Abstract

We study the optical localized states in a one-dimensional system of strongly coupled defect microcavities for the case when a tight-binding approximation is not valid. Transmission and electromagnetic mode density spectra as well as the distribution of light intensity inside the bandgap material are investigated. We report on the effect of splitting the fundamental coupled-cavity mode into several high-Q submodes to support perfect transmission of light at low group-velocity values. New types of laser microcavities that provide low-threshold lasing at multiple wavelengths and in opposite directions are proposed. Possible implementation of the laser systems with active n–i–p–i layers is discussed.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Yu. Vlasov, K. Luterova, I. Pelant, B. Honerlage, and V. Astratov, “Enhancement of optical gain of semiconductors embedded in three-dimensional photonic crystals,” Appl. Phys. Lett. 71, 1616–1618 (1997).
    [CrossRef]
  2. J. Dowling, M. Scalora, M. Bloemer, and C. Bowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
    [CrossRef]
  3. Y. C. Tsai, K. W. Shumg, and S. C. Gou, “Impurity modes in one-dimensional photonic crystals-analytic approach,” J. Mod. Opt. 45, 2147–2157 (1998).
  4. M. Scalora, R. Flynn, S. Reinhardt, R. Fork, M. Tocci, M. Bloemer, M. Bowden, H. Ledbetter, J. Bendickson, J. Dowling, and R. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
    [CrossRef]
  5. M. Bayindir, S. Tanriseven, and E. Ozbay, “Propagation of light through localized coupled-cavity modes in one-dimensional photonic band-gap structures,” Appl. Phys. A 72, 117–119 (2001).
    [CrossRef]
  6. G. H. Döhler, “Doping superlattices (‘n-i-p-i crystals’),” IEEE J. Quantum Electron. QE-22, 1682 (1986).
    [CrossRef]
  7. V. K. Kononenko, I. S. Manak, and D. V. Ushakov, “Optoelectronic properties and characteristics of doping superlattices,” in Photoconversion: Science and Techologies, M. Pluta and M. Szyjer, eds., Proc. SPIE 3580, 10–27 (1998).
    [CrossRef]
  8. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  9. J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107–4121 (1996).
    [CrossRef]
  10. M. Born and E. Wolf, Principles of Optics (Pergamon, Cambridge, 1998).
  11. A. Yariv, Y. Xu, R. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).
    [CrossRef]
  12. J. L. Jewel, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
    [CrossRef]
  13. G. H. Döhler, G. Hasnain, and J. N. Miller, “In situ grown-in selective contacts to n–i–p–i doping superlattice crystals using molecular beam epitaxial growth through a shadow mask,” Appl. Phys. Lett. 49, 704–706 (1986).
    [CrossRef]
  14. Y. Xu, R. Lee, and A. Yariv, “Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide,” J. Opt. Soc. Am. B 17, 387–400 (2000).
    [CrossRef]
  15. M. Scalora, M. Bloemer, A. Manka, J. Dowling, C. Bowden, R. Viswanathan, and J. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
    [CrossRef]
  16. M. Centini, M. Scalora, C. D’Aguanno, C. Sibilia, M. Bertolotti, M. Bloemer, C. Bowden, and J. Haus, “Efficient nonlinear infrared parametric generation in one-dimensional photonic band-gap structures,” Opt. Commun. 189, 135–142 (2001).
    [CrossRef]

2001

M. Bayindir, S. Tanriseven, and E. Ozbay, “Propagation of light through localized coupled-cavity modes in one-dimensional photonic band-gap structures,” Appl. Phys. A 72, 117–119 (2001).
[CrossRef]

M. Centini, M. Scalora, C. D’Aguanno, C. Sibilia, M. Bertolotti, M. Bloemer, C. Bowden, and J. Haus, “Efficient nonlinear infrared parametric generation in one-dimensional photonic band-gap structures,” Opt. Commun. 189, 135–142 (2001).
[CrossRef]

2000

1999

1998

Y. C. Tsai, K. W. Shumg, and S. C. Gou, “Impurity modes in one-dimensional photonic crystals-analytic approach,” J. Mod. Opt. 45, 2147–2157 (1998).

V. K. Kononenko, I. S. Manak, and D. V. Ushakov, “Optoelectronic properties and characteristics of doping superlattices,” in Photoconversion: Science and Techologies, M. Pluta and M. Szyjer, eds., Proc. SPIE 3580, 10–27 (1998).
[CrossRef]

1997

Yu. Vlasov, K. Luterova, I. Pelant, B. Honerlage, and V. Astratov, “Enhancement of optical gain of semiconductors embedded in three-dimensional photonic crystals,” Appl. Phys. Lett. 71, 1616–1618 (1997).
[CrossRef]

M. Scalora, M. Bloemer, A. Manka, J. Dowling, C. Bowden, R. Viswanathan, and J. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[CrossRef]

1996

M. Scalora, R. Flynn, S. Reinhardt, R. Fork, M. Tocci, M. Bloemer, M. Bowden, H. Ledbetter, J. Bendickson, J. Dowling, and R. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
[CrossRef]

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107–4121 (1996).
[CrossRef]

1994

J. Dowling, M. Scalora, M. Bloemer, and C. Bowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

1991

J. L. Jewel, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

1986

G. H. Döhler, G. Hasnain, and J. N. Miller, “In situ grown-in selective contacts to n–i–p–i doping superlattice crystals using molecular beam epitaxial growth through a shadow mask,” Appl. Phys. Lett. 49, 704–706 (1986).
[CrossRef]

G. H. Döhler, “Doping superlattices (‘n-i-p-i crystals’),” IEEE J. Quantum Electron. QE-22, 1682 (1986).
[CrossRef]

Astratov, V.

Yu. Vlasov, K. Luterova, I. Pelant, B. Honerlage, and V. Astratov, “Enhancement of optical gain of semiconductors embedded in three-dimensional photonic crystals,” Appl. Phys. Lett. 71, 1616–1618 (1997).
[CrossRef]

Bayindir, M.

M. Bayindir, S. Tanriseven, and E. Ozbay, “Propagation of light through localized coupled-cavity modes in one-dimensional photonic band-gap structures,” Appl. Phys. A 72, 117–119 (2001).
[CrossRef]

Bendickson, J.

M. Scalora, R. Flynn, S. Reinhardt, R. Fork, M. Tocci, M. Bloemer, M. Bowden, H. Ledbetter, J. Bendickson, J. Dowling, and R. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
[CrossRef]

Bendickson, J. M.

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107–4121 (1996).
[CrossRef]

Bertolotti, M.

M. Centini, M. Scalora, C. D’Aguanno, C. Sibilia, M. Bertolotti, M. Bloemer, C. Bowden, and J. Haus, “Efficient nonlinear infrared parametric generation in one-dimensional photonic band-gap structures,” Opt. Commun. 189, 135–142 (2001).
[CrossRef]

Bloemer, M.

M. Centini, M. Scalora, C. D’Aguanno, C. Sibilia, M. Bertolotti, M. Bloemer, C. Bowden, and J. Haus, “Efficient nonlinear infrared parametric generation in one-dimensional photonic band-gap structures,” Opt. Commun. 189, 135–142 (2001).
[CrossRef]

M. Scalora, M. Bloemer, A. Manka, J. Dowling, C. Bowden, R. Viswanathan, and J. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[CrossRef]

M. Scalora, R. Flynn, S. Reinhardt, R. Fork, M. Tocci, M. Bloemer, M. Bowden, H. Ledbetter, J. Bendickson, J. Dowling, and R. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
[CrossRef]

J. Dowling, M. Scalora, M. Bloemer, and C. Bowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

Bowden, C.

M. Centini, M. Scalora, C. D’Aguanno, C. Sibilia, M. Bertolotti, M. Bloemer, C. Bowden, and J. Haus, “Efficient nonlinear infrared parametric generation in one-dimensional photonic band-gap structures,” Opt. Commun. 189, 135–142 (2001).
[CrossRef]

M. Scalora, M. Bloemer, A. Manka, J. Dowling, C. Bowden, R. Viswanathan, and J. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[CrossRef]

J. Dowling, M. Scalora, M. Bloemer, and C. Bowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

Bowden, M.

M. Scalora, R. Flynn, S. Reinhardt, R. Fork, M. Tocci, M. Bloemer, M. Bowden, H. Ledbetter, J. Bendickson, J. Dowling, and R. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
[CrossRef]

Centini, M.

M. Centini, M. Scalora, C. D’Aguanno, C. Sibilia, M. Bertolotti, M. Bloemer, C. Bowden, and J. Haus, “Efficient nonlinear infrared parametric generation in one-dimensional photonic band-gap structures,” Opt. Commun. 189, 135–142 (2001).
[CrossRef]

D’Aguanno, C.

M. Centini, M. Scalora, C. D’Aguanno, C. Sibilia, M. Bertolotti, M. Bloemer, C. Bowden, and J. Haus, “Efficient nonlinear infrared parametric generation in one-dimensional photonic band-gap structures,” Opt. Commun. 189, 135–142 (2001).
[CrossRef]

Döhler, G. H.

G. H. Döhler, “Doping superlattices (‘n-i-p-i crystals’),” IEEE J. Quantum Electron. QE-22, 1682 (1986).
[CrossRef]

G. H. Döhler, G. Hasnain, and J. N. Miller, “In situ grown-in selective contacts to n–i–p–i doping superlattice crystals using molecular beam epitaxial growth through a shadow mask,” Appl. Phys. Lett. 49, 704–706 (1986).
[CrossRef]

Dowling, J.

M. Scalora, M. Bloemer, A. Manka, J. Dowling, C. Bowden, R. Viswanathan, and J. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[CrossRef]

M. Scalora, R. Flynn, S. Reinhardt, R. Fork, M. Tocci, M. Bloemer, M. Bowden, H. Ledbetter, J. Bendickson, J. Dowling, and R. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
[CrossRef]

J. Dowling, M. Scalora, M. Bloemer, and C. Bowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

Dowling, J. P.

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107–4121 (1996).
[CrossRef]

Florez, L. T.

J. L. Jewel, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

Flynn, R.

M. Scalora, R. Flynn, S. Reinhardt, R. Fork, M. Tocci, M. Bloemer, M. Bowden, H. Ledbetter, J. Bendickson, J. Dowling, and R. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
[CrossRef]

Fork, R.

M. Scalora, R. Flynn, S. Reinhardt, R. Fork, M. Tocci, M. Bloemer, M. Bowden, H. Ledbetter, J. Bendickson, J. Dowling, and R. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
[CrossRef]

Gou, S. C.

Y. C. Tsai, K. W. Shumg, and S. C. Gou, “Impurity modes in one-dimensional photonic crystals-analytic approach,” J. Mod. Opt. 45, 2147–2157 (1998).

Harbison, J. P.

J. L. Jewel, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

Hasnain, G.

G. H. Döhler, G. Hasnain, and J. N. Miller, “In situ grown-in selective contacts to n–i–p–i doping superlattice crystals using molecular beam epitaxial growth through a shadow mask,” Appl. Phys. Lett. 49, 704–706 (1986).
[CrossRef]

Haus, J.

M. Centini, M. Scalora, C. D’Aguanno, C. Sibilia, M. Bertolotti, M. Bloemer, C. Bowden, and J. Haus, “Efficient nonlinear infrared parametric generation in one-dimensional photonic band-gap structures,” Opt. Commun. 189, 135–142 (2001).
[CrossRef]

M. Scalora, M. Bloemer, A. Manka, J. Dowling, C. Bowden, R. Viswanathan, and J. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[CrossRef]

Honerlage, B.

Yu. Vlasov, K. Luterova, I. Pelant, B. Honerlage, and V. Astratov, “Enhancement of optical gain of semiconductors embedded in three-dimensional photonic crystals,” Appl. Phys. Lett. 71, 1616–1618 (1997).
[CrossRef]

Jewel, J. L.

J. L. Jewel, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

Kononenko, V. K.

V. K. Kononenko, I. S. Manak, and D. V. Ushakov, “Optoelectronic properties and characteristics of doping superlattices,” in Photoconversion: Science and Techologies, M. Pluta and M. Szyjer, eds., Proc. SPIE 3580, 10–27 (1998).
[CrossRef]

Leavitt, R.

M. Scalora, R. Flynn, S. Reinhardt, R. Fork, M. Tocci, M. Bloemer, M. Bowden, H. Ledbetter, J. Bendickson, J. Dowling, and R. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
[CrossRef]

Ledbetter, H.

M. Scalora, R. Flynn, S. Reinhardt, R. Fork, M. Tocci, M. Bloemer, M. Bowden, H. Ledbetter, J. Bendickson, J. Dowling, and R. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
[CrossRef]

Lee, R.

Lee, Y. H.

J. L. Jewel, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

Luterova, K.

Yu. Vlasov, K. Luterova, I. Pelant, B. Honerlage, and V. Astratov, “Enhancement of optical gain of semiconductors embedded in three-dimensional photonic crystals,” Appl. Phys. Lett. 71, 1616–1618 (1997).
[CrossRef]

Manak, I. S.

V. K. Kononenko, I. S. Manak, and D. V. Ushakov, “Optoelectronic properties and characteristics of doping superlattices,” in Photoconversion: Science and Techologies, M. Pluta and M. Szyjer, eds., Proc. SPIE 3580, 10–27 (1998).
[CrossRef]

Manka, A.

M. Scalora, M. Bloemer, A. Manka, J. Dowling, C. Bowden, R. Viswanathan, and J. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[CrossRef]

Miller, J. N.

G. H. Döhler, G. Hasnain, and J. N. Miller, “In situ grown-in selective contacts to n–i–p–i doping superlattice crystals using molecular beam epitaxial growth through a shadow mask,” Appl. Phys. Lett. 49, 704–706 (1986).
[CrossRef]

Ozbay, E.

M. Bayindir, S. Tanriseven, and E. Ozbay, “Propagation of light through localized coupled-cavity modes in one-dimensional photonic band-gap structures,” Appl. Phys. A 72, 117–119 (2001).
[CrossRef]

Pelant, I.

Yu. Vlasov, K. Luterova, I. Pelant, B. Honerlage, and V. Astratov, “Enhancement of optical gain of semiconductors embedded in three-dimensional photonic crystals,” Appl. Phys. Lett. 71, 1616–1618 (1997).
[CrossRef]

Reinhardt, S.

M. Scalora, R. Flynn, S. Reinhardt, R. Fork, M. Tocci, M. Bloemer, M. Bowden, H. Ledbetter, J. Bendickson, J. Dowling, and R. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
[CrossRef]

Scalora, M.

M. Centini, M. Scalora, C. D’Aguanno, C. Sibilia, M. Bertolotti, M. Bloemer, C. Bowden, and J. Haus, “Efficient nonlinear infrared parametric generation in one-dimensional photonic band-gap structures,” Opt. Commun. 189, 135–142 (2001).
[CrossRef]

M. Scalora, M. Bloemer, A. Manka, J. Dowling, C. Bowden, R. Viswanathan, and J. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[CrossRef]

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107–4121 (1996).
[CrossRef]

M. Scalora, R. Flynn, S. Reinhardt, R. Fork, M. Tocci, M. Bloemer, M. Bowden, H. Ledbetter, J. Bendickson, J. Dowling, and R. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
[CrossRef]

J. Dowling, M. Scalora, M. Bloemer, and C. Bowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

Scherer, A.

A. Yariv, Y. Xu, R. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).
[CrossRef]

J. L. Jewel, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

Shumg, K. W.

Y. C. Tsai, K. W. Shumg, and S. C. Gou, “Impurity modes in one-dimensional photonic crystals-analytic approach,” J. Mod. Opt. 45, 2147–2157 (1998).

Sibilia, C.

M. Centini, M. Scalora, C. D’Aguanno, C. Sibilia, M. Bertolotti, M. Bloemer, C. Bowden, and J. Haus, “Efficient nonlinear infrared parametric generation in one-dimensional photonic band-gap structures,” Opt. Commun. 189, 135–142 (2001).
[CrossRef]

Tanriseven, S.

M. Bayindir, S. Tanriseven, and E. Ozbay, “Propagation of light through localized coupled-cavity modes in one-dimensional photonic band-gap structures,” Appl. Phys. A 72, 117–119 (2001).
[CrossRef]

Tocci, M.

M. Scalora, R. Flynn, S. Reinhardt, R. Fork, M. Tocci, M. Bloemer, M. Bowden, H. Ledbetter, J. Bendickson, J. Dowling, and R. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
[CrossRef]

Tsai, Y. C.

Y. C. Tsai, K. W. Shumg, and S. C. Gou, “Impurity modes in one-dimensional photonic crystals-analytic approach,” J. Mod. Opt. 45, 2147–2157 (1998).

Ushakov, D. V.

V. K. Kononenko, I. S. Manak, and D. V. Ushakov, “Optoelectronic properties and characteristics of doping superlattices,” in Photoconversion: Science and Techologies, M. Pluta and M. Szyjer, eds., Proc. SPIE 3580, 10–27 (1998).
[CrossRef]

Viswanathan, R.

M. Scalora, M. Bloemer, A. Manka, J. Dowling, C. Bowden, R. Viswanathan, and J. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[CrossRef]

Vlasov, Yu.

Yu. Vlasov, K. Luterova, I. Pelant, B. Honerlage, and V. Astratov, “Enhancement of optical gain of semiconductors embedded in three-dimensional photonic crystals,” Appl. Phys. Lett. 71, 1616–1618 (1997).
[CrossRef]

Xu, Y.

Yariv, A.

Appl. Phys. A

M. Bayindir, S. Tanriseven, and E. Ozbay, “Propagation of light through localized coupled-cavity modes in one-dimensional photonic band-gap structures,” Appl. Phys. A 72, 117–119 (2001).
[CrossRef]

Appl. Phys. Lett.

Yu. Vlasov, K. Luterova, I. Pelant, B. Honerlage, and V. Astratov, “Enhancement of optical gain of semiconductors embedded in three-dimensional photonic crystals,” Appl. Phys. Lett. 71, 1616–1618 (1997).
[CrossRef]

G. H. Döhler, G. Hasnain, and J. N. Miller, “In situ grown-in selective contacts to n–i–p–i doping superlattice crystals using molecular beam epitaxial growth through a shadow mask,” Appl. Phys. Lett. 49, 704–706 (1986).
[CrossRef]

IEEE J. Quantum Electron.

J. L. Jewel, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

G. H. Döhler, “Doping superlattices (‘n-i-p-i crystals’),” IEEE J. Quantum Electron. QE-22, 1682 (1986).
[CrossRef]

J. Appl. Phys.

J. Dowling, M. Scalora, M. Bloemer, and C. Bowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

J. Mod. Opt.

Y. C. Tsai, K. W. Shumg, and S. C. Gou, “Impurity modes in one-dimensional photonic crystals-analytic approach,” J. Mod. Opt. 45, 2147–2157 (1998).

J. Opt. Soc. Am. B

Opt. Commun.

M. Centini, M. Scalora, C. D’Aguanno, C. Sibilia, M. Bertolotti, M. Bloemer, C. Bowden, and J. Haus, “Efficient nonlinear infrared parametric generation in one-dimensional photonic band-gap structures,” Opt. Commun. 189, 135–142 (2001).
[CrossRef]

Opt. Lett.

Phys. Rev. A

M. Scalora, M. Bloemer, A. Manka, J. Dowling, C. Bowden, R. Viswanathan, and J. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
[CrossRef]

Phys. Rev. E

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107–4121 (1996).
[CrossRef]

M. Scalora, R. Flynn, S. Reinhardt, R. Fork, M. Tocci, M. Bloemer, M. Bowden, H. Ledbetter, J. Bendickson, J. Dowling, and R. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
[CrossRef]

Proc. SPIE

V. K. Kononenko, I. S. Manak, and D. V. Ushakov, “Optoelectronic properties and characteristics of doping superlattices,” in Photoconversion: Science and Techologies, M. Pluta and M. Szyjer, eds., Proc. SPIE 3580, 10–27 (1998).
[CrossRef]

Other

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

M. Born and E. Wolf, Principles of Optics (Pergamon, Cambridge, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

High-Q modes of various layouts of 1-D bandgap resonators: (a) generic periodic stack, (b) defect microcavity, (c) coupled-cavity resonator (CCR) consisting of two defect microcavities (weak coupling), (d) mixed-cavity-resonator (MCR) containing two microcavities (strong coupling), (e) four microcavities that form a CCR, (f ) coupled MCR. TR, transmission resonance. See text for details.

Fig. 2
Fig. 2

Contours of transmission T in plane (ω, g) and DOM spectrum ρ(ω) for the (AB)20 stack. The parameters of the structure are n1=1.41, n2=1.0, n1d1=n2d2=0.25, and g1=g2=g.

Fig. 3
Fig. 3

Transmission and DOM spectra for (a) an (AB)5D(AB)5 defect microcavity, (b) CCR {(AB)5D(AB)5}2 (N=2), and (c) CCR {(AB)5D(AB)5}6 (N=6). The parameters of the layers are nA=1.41, dA=0.2, nB=1.0, dB=0.25, nD=1.0, dD=0.25; there is no optical gain (g=0).

Fig. 4
Fig. 4

Transmission (dashed curves) and DOM (solid curves) spectra: (a) MCR (AB)5{D(AB)3D}(AB)5; (b) MCR (AB)5{D(AB)5D}(AB)5; (c) coupled MCR {(AB)5{D(AB)3D}×(AB)5}6 (M=2, N=6). The parameters of the layers are similar to those in Fig. 3; there is no optical gain.

Fig. 5
Fig. 5

Transmission (dashed curves) and DOM (solid curves) spectra for an active MCR system containing four cavities, (AB)5{D(AB)3D(AB)7D(AB)3D}(AB)5. Insets, |E(z)| for high-Q modes: (1) TR mode, (2), (3) MC modes. The parameters of the layers are similar to those in Fig. 3; the optical gain per layer is g=0.02 µm-1.

Fig. 6
Fig. 6

One-dimensional PBG structure with GaAs n–i–p–i active layers.

Fig. 7
Fig. 7

Imaginary part of the n–i–p–i layers’ refractive index versus excitation level ΔF.

Fig. 8
Fig. 8

Lasing PBG MCR structure with active n–i–p–i layers (ΔF=1.42 eV): (a) transmission (T) and (R) reflection spectra for two lasing modes, (b) distribution of light amplitude inside the resonator for two different modes.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T(ω, g)=
R(ω, g)=,
ρ=L-1(yx-xy)/(x2+y2),

Metrics