossRef]

Anderson, M.

L. Canham, M. P. Stewart, J. M. Buriak, C. L. Reeves, M. Anderson, E. K. Squire, P. Allcock, and P. A. Snow, “Derivatized porous silicon mirrors: implantable optical components with slow resorbability,” Phys. Status Solidi A 182, 521–525 (2000).
[CrossRef]

Andreani, L. C.

L. Pavesi, G. Panzarini, and L. C. Andreani, “All-porous silicon-coupled microcavities: experiment versus theory,” Phys. Rev. B 58, 15794–15800 (1998).
[CrossRef]

Arens-Fisher, R.

M. Krüger, M. G. Berger, M. Marso, W. Reetz, Th. Eickhoff, R. Loo, L. Vescan, M. Thönissen, H. Lüth, R. Arens-Fisher, S. Hilbrich, and W. Theiss, “Color-sensitive Si-photodiode using porous silicon interference filters,” Jpn. J. Appl. Phys., Part 2 36, L24–L26 (1997).
[CrossRef]

Arwin, H.

S. Zangooie, R. Janson, and H. Arwin, “Reversible and irreversible control of optical properties of porous silicon superlattices by thermal oxidation, vapor adsorption, and liquid penetration,” J. Vac. Sci. Technol. 16, 2901–2912 (1998).
[CrossRef]

Berger, M. G.

M. Krüger, M. G. Berger, M. Marso, W. Reetz, Th. Eickhoff, R. Loo, L. Vescan, M. Thönissen, H. Lüth, R. Arens-Fisher, S. Hilbrich, and W. Theiss, “Color-sensitive Si-photodiode using porous silicon interference filters,” Jpn. J. Appl. Phys., Part 2 36, L24–L26 (1997).
[CrossRef]

Bertolotti, M.

M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band-gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891–4898 (1999).
[CrossRef]

Birner, A.

F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner, and U. Gösele, “Large birefringence in two-dimensional silicon photonic crystals,” Phys. Rev. B 63, 161101–1–161101–4 (2001).
[CrossRef]

Bisi, O.

O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38, 1–126 (2000).
[CrossRef]

Bloemer, M. J.

M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band-gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891–4898 (1999).
[CrossRef]

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[CrossRef]

Bowden, C. M.

M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band-gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891–4898 (1999).
[CrossRef]

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[CrossRef]

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalisher Konstanten von heterogen Substanzen,” Ann. Phys. (Leipzig) 24, 634–664 (1935).

Buriak, J. M.

L. Canham, M. P. Stewart, J. M. Buriak, C. L. Reeves, M. Anderson, E. K. Squire, P. Allcock, and P. A. Snow, “Derivatized porous silicon mirrors: implantable optical components with slow resorbability,” Phys. Status Solidi A 182, 521–525 (2000).
[CrossRef]

Calcott, P. D. J.

See, for example, A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82, 909–965 (1997).
[CrossRef]

Canham, L.

L. Canham, M. P. Stewart, J. M. Buriak, C. L. Reeves, M. Anderson, E. K. Squire, P. Allcock, and P. A. Snow, “Derivatized porous silicon mirrors: implantable optical components with slow resorbability,” Phys. Status Solidi A 182, 521–525 (2000).
[CrossRef]

Canham, L. T.

See, for example, A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82, 909–965 (1997).
[CrossRef]

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046–1048 (1990).
[CrossRef]

Centini, M.

M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band-gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891–4898 (1999).
[CrossRef]

Chan, S.

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi A 182, 541–546 (2000).
[CrossRef]

Cullis, A. G.

See, for example, A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82, 909–965 (1997).
[CrossRef]

D’Aguanno, G.

M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band-gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891–4898 (1999).
[CrossRef]

Dan’ko, D. B.

O. G. Sarbey, E. K. Frolova, R. D. Fedorovich, and D. B. Dan’ko, “Birefringence of porous silicon,” Phys. Status Solidi 42, 1240–1241 (2000).

Diener, J.

L. A. Golovan, V. Yu. Timoshenko, A. B. Fedotov, L. P. Kuznetsova, D. A. Sidorov-Biryukov, P. K. Kashkarov, A. M. Zheltikov, D. Kovalev, N. Künzner, E. Gross, J. Diener, G. Polisski, and F. Koch, “Phase matching of second-harmonic generation in birefringent porous silicon,” Appl. Phys. B 73, 31–34 (2001).
[CrossRef]

D. Kovalev, G. Polisski, J. Diener, H. Heckler, N. Künzner, V. Yu. Timoshenko, and F. Koch, “Strong in-plane birefringence in nanostructured silicon,” Appl. Phys. Lett. 78, 916–918 (2001).
[CrossRef]

E. Gross, D. Kovalev, N. Künzner, V. Yu. Timoshenko, J. Diener, and F. Koch, “Highly sensitive recognition element based on birefringent porous silicon layers,” J. Appl. Phys. 90(7), 3529–3532 (2001).
[CrossRef]

N. Künzner, D. Kovalev, J. Diener, E. Gross, V. Yu. Timoshenko, G. Polisski, F. Koch, and M. Fujii, “Giant birefrin-gence in anisotropically nanostructured silicon,” Opt. Lett. 26, 1265–1268 (2001).
[CrossRef]

Dolgova, T. V.

T. V. Dolgova, A. I. Maidikovskii, M. G. Martem’yanov, G. Marovsky, G. Mattei, D. Schuhmacher, V. A. Yakovlev, A. A. Fedyanin, and O. A. Aktsipetrov, “Giant second harmonic generation in microcavities based on porous silicon photonic crystals,” JETP Lett. 73, 6–9 (2001).
[CrossRef]

Dowling, J. P.

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[CrossRef]

Efimova, A. I.

P. K. Kashkarov, B. V. Kamenev, E. A. Konstantinova, A. I. Efimova, A. V. Pavlikov, and V. Yu. Timoshenko, “Dynamics of nonequilibrium charge carriers in silicon quantum wires,” Phys. Usp. 41, 511–515 (1998).
[CrossRef]

Eickhoff, Th.

M. Krüger, M. G. Berger, M. Marso, W. Reetz, Th. Eickhoff, R. Loo, L. Vescan, M. Thönissen, H. Lüth, R. Arens-Fisher, S. Hilbrich, and W. Theiss, “Color-sensitive Si-photodiode using porous silicon interference filters,” Jpn. J. Appl. Phys., Part 2 36, L24–L26 (1997).
[CrossRef]

Fauchet, P. M.

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi A 182, 541–546 (2000).
[CrossRef]

Fedorovich, R. D.

O. G. Sarbey, E. K. Frolova, R. D. Fedorovich, and D. B. Dan’ko, “Birefringence of porous silicon,” Phys. Status Solidi 42, 1240–1241 (2000).

Fedotov, A. B.

L. A. Golovan, V. Yu. Timoshenko, A. B. Fedotov, L. P. Kuznetsova, D. A. Sidorov-Biryukov, P. K. Kashkarov, A. M. Zheltikov, D. Kovalev, N. Künzner, E. Gross, J. Diener, G. Polisski, and F. Koch, “Phase matching of second-harmonic generation in birefringent porous silicon,” Appl. Phys. B 73, 31–34 (2001).
[CrossRef]

L. A. Golovan’, A. M. Zheltikov, P. K. Kashkarov, N. I. Koroteev, M. G. Lisachenko, A. N. Naumov, D. A. Sidorov-Biryukov, V. Yu. Timoshenko, and A. B. Fedotov, “Generation of the second optical harmonic in porous-silicon-based structures with a photonic band gap,” JETP Lett. 69, 300–305 (1999).
[CrossRef]

A. B. Fedotov, N. I. Koroteev, A. N. Naumov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Coherent four-wave mixing in a laser-preproduced plasma: optical frequency conversion and two-dimensional mapping of atoms and ions,” J. Nonlinear Opt. Phys. Mater. 6, 387–410 (1997).
[CrossRef]

A. M. Zheltikov, N. I. Koroteev, and A. B. Fedotov, “Generation of optical harmonics and frequency mixing in a plasma of optical breakdown,” Laser Phys. 4, 569–581 (1994).

Fedyanin, A. A.

T. V. Dolgova, A. I. Maidikovskii, M. G. Martem’yanov, G. Marovsky, G. Mattei, D. Schuhmacher, V. A. Yakovlev, A. A. Fedyanin, and O. A. Aktsipetrov, “Giant second harmonic generation in microcavities based on porous silicon photonic crystals,” JETP Lett. 73, 6–9 (2001).
[CrossRef]

Frolova, E. K.

O. G. Sarbey, E. K. Frolova, R. D. Fedorovich, and D. B. Dan’ko, “Birefringence of porous silicon,” Phys. Status Solidi 42, 1240–1241 (2000).

Fujii, M.

Genereux, F.

F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner, and U. Gösele, “Large birefringence in two-dimensional silicon photonic crystals,” Phys. Rev. B 63, 161101–1–161101–4 (2001).
[CrossRef]

Golovan, L. A.

L. A. Golovan, V. Yu. Timoshenko, A. B. Fedotov, L. P. Kuznetsova, D. A. Sidorov-Biryukov, P. K. Kashkarov, A. M. Zheltikov, D. Kovalev, N. Künzner, E. Gross, J. Diener, G. Polisski, and F. Koch, “Phase matching of second-harmonic generation in birefringent porous silicon,” Appl. Phys. B 73, 31–34 (2001).
[CrossRef]

L. A. Golovan, P. K. Kashkarov, M. S. Syrchin, and A. M. Zheltikov, “One-dimensional porous-silicon photonic band-gap structures with tunable reflection and dispersion,” Phys. Status Solidi A 182, 437–442 (2000).
[CrossRef]

Golovan’, L. A.

L. A. Golovan’, A. M. Zheltikov, P. K. Kashkarov, N. I. Koroteev, M. G. Lisachenko, A. N. Naumov, D. A. Sidorov-Biryukov, V. Yu. Timoshenko, and A. B. Fedotov, “Generation of the second optical harmonic in porous-silicon-based structures with a photonic band gap,” JETP Lett. 69, 300–305 (1999).
[CrossRef]

Gösele, U.

F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner, and U. Gösele, “Large birefringence in two-dimensional silicon photonic crystals,” Phys. Rev. B 63, 161101–1–161101–4 (2001).
[CrossRef]

Gross, E.

N. Künzner, D. Kovalev, J. Diener, E. Gross, V. Yu. Timoshenko, G. Polisski, F. Koch, and M. Fujii, “Giant birefrin-gence in anisotropically nanostructured silicon,” Opt. Lett. 26, 1265–1268 (2001).
[CrossRef]

L. A. Golovan, V. Yu. Timoshenko, A. B. Fedotov, L. P. Kuznetsova, D. A. Sidorov-Biryukov, P. K. Kashkarov, A. M. Zheltikov, D. Kovalev, N. Künzner, E. Gross, J. Diener, G. Polisski, and F. Koch, “Phase matching of second-harmonic generation in birefringent porous silicon,” Appl. Phys. B 73, 31–34 (2001).
[CrossRef]

E. Gross, D. Kovalev, N. Künzner, V. Yu. Timoshenko, J. Diener, and F. Koch, “Highly sensitive recognition element based on birefringent porous silicon layers,” J. Appl. Phys. 90(7), 3529–3532 (2001).
[CrossRef]

Haus, J. W.

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[CrossRef]

Heckler, H.

D. Kovalev, G. Polisski, J. Diener, H. Heckler, N. Künzner, V. Yu. Timoshenko, and F. Koch, “Strong in-plane birefringence in nanostructured silicon,” Appl. Phys. Lett. 78, 916–918 (2001).
[CrossRef]

Hilbrich, S.

M. Krüger, M. G. Berger, M. Marso, W. Reetz, Th. Eickhoff, R. Loo, L. Vescan, M. Thönissen, H. Lüth, R. Arens-Fisher, S. Hilbrich, and W. Theiss, “Color-sensitive Si-photodiode using porous silicon interference filters,” Jpn. J. Appl. Phys., Part 2 36, L24–L26 (1997).
[CrossRef]

Janson, R.

S. Zangooie, R. Janson, and H. Arwin, “Reversible and irreversible control of optical properties of porous silicon superlattices by thermal oxidation, vapor adsorption, and liquid penetration,” J. Vac. Sci. Technol. 16, 2901–2912 (1998).
[CrossRef]

Kamenev, B. V.

P. K. Kashkarov, B. V. Kamenev, E. A. Konstantinova, A. I. Efimova, A. V. Pavlikov, and V. Yu. Timoshenko, “Dynamics of nonequilibrium charge carriers in silicon quantum wires,” Phys. Usp. 41, 511–515 (1998).
[CrossRef]

Kashkarov, P. K.

L. A. Golovan, V. Yu. Timoshenko, A. B. Fedotov, L. P. Kuznetsova, D. A. Sidorov-Biryukov, P. K. Kashkarov, A. M. Zheltikov, D. Kovalev, N. Künzner, E. Gross, J. Diener, G. Polisski, and F. Koch, “Phase matching of second-harmonic generation in birefringent porous silicon,” Appl. Phys. B 73, 31–34 (2001).
[CrossRef]

L. A. Golovan, P. K. Kashkarov, M. S. Syrchin, and A. M. Zheltikov, “One-dimensional porous-silicon photonic band-gap structures with tunable reflection and dispersion,” Phys. Status Solidi A 182, 437–442 (2000).
[CrossRef]

L. A. Golovan’, A. M. Zheltikov, P. K. Kashkarov, N. I. Koroteev, M. G. Lisachenko, A. N. Naumov, D. A. Sidorov-Biryukov, V. Yu. Timoshenko, and A. B. Fedotov, “Generation of the second optical harmonic in porous-silicon-based structures with a photonic band gap,” JETP Lett. 69, 300–305 (1999).
[CrossRef]

P. K. Kashkarov, B. V. Kamenev, E. A. Konstantinova, A. I. Efimova, A. V. Pavlikov, and V. Yu. Timoshenko, “Dynamics of nonequilibrium charge carriers in silicon quantum wires,” Phys. Usp. 41, 511–515 (1998).
[CrossRef]

Koch, F.

N. Künzner, D. Kovalev, J. Diener, E. Gross, V. Yu. Timoshenko, G. Polisski, F. Koch, and M. Fujii, “Giant birefrin-gence in anisotropically nanostructured silicon,” Opt. Lett. 26, 1265–1268 (2001).
[CrossRef]

L. A. Golovan, V. Yu. Timoshenko, A. B. Fedotov, L. P. Kuznetsova, D. A. Sidorov-Biryukov, P. K. Kashkarov, A. M. Zheltikov, D. Kovalev, N. Künzner, E. Gross, J. Diener, G. Polisski, and F. Koch, “Phase matching of second-harmonic generation in birefringent porous silicon,” Appl. Phys. B 73, 31–34 (2001).
[CrossRef]

E. Gross, D. Kovalev, N. Künzner, V. Yu. Timoshenko, J. Diener, and F. Koch, “Highly sensitive recognition element based on birefringent porous silicon layers,” J. Appl. Phys. 90(7), 3529–3532 (2001).
[CrossRef]

D. Kovalev, G. Polisski, J. Diener, H. Heckler, N. Künzner, V. Yu. Timoshenko, and F. Koch, “Strong in-plane birefringence in nanostructured silicon,” Appl. Phys. Lett. 78, 916–918 (2001).
[CrossRef]

Kompan, M. E.

M. E. Kompan, J. Salonen, and I. Yu. Shabanov, “Anomalous birefringence of light in free-standing samples of porous silicon,” JETP 90, 324–329 (2000).
[CrossRef]

Konstantinova, E. A.

P. K. Kashkarov, B. V. Kamenev, E. A. Konstantinova, A. I. Efimova, A. V. Pavlikov, and V. Yu. Timoshenko, “Dynamics of nonequilibrium charge carriers in silicon quantum wires,” Phys. Usp. 41, 511–515 (1998).
[CrossRef]

Koroteev, N. I.

N. I. Koroteev, S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Compression of ultrashort light pulses in photonic crystals: when envelopes cease to be slow,” Opt. Commun. 159, 191–201 (1999).
[CrossRef]

L. A. Golovan’, A. M. Zheltikov, P. K. Kashkarov, N. I. Koroteev, M. G. Lisachenko, A. N. Naumov, D. A. Sidorov-Biryukov, V. Yu. Timoshenko, and A. B. Fedotov, “Generation of the second optical harmonic in porous-silicon-based structures with a photonic band gap,” JETP Lett. 69, 300–305 (1999).
[CrossRef]

A. B. Fedotov, N. I. Koroteev, A. N. Naumov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Coherent four-wave mixing in a laser-preproduced plasma: optical frequency conversion and two-dimensional mapping of atoms and ions,” J. Nonlinear Opt. Phys. Mater. 6, 387–410 (1997).
[CrossRef]

A. M. Zheltikov, N. I. Koroteev, and A. B. Fedotov, “Generation of optical harmonics and frequency mixing in a plasma of optical breakdown,” Laser Phys. 4, 569–581 (1994).

Kovalev, D.

L. A. Golovan, V. Yu. Timoshenko, A. B. Fedotov, L. P. Kuznetsova, D. A. Sidorov-Biryukov, P. K. Kashkarov, A. M. Zheltikov, D. Kovalev, N. Künzner, E. Gross, J. Diener, G. Polisski, and F. Koch, “Phase matching of second-harmonic generation in birefringent porous silicon,” Appl. Phys. B 73, 31–34 (2001).
[CrossRef]

D. Kovalev, G. Polisski, J. Diener, H. Heckler, N. Künzner, V. Yu. Timoshenko, and F. Koch, “Strong in-plane birefringence in nanostructured silicon,” Appl. Phys. Lett. 78, 916–918 (2001).
[CrossRef]

E. Gross, D. Kovalev, N. Künzner, V. Yu. Timoshenko, J. Diener, and F. Koch, “Highly sensitive recognition element based on birefringent porous silicon layers,” J. Appl. Phys. 90(7), 3529–3532 (2001).
[CrossRef]

N. Künzner, D. Kovalev, J. Diener, E. Gross, V. Yu. Timoshenko, G. Polisski, F. Koch, and M. Fujii, “Giant birefrin-gence in anisotropically nanostructured silicon,” Opt. Lett. 26, 1265–1268 (2001).
[CrossRef]

Krüger, M.

M. Krüger, M. G. Berger, M. Marso, W. Reetz, Th. Eickhoff, R. Loo, L. Vescan, M. Thönissen, H. Lüth, R. Arens-Fisher, S. Hilbrich, and W. Theiss, “Color-sensitive Si-photodiode using porous silicon interference filters,” Jpn. J. Appl. Phys., Part 2 36, L24–L26 (1997).
[CrossRef]

Künzner, N.

L. A. Golovan, V. Yu. Timoshenko, A. B. Fedotov, L. P. Kuznetsova, D. A. Sidorov-Biryukov, P. K. Kashkarov, A. M. Zheltikov, D. Kovalev, N. Künzner, E. Gross, J. Diener, G. Polisski, and F. Koch, “Phase matching of second-harmonic generation in birefringent porous silicon,” Appl. Phys. B 73, 31–34 (2001).
[CrossRef]

E. Gross, D. Kovalev, N. Künzner, V. Yu. Timoshenko, J. Diener, and F. Koch, “Highly sensitive recognition element based on birefringent porous silicon layers,” J. Appl. Phys. 90(7), 3529–3532 (2001).
[CrossRef]

D. Kovalev, G. Polisski, J. Diener, H. Heckler, N. Künzner, V. Yu. Timoshenko, and F. Koch, “Strong in-plane birefringence in nanostructured silicon,” Appl. Phys. Lett. 78, 916–918 (2001).
[CrossRef]

N. Künzner, D. Kovalev, J. Diener, E. Gross, V. Yu. Timoshenko, G. Polisski, F. Koch, and M. Fujii, “Giant birefrin-gence in anisotropically nanostructured silicon,” Opt. Lett. 26, 1265–1268 (2001).
[CrossRef]

Kuzik, L. A.

L. A. Kuzik, V. A. Yakovlev, and G. Mattei, “Raman scattering enhancement in porous silicon microcavity,” Appl. Phys. Lett. 75, 1830–1832 (1999).
[CrossRef]

Kuznetsova, L. P.

L. A. Golovan, V. Yu. Timoshenko, A. B. Fedotov, L. P. Kuznetsova, D. A. Sidorov-Biryukov, P. K. Kashkarov, A. M. Zheltikov, D. Kovalev, N. Künzner, E. Gross, J. Diener, G. Polisski, and F. Koch, “Phase matching of second-harmonic generation in birefringent porous silicon,” Appl. Phys. B 73, 31–34 (2001).
[CrossRef]

Leonard, S. W.

F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner, and U. Gösele, “Large birefringence in two-dimensional silicon photonic crystals,” Phys. Rev. B 63, 161101–1–161101–4 (2001).
[CrossRef]

Lerondel, G.

I. Mihalcescu, G. Lerondel, R. Romestain, “Porous silicon anisotropy investigated by guided light,” Thin Solid Films 297, 245–249 (1997).
[CrossRef]

Li, Y.

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi A 182, 541–546 (2000).
[CrossRef]

Lisachenko, M. G.

L. A. Golovan’, A. M. Zheltikov, P. K. Kashkarov, N. I. Koroteev, M. G. Lisachenko, A. N. Naumov, D. A. Sidorov-Biryukov, V. Yu. Timoshenko, and A. B. Fedotov, “Generation of the second optical harmonic in porous-silicon-based structures with a photonic band gap,” JETP Lett. 69, 300–305 (1999).
[CrossRef]

Loo, R.

M. Krüger, M. G. Berger, M. Marso, W. Reetz, Th. Eickhoff, R. Loo, L. Vescan, M. Thönissen, H. Lüth, R. Arens-Fisher, S. Hilbrich, and W. Theiss, “Color-sensitive Si-photodiode using porous silicon interference filters,” Jpn. J. Appl. Phys., Part 2 36, L24–L26 (1997).
[CrossRef]

Lüth, H.

M. Krüger, M. G. Berger, M. Marso, W. Reetz, Th. Eickhoff, R. Loo, L. Vescan, M. Thönissen, H. Lüth, R. Arens-Fisher, S. Hilbrich, and W. Theiss, “Color-sensitive Si-photodiode using porous silicon interference filters,” Jpn. J. Appl. Phys., Part 2 36, L24–L26 (1997).
[CrossRef]

Magnitskii, S. A.

A. M. Zheltikov, A. V. Tarasishin, and S. A. Magnitskii, “Phase and group-velocity matching in ultrashort-pulse second-harmonic generation in one-dimensional photonic crystals,” J. Exp. Theor. Phys. 91, 298–306 (2000).
[CrossRef]

N. I. Koroteev, S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Compression of ultrashort light pulses in photonic crystals: when envelopes cease to be slow,” Opt. Commun. 159, 191–201 (1999).
[CrossRef]

Maidikovskii, A. I.

T. V. Dolgova, A. I. Maidikovskii, M. G. Martem’yanov, G. Marovsky, G. Mattei, D. Schuhmacher, V. A. Yakovlev, A. A. Fedyanin, and O. A. Aktsipetrov, “Giant second harmonic generation in microcavities based on porous silicon photonic crystals,” JETP Lett. 73, 6–9 (2001).
[CrossRef]

Manka, A. S.

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[CrossRef]

Marovsky, G.

T. V. Dolgova, A. I. Maidikovskii, M. G. Martem’yanov, G. Marovsky, G. Mattei, D. Schuhmacher, V. A. Yakovlev, A. A. Fedyanin, and O. A. Aktsipetrov, “Giant second harmonic generation in microcavities based on porous silicon photonic crystals,” JETP Lett. 73, 6–9 (2001).
[CrossRef]

Marso, M.

M. Krüger, M. G. Berger, M. Marso, W. Reetz, Th. Eickhoff, R. Loo, L. Vescan, M. Thönissen, H. Lüth, R. Arens-Fisher, S. Hilbrich, and W. Theiss, “Color-sensitive Si-photodiode using porous silicon interference filters,” Jpn. J. Appl. Phys., Part 2 36, L24–L26 (1997).
[CrossRef]

Martem’yanov, M. G.

T. V. Dolgova, A. I. Maidikovskii, M. G. Martem’yanov, G. Marovsky, G. Mattei, D. Schuhmacher, V. A. Yakovlev, A. A. Fedyanin, and O. A. Aktsipetrov, “Giant second harmonic generation in microcavities based on porous silicon photonic crystals,” JETP Lett. 73, 6–9 (2001).
[CrossRef]

Marucci, A.

G. Mattei, A. Marucci, V. A. Yakovlev, and M. Pagannone, “Porous silicon optical filters for application to laser technology,” Laser Phys. 8, 755–757 (1998).

Mattei, G.

T. V. Dolgova, A. I. Maidikovskii, M. G. Martem’yanov, G. Marovsky, G. Mattei, D. Schuhmacher, V. A. Yakovlev, A. A. Fedyanin, and O. A. Aktsipetrov, “Giant second harmonic generation in microcavities based on porous silicon photonic crystals,” JETP Lett. 73, 6–9 (2001).
[CrossRef]

L. A. Kuzik, V. A. Yakovlev, and G. Mattei, “Raman scattering enhancement in porous silicon microcavity,” Appl. Phys. Lett. 75, 1830–1832 (1999).
[CrossRef]

G. Mattei, E. V. Alieva, J. E. Petrov, and V. A. Yakovlev, “Enhancement of adsorbate vibration due to interaction with microcavity mode in porous silicon superlattice,” Surf. Sci. 427–428, 235–238 (1999).
[CrossRef]

G. Mattei, A. Marucci, V. A. Yakovlev, and M. Pagannone, “Porous silicon optical filters for application to laser technology,” Laser Phys. 8, 755–757 (1998).

Mihalcescu, I.

I. Mihalcescu, G. Lerondel, R. Romestain, “Porous silicon anisotropy investigated by guided light,” Thin Solid Films 297, 245–249 (1997).
[CrossRef]

Miller, B. L.

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi A 182, 541–546 (2000).
[CrossRef]

Naumov, A. N.

L. A. Golovan’, A. M. Zheltikov, P. K. Kashkarov, N. I. Koroteev, M. G. Lisachenko, A. N. Naumov, D. A. Sidorov-Biryukov, V. Yu. Timoshenko, and A. B. Fedotov, “Generation of the second optical harmonic in porous-silicon-based structures with a photonic band gap,” JETP Lett. 69, 300–305 (1999).
[CrossRef]

A. B. Fedotov, N. I. Koroteev, A. N. Naumov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Coherent four-wave mixing in a laser-preproduced plasma: optical frequency conversion and two-dimensional mapping of atoms and ions,” J. Nonlinear Opt. Phys. Mater. 6, 387–410 (1997).
[CrossRef]

Nefedov, I.

M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band-gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891–4898 (1999).
[CrossRef]

Ossicini, S.

O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38, 1–126 (2000).
[CrossRef]

Pagannone, M.

G. Mattei, A. Marucci, V. A. Yakovlev, and M. Pagannone, “Porous silicon optical filters for application to laser technology,” Laser Phys. 8, 755–757 (1998).

Panzarini, G.

L. Pavesi, G. Panzarini, and L. C. Andreani, “All-porous silicon-coupled microcavities: experiment versus theory,” Phys. Rev. B 58, 15794–15800 (1998).
[CrossRef]

Pavesi, L.

O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38, 1–126 (2000).
[CrossRef]

L. Pavesi, G. Panzarini, and L. C. Andreani, “All-porous silicon-coupled microcavities: experiment versus theory,” Phys. Rev. B 58, 15794–15800 (1998).
[CrossRef]

Pavlikov, A. V.

P. K. Kashkarov, B. V. Kamenev, E. A. Konstantinova, A. I. Efimova, A. V. Pavlikov, and V. Yu. Timoshenko, “Dynamics of nonequilibrium charge carriers in silicon quantum wires,” Phys. Usp. 41, 511–515 (1998).
[CrossRef]

Petrov, J. E.

G. Mattei, E. V. Alieva, J. E. Petrov, and V. A. Yakovlev, “Enhancement of adsorbate vibration due to interaction with microcavity mode in porous silicon superlattice,” Surf. Sci. 427–428, 235–238 (1999).
[CrossRef]

Polisski, G.

L. A. Golovan, V. Yu. Timoshenko, A. B. Fedotov, L. P. Kuznetsova, D. A. Sidorov-Biryukov, P. K. Kashkarov, A. M. Zheltikov, D. Kovalev, N. Künzner, E. Gross, J. Diener, G. Polisski, and F. Koch, “Phase matching of second-harmonic generation in birefringent porous silicon,” Appl. Phys. B 73, 31–34 (2001).
[CrossRef]

D. Kovalev, G. Polisski, J. Diener, H. Heckler, N. Künzner, V. Yu. Timoshenko, and F. Koch, “Strong in-plane birefringence in nanostructured silicon,” Appl. Phys. Lett. 78, 916–918 (2001).
[CrossRef]

N. Künzner, D. Kovalev, J. Diener, E. Gross, V. Yu. Timoshenko, G. Polisski, F. Koch, and M. Fujii, “Giant birefrin-gence in anisotropically nanostructured silicon,” Opt. Lett. 26, 1265–1268 (2001).
[CrossRef]

Reetz, W.

M. Krüger, M. G. Berger, M. Marso, W. Reetz, Th. Eickhoff, R. Loo, L. Vescan, M. Thönissen, H. Lüth, R. Arens-Fisher, S. Hilbrich, and W. Theiss, “Color-sensitive Si-photodiode using porous silicon interference filters,” Jpn. J. Appl. Phys., Part 2 36, L24–L26 (1997).
[CrossRef]

Reeves, C. L.

L. Canham, M. P. Stewart, J. M. Buriak, C. L. Reeves, M. Anderson, E. K. Squire, P. Allcock, and P. A. Snow, “Derivatized porous silicon mirrors: implantable optical components with slow resorbability,” Phys. Status Solidi A 182, 521–525 (2000).
[CrossRef]

Romestain, R.

I. Mihalcescu, G. Lerondel, R. Romestain, “Porous silicon anisotropy investigated by guided light,” Thin Solid Films 297, 245–249 (1997).
[CrossRef]

Rothberg, L. J.

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi A 182, 541–546 (2000).
[CrossRef]

Salonen, J.

M. E. Kompan, J. Salonen, and I. Yu. Shabanov, “Anomalous birefringence of light in free-standing samples of porous silicon,” JETP 90, 324–329 (2000).
[CrossRef]

Sarbey, O. G.

O. G. Sarbey, E. K. Frolova, R. D. Fedorovich, and D. B. Dan’ko, “Birefringence of porous silicon,” Phys. Status Solidi 42, 1240–1241 (2000).

Scalora, M.

M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band-gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891–4898 (1999).
[CrossRef]

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[CrossRef]

Schuhmacher, D.

T. V. Dolgova, A. I. Maidikovskii, M. G. Martem’yanov, G. Marovsky, G. Mattei, D. Schuhmacher, V. A. Yakovlev, A. A. Fedyanin, and O. A. Aktsipetrov, “Giant second harmonic generation in microcavities based on porous silicon photonic crystals,” JETP Lett. 73, 6–9 (2001).
[CrossRef]

Shabanov, I. Yu.

M. E. Kompan, J. Salonen, and I. Yu. Shabanov, “Anomalous birefringence of light in free-standing samples of porous silicon,” JETP 90, 324–329 (2000).
[CrossRef]

Sibilia, C.

M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band-gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891–4898 (1999).
[CrossRef]

Sidorov-Biryukov, D. A.

L. A. Golovan, V. Yu. Timoshenko, A. B. Fedotov, L. P. Kuznetsova, D. A. Sidorov-Biryukov, P. K. Kashkarov, A. M. Zheltikov, D. Kovalev, N. Künzner, E. Gross, J. Diener, G. Polisski, and F. Koch, “Phase matching of second-harmonic generation in birefringent porous silicon,” Appl. Phys. B 73, 31–34 (2001).
[CrossRef]

L. A. Golovan’, A. M. Zheltikov, P. K. Kashkarov, N. I. Koroteev, M. G. Lisachenko, A. N. Naumov, D. A. Sidorov-Biryukov, V. Yu. Timoshenko, and A. B. Fedotov, “Generation of the second optical harmonic in porous-silicon-based structures with a photonic band gap,” JETP Lett. 69, 300–305 (1999).
[CrossRef]

A. B. Fedotov, N. I. Koroteev, A. N. Naumov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Coherent four-wave mixing in a laser-preproduced plasma: optical frequency conversion and two-dimensional mapping of atoms and ions,” J. Nonlinear Opt. Phys. Mater. 6, 387–410 (1997).
[CrossRef]

Snow, P. A.

L. Canham, M. P. Stewart, J. M. Buriak, C. L. Reeves, M. Anderson, E. K. Squire, P. Allcock, and P. A. Snow, “Derivatized porous silicon mirrors: implantable optical components with slow resorbability,” Phys. Status Solidi A 182, 521–525 (2000).
[CrossRef]

Squire, E. K.

L. Canham, M. P. Stewart, J. M. Buriak, C. L. Reeves, M. Anderson, E. K. Squire, P. Allcock, and P. A. Snow, “Derivatized porous silicon mirrors: implantable optical components with slow resorbability,” Phys. Status Solidi A 182, 521–525 (2000).
[CrossRef]

Stewart, M. P.

L. Canham, M. P. Stewart, J. M. Buriak, C. L. Reeves, M. Anderson, E. K. Squire, P. Allcock, and P. A. Snow, “Derivatized porous silicon mirrors: implantable optical components with slow resorbability,” Phys. Status Solidi A 182, 521–525 (2000).
[CrossRef]

Syrchin, M. S.

L. A. Golovan, P. K. Kashkarov, M. S. Syrchin, and A. M. Zheltikov, “One-dimensional porous-silicon photonic band-gap structures with tunable reflection and dispersion,” Phys. Status Solidi A 182, 437–442 (2000).
[CrossRef]

Tarasishin, A. V.

A. M. Zheltikov, A. V. Tarasishin, and S. A. Magnitskii, “Phase and group-velocity matching in ultrashort-pulse second-harmonic generation in one-dimensional photonic crystals,” J. Exp. Theor. Phys. 91, 298–306 (2000).
[CrossRef]

N. I. Koroteev, S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Compression of ultrashort light pulses in photonic crystals: when envelopes cease to be slow,” Opt. Commun. 159, 191–201 (1999).
[CrossRef]

Theiss, W.

M. Krüger, M. G. Berger, M. Marso, W. Reetz, Th. Eickhoff, R. Loo, L. Vescan, M. Thönissen, H. Lüth, R. Arens-Fisher, S. Hilbrich, and W. Theiss, “Color-sensitive Si-photodiode using porous silicon interference filters,” Jpn. J. Appl. Phys., Part 2 36, L24–L26 (1997).
[CrossRef]

See for example, W. Theiss, “Optical properties of porous silicon,” Surf. Sci. Rep. 29, 91–192 (1997).
[CrossRef]

Thönissen, M.

M. Krüger, M. G. Berger, M. Marso, W. Reetz, Th. Eickhoff, R. Loo, L. Vescan, M. Thönissen, H. Lüth, R. Arens-Fisher, S. Hilbrich, and W. Theiss, “Color-sensitive Si-photodiode using porous silicon interference filters,” Jpn. J. Appl. Phys., Part 2 36, L24–L26 (1997).
[CrossRef]

Timoshenko, V. Yu.

L. A. Golovan, V. Yu. Timoshenko, A. B. Fedotov, L. P. Kuznetsova, D. A. Sidorov-Biryukov, P. K. Kashkarov, A. M. Zheltikov, D. Kovalev, N. Künzner, E. Gross, J. Diener, G. Polisski, and F. Koch, “Phase matching of second-harmonic generation in birefringent porous silicon,” Appl. Phys. B 73, 31–34 (2001).
[CrossRef]

D. Kovalev, G. Polisski, J. Diener, H. Heckler, N. Künzner, V. Yu. Timoshenko, and F. Koch, “Strong in-plane birefringence in nanostructured silicon,” Appl. Phys. Lett. 78, 916–918 (2001).
[CrossRef]

E. Gross, D. Kovalev, N. Künzner, V. Yu. Timoshenko, J. Diener, and F. Koch, “Highly sensitive recognition element based on birefringent porous silicon layers,” J. Appl. Phys. 90(7), 3529–3532 (2001).
[CrossRef]

N. Künzner, D. Kovalev, J. Diener, E. Gross, V. Yu. Timoshenko, G. Polisski, F. Koch, and M. Fujii, “Giant birefrin-gence in anisotropically nanostructured silicon,” Opt. Lett. 26, 1265–1268 (2001).
[CrossRef]

L. A. Golovan’, A. M. Zheltikov, P. K. Kashkarov, N. I. Koroteev, M. G. Lisachenko, A. N. Naumov, D. A. Sidorov-Biryukov, V. Yu. Timoshenko, and A. B. Fedotov, “Generation of the second optical harmonic in porous-silicon-based structures with a photonic band gap,” JETP Lett. 69, 300–305 (1999).
[CrossRef]

P. K. Kashkarov, B. V. Kamenev, E. A. Konstantinova, A. I. Efimova, A. V. Pavlikov, and V. Yu. Timoshenko, “Dynamics of nonequilibrium charge carriers in silicon quantum wires,” Phys. Usp. 41, 511–515 (1998).
[CrossRef]

van Driel, H. M.

F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner, and U. Gösele, “Large birefringence in two-dimensional silicon photonic crystals,” Phys. Rev. B 63, 161101–1–161101–4 (2001).
[CrossRef]

Vescan, L.

M. Krüger, M. G. Berger, M. Marso, W. Reetz, Th. Eickhoff, R. Loo, L. Vescan, M. Thönissen, H. Lüth, R. Arens-Fisher, S. Hilbrich, and W. Theiss, “Color-sensitive Si-photodiode using porous silicon interference filters,” Jpn. J. Appl. Phys., Part 2 36, L24–L26 (1997).
[CrossRef]

Vincent, G.

G. Vincent, “Optical properties of porous silicon superlattices,” Appl. Phys. Lett. 64, 2367–2369 (1994).
[CrossRef]

Viswanathan, R.

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[CrossRef]

Yakovlev, V. A.

T. V. Dolgova, A. I. Maidikovskii, M. G. Martem’yanov, G. Marovsky, G. Mattei, D. Schuhmacher, V. A. Yakovlev, A. A. Fedyanin, and O. A. Aktsipetrov, “Giant second harmonic generation in microcavities based on porous silicon photonic crystals,” JETP Lett. 73, 6–9 (2001).
[CrossRef]

L. A. Kuzik, V. A. Yakovlev, and G. Mattei, “Raman scattering enhancement in porous silicon microcavity,” Appl. Phys. Lett. 75, 1830–1832 (1999).
[CrossRef]

G. Mattei, E. V. Alieva, J. E. Petrov, and V. A. Yakovlev, “Enhancement of adsorbate vibration due to interaction with microcavity mode in porous silicon superlattice,” Surf. Sci. 427–428, 235–238 (1999).
[CrossRef]

G. Mattei, A. Marucci, V. A. Yakovlev, and M. Pagannone, “Porous silicon optical filters for application to laser technology,” Laser Phys. 8, 755–757 (1998).

Zangooie, S.

S. Zangooie, R. Janson, and H. Arwin, “Reversible and irreversible control of optical properties of porous silicon superlattices by thermal oxidation, vapor adsorption, and liquid penetration,” J. Vac. Sci. Technol. 16, 2901–2912 (1998).
[CrossRef]

Zheltikov, A. M.

L. A. Golovan, V. Yu. Timoshenko, A. B. Fedotov, L. P. Kuznetsova, D. A. Sidorov-Biryukov, P. K. Kashkarov, A. M. Zheltikov, D. Kovalev, N. Künzner, E. Gross, J. Diener, G. Polisski, and F. Koch, “Phase matching of second-harmonic generation in birefringent porous silicon,” Appl. Phys. B 73, 31–34 (2001).
[CrossRef]

L. A. Golovan, P. K. Kashkarov, M. S. Syrchin, and A. M. Zheltikov, “One-dimensional porous-silicon photonic band-gap structures with tunable reflection and dispersion,” Phys. Status Solidi A 182, 437–442 (2000).
[CrossRef]

A. M. Zheltikov, A. V. Tarasishin, and S. A. Magnitskii, “Phase and group-velocity matching in ultrashort-pulse second-harmonic generation in one-dimensional photonic crystals,” J. Exp. Theor. Phys. 91, 298–306 (2000).
[CrossRef]

N. I. Koroteev, S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Compression of ultrashort light pulses in photonic crystals: when envelopes cease to be slow,” Opt. Commun. 159, 191–201 (1999).
[CrossRef]

L. A. Golovan’, A. M. Zheltikov, P. K. Kashkarov, N. I. Koroteev, M. G. Lisachenko, A. N. Naumov, D. A. Sidorov-Biryukov, V. Yu. Timoshenko, and A. B. Fedotov, “Generation of the second optical harmonic in porous-silicon-based structures with a photonic band gap,” JETP Lett. 69, 300–305 (1999).
[CrossRef]

A. B. Fedotov, N. I. Koroteev, A. N. Naumov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Coherent four-wave mixing in a laser-preproduced plasma: optical frequency conversion and two-dimensional mapping of atoms and ions,” J. Nonlinear Opt. Phys. Mater. 6, 387–410 (1997).
[CrossRef]

A. M. Zheltikov, N. I. Koroteev, and A. B. Fedotov, “Generation of optical harmonics and frequency mixing in a plasma of optical breakdown,” Laser Phys. 4, 569–581 (1994).

Ann. Phys. (Leipzig)

D. A. G. Bruggeman, “Berechnung verschiedener physikalisher Konstanten von heterogen Substanzen,” Ann. Phys. (Leipzig) 24, 634–664 (1935).

Appl. Phys. B

L. A. Golovan, V. Yu. Timoshenko, A. B. Fedotov, L. P. Kuznetsova, D. A. Sidorov-Biryukov, P. K. Kashkarov, A. M. Zheltikov, D. Kovalev, N. Künzner, E. Gross, J. Diener, G. Polisski, and F. Koch, “Phase matching of second-harmonic generation in birefringent porous silicon,” Appl. Phys. B 73, 31–34 (2001).
[CrossRef]

Appl. Phys. Lett.

D. Kovalev, G. Polisski, J. Diener, H. Heckler, N. Künzner, V. Yu. Timoshenko, and F. Koch, “Strong in-plane birefringence in nanostructured silicon,” Appl. Phys. Lett. 78, 916–918 (2001).
[CrossRef]

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046–1048 (1990).
[CrossRef]

G. Vincent, “Optical properties of porous silicon superlattices,” Appl. Phys. Lett. 64, 2367–2369 (1994).
[CrossRef]

L. A. Kuzik, V. A. Yakovlev, and G. Mattei, “Raman scattering enhancement in porous silicon microcavity,” Appl. Phys. Lett. 75, 1830–1832 (1999).
[CrossRef]

J. Appl. Phys.

See, for example, A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82, 909–965 (1997).
[CrossRef]

E. Gross, D. Kovalev, N. Künzner, V. Yu. Timoshenko, J. Diener, and F. Koch, “Highly sensitive recognition element based on birefringent porous silicon layers,” J. Appl. Phys. 90(7), 3529–3532 (2001).
[CrossRef]

J. Exp. Theor. Phys.

A. M. Zheltikov, A. V. Tarasishin, and S. A. Magnitskii, “Phase and group-velocity matching in ultrashort-pulse second-harmonic generation in one-dimensional photonic crystals,” J. Exp. Theor. Phys. 91, 298–306 (2000).
[CrossRef]

J. Nonlinear Opt. Phys. Mater.

A. B. Fedotov, N. I. Koroteev, A. N. Naumov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Coherent four-wave mixing in a laser-preproduced plasma: optical frequency conversion and two-dimensional mapping of atoms and ions,” J. Nonlinear Opt. Phys. Mater. 6, 387–410 (1997).
[CrossRef]

J. Vac. Sci. Technol.

S. Zangooie, R. Janson, and H. Arwin, “Reversible and irreversible control of optical properties of porous silicon superlattices by thermal oxidation, vapor adsorption, and liquid penetration,” J. Vac. Sci. Technol. 16, 2901–2912 (1998).
[CrossRef]

JETP

M. E. Kompan, J. Salonen, and I. Yu. Shabanov, “Anomalous birefringence of light in free-standing samples of porous silicon,” JETP 90, 324–329 (2000).
[CrossRef]

JETP Lett.

L. A. Golovan’, A. M. Zheltikov, P. K. Kashkarov, N. I. Koroteev, M. G. Lisachenko, A. N. Naumov, D. A. Sidorov-Biryukov, V. Yu. Timoshenko, and A. B. Fedotov, “Generation of the second optical harmonic in porous-silicon-based structures with a photonic band gap,” JETP Lett. 69, 300–305 (1999).
[CrossRef]

T. V. Dolgova, A. I. Maidikovskii, M. G. Martem’yanov, G. Marovsky, G. Mattei, D. Schuhmacher, V. A. Yakovlev, A. A. Fedyanin, and O. A. Aktsipetrov, “Giant second harmonic generation in microcavities based on porous silicon photonic crystals,” JETP Lett. 73, 6–9 (2001).
[CrossRef]

Jpn. J. Appl. Phys., Part 2

M. Krüger, M. G. Berger, M. Marso, W. Reetz, Th. Eickhoff, R. Loo, L. Vescan, M. Thönissen, H. Lüth, R. Arens-Fisher, S. Hilbrich, and W. Theiss, “Color-sensitive Si-photodiode using porous silicon interference filters,” Jpn. J. Appl. Phys., Part 2 36, L24–L26 (1997).
[CrossRef]

Laser Phys.

G. Mattei, A. Marucci, V. A. Yakovlev, and M. Pagannone, “Porous silicon optical filters for application to laser technology,” Laser Phys. 8, 755–757 (1998).

A. M. Zheltikov, N. I. Koroteev, and A. B. Fedotov, “Generation of optical harmonics and frequency mixing in a plasma of optical breakdown,” Laser Phys. 4, 569–581 (1994).

Opt. Commun.

N. I. Koroteev, S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Compression of ultrashort light pulses in photonic crystals: when envelopes cease to be slow,” Opt. Commun. 159, 191–201 (1999).
[CrossRef]

Opt. Lett.

Phys. Rev. A

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[CrossRef]

Phys. Rev. B

L. Pavesi, G. Panzarini, and L. C. Andreani, “All-porous silicon-coupled microcavities: experiment versus theory,” Phys. Rev. B 58, 15794–15800 (1998).
[CrossRef]

F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner, and U. Gösele, “Large birefringence in two-dimensional silicon photonic crystals,” Phys. Rev. B 63, 161101–1–161101–4 (2001).
[CrossRef]

Phys. Rev. E

M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band-gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891–4898 (1999).
[CrossRef]

Phys. Status Solidi

O. G. Sarbey, E. K. Frolova, R. D. Fedorovich, and D. B. Dan’ko, “Birefringence of porous silicon,” Phys. Status Solidi 42, 1240–1241 (2000).

Phys. Status Solidi A

L. A. Golovan, P. K. Kashkarov, M. S. Syrchin, and A. M. Zheltikov, “One-dimensional porous-silicon photonic band-gap structures with tunable reflection and dispersion,” Phys. Status Solidi A 182, 437–442 (2000).
[CrossRef]

L. Canham, M. P. Stewart, J. M. Buriak, C. L. Reeves, M. Anderson, E. K. Squire, P. Allcock, and P. A. Snow, “Derivatized porous silicon mirrors: implantable optical components with slow resorbability,” Phys. Status Solidi A 182, 521–525 (2000).
[CrossRef]

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi A 182, 541–546 (2000).
[CrossRef]

Phys. Usp.

P. K. Kashkarov, B. V. Kamenev, E. A. Konstantinova, A. I. Efimova, A. V. Pavlikov, and V. Yu. Timoshenko, “Dynamics of nonequilibrium charge carriers in silicon quantum wires,” Phys. Usp. 41, 511–515 (1998).
[CrossRef]

Surf. Sci.

G. Mattei, E. V. Alieva, J. E. Petrov, and V. A. Yakovlev, “Enhancement of adsorbate vibration due to interaction with microcavity mode in porous silicon superlattice,” Surf. Sci. 427–428, 235–238 (1999).
[CrossRef]

Surf. Sci. Rep.

See for example, W. Theiss, “Optical properties of porous silicon,” Surf. Sci. Rep. 29, 91–192 (1997).
[CrossRef]

O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38, 1–126 (2000).
[CrossRef]

Thin Solid Films

I. Mihalcescu, G. Lerondel, R. Romestain, “Porous silicon anisotropy investigated by guided light,” Thin Solid Films 297, 245–249 (1997).
[CrossRef]

Other

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1960).

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

R. L. Sutherland, Handbook on Nonlinear Optics (Marcel Dekker, New York, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Reflection spectra for PS multilayer A at different angles of incidence. (b) Reflection spectrum for PS multilayer B at normal incidence. (c) Reflection spectrum for PS multilayer C at normal incidence.

Fig. 2
Fig. 2

Calculated mismatch Δk=k2-2k1 plotted versus the angle of incidence of the radiation at the fundamental frequency for structures A, B, and C.

Fig. 3
Fig. 3

Second-harmonic intensity plotted versus the angle of incidence of the radiation at the fundamental frequency for structures A, B, and C.

Fig. 4
Fig. 4

IR transmission (T) and reflection (R) spectra of the PS film prepared on (110) Si. The spectra were obtained with nonpolarized light. The current density is j=50 mA/cm2; the film thickness is d=16 µm.

Fig. 5
Fig. 5

(a) Dependences of the refractive indices for ordinary (solid squares) and extraordinary (open squares) waves and (b) their difference Δn=no-ne in (110) PS film, depending on the etching-current density. Estimated porosities given near corresponding experimental points in (b). The solid curves are to guide the eye.

Fig. 6
Fig. 6

Reflection spectra of a PS multilayer formed on (110) Si. The spectra were measured with light polarized parallel (solid curve) and perpendicular (dashed curve) to the [001] in-plane crystallographic direction.

Fig. 7
Fig. 7

Calculated mismatch Δk=k2-2k1 plotted versus the angle of incidence of the radiation at the fundamental frequency for (110) PS with air-filled pores at porosities of (a) 65% and (b) 62% and (110) PS for porosities of 65% for (c) ethanol-filled pores and (d) glycerol-filled pores. The optical axis is in the plane of incidence.

Fig. 8
Fig. 8

Polarization dependences of second-harmonic intensity for (a) near-normal incidence and (b and c) incidence at 50° in a free-standing (110) PS film of 65% porosity. The sketches demonstrate the geometry of the experiment.

Fig. 9
Fig. 9

Polarization dependences of second-harmonic intensity in a free-standing (110) PS film of 65% porosity with the pores filled with dielectric liquids (ethanol, glycerol) for (a) near-normal and (b) oblique incidences.

Fig. 10
Fig. 10

Angular dependence of the second-harmonic intensity in a free-standing (110) PS film of 65% porosity with the pores filled with air, ethanol, and glycerol.

Metrics