Abstract

Enhancement of nonlinear optical interactions in the core of a photonic-crystal fiber allows several χ(3) processes to be simultaneously observed in the field of unamplified 30-fs pulses of a Cr:forsterite laser. Subnanojoule fundamental-radiation pulses of this laser experience spectral broadening arising from self-phase modulation and generate the third harmonic at 410–420 nm. Third-harmonic pulses also appear spectrally broadened at the output of the fiber as a result of the cross-phase-modulation effect. This catalog of enhanced χ(3) processes observed in photonic-crystal fibers opens the way for using such fibers for frequency conversion of low-energy femtosecond pulses with simultaneous chirp control and subsequent pulse compression.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [CrossRef] [PubMed]
  2. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [CrossRef] [PubMed]
  3. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic bandgap guidance in optical fibers,” Science 282, 1476–1478 (1998).
    [CrossRef] [PubMed]
  4. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
    [CrossRef]
  5. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Photonic crystals as optical fibres—physics and applications,” Opt. Mater. 11, 143–151 (1999).
    [CrossRef]
  6. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic guidance of light in air,” Science 285, 1537–1539 (1999).
    [CrossRef] [PubMed]
  7. A. M. Zheltikov, “Holey fibers,” Phys. Usp. 170, 1203–1220 (2000).
    [CrossRef]
  8. T. M. Monro, P. J. Bennett, N. G. R. Broderick, and D. J. Richardson, “Holey fibers with random cladding distributions,” Opt. Lett. 25, 206–208 (2000).
    [CrossRef]
  9. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
    [CrossRef]
  10. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  11. A. B. Fedotov, A. M. Zheltikov, L. A. Mel’nikov, A. P. Tarasevitch, and D. von der Linde, “Spectral broadening of femtosecond laser pulses in fibers with a photonic-crystal cladding,” JETP Lett. 71, 281–285 (2000).
    [CrossRef]
  12. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air–silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000).
    [CrossRef]
  13. A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, “Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,” Appl. Phys. B 73, 181–184 (2001).
    [CrossRef]
  14. Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
    [CrossRef]
  15. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
    [CrossRef] [PubMed]
  16. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [CrossRef] [PubMed]
  17. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
    [CrossRef] [PubMed]
  18. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
    [CrossRef]
  19. D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr:forsterite femtosecond laser pulses in a tapered fiber,” JETP Lett. 74, 460–463 (2001).
    [CrossRef]
  20. S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).
  21. B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21, 1839–1841 (1996).
    [CrossRef] [PubMed]
  22. A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “An all-solid-state sub-40-fs self-starting Cr4+:forsterite laser broadly tunable within therapeutic-window range for high-resolution coherence-domain and nonlinear-optical biomedical applications,” Laser Phys. 10, 796–799 (2000).
  23. G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, 1989).
  24. N. I. Koroteev and A. M. Zheltikov, “Chirp control in third-harmonic generation due to cross-phase modulation,” Appl. Phys. B 67, 53–57 (1998).
    [CrossRef]
  25. A. M. Zheltikov, N. I. Koroteev, and A. N. Naumov, “Self- and cross-phase modulation accompanying third-harmonic generation in a hollow waveguide,” JETP 88, 857–867 (1999).
    [CrossRef]
  26. R. Maleck Rassoul, A. Ivanov, E. Freysz, A. Ducasse, and F. Hache, “Second-harmonic generation under phase-velocity and group-velocity mismatch: influence of cascading self-phase and cross-phase modulation,” Opt. Lett. 22, 268–270 (1997).
    [CrossRef]
  27. A. N. Naumov and A. M. Zheltikov, “Asymmetric spectral broadening and temporal evolution of cross-phase-modulated third harmonic pulses,” Opt. Express 10, 122–127 (2002).
    [CrossRef] [PubMed]
  28. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).
  29. I. S. Grigor’ev and E. Z. Meilikhov, eds., Physical Quantities Handbook (Energoatomizdat, Moscow, 1991) (in Russian).
  30. P. K. Tien, R. Ultich, and R. Martin, “Optical second-harmonic generation in form of coherent Cerenkov radia-tion from a thin-film waveguide,” Appl. Phys. Lett. 17, 447–450 (1970).
    [CrossRef]
  31. N. A. Sanford and W. C. Robinson, “Direct measurement of effective indices of guided modes in LiNbO3 waveguides using the Čerenkov second harmonic,” Opt. Lett. 12, 445–447 (1987).
    [CrossRef] [PubMed]
  32. R. Ramponi, R. Osellame, M. Marangoni, and V. Russo, “Near-infrared refractometry of liquids by means of waveguide Čerenkov second-harmonic generation,” Appl. Opt. 37, 1–6 (1998).
  33. R. Ramponi, M. Marangoni, R. Osellame, and V. Russo, “Nonconventional characterization of single-mode planar proton-exchanged LiNbO3 waveguides by Cerenkov second harmonic generation,” Opt. Commun. 159, 37–42 (1999).
    [CrossRef]
  34. H. Z. Hu, K. Sh. Zhong, D. Q. Tang, and Zh. X. Lu, “Theoretical analysis of Cherenkov frequency-doubling in a periodically poled LiNbO3 waveguide,” Opt. Commun. 174, 105–118 (2000).
    [CrossRef]
  35. D. Pezzetta, C. Sibilia, R. Ramponi, R. Osellame, M. Marangoni, M. Bertolotti, J. W. Haus, M. Scalora, M. J. Bloemer, and C. M. Bowden, “Enhanced Čerenkov second-harmonic generation in planar nonlinear waveguide reproducing a one-dimensional photonic bandgap,” J. Opt. Soc. Am. B 19, 2102–2110 (2002).
    [CrossRef]
  36. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, New York, 1992).
  37. J. Broeng, S. E. Barkou, T. Søndergaard, and A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett. 25, 96–98 (2000).
    [CrossRef]
  38. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093–1102 (1999).
    [CrossRef]
  39. F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol.: Mater., Devices Syst. 6, 181–191 (2000).
    [CrossRef]
  40. A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, and M. V. Andrés, “Vector description of higher-order modes in photonic crystal fibers,” J. Opt. Soc. Am. B 17, 1333–1340 (2000).
    [CrossRef]
  41. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennet, “Modeling large air fraction holey optical fibers,” J. Lightwave Technol. 18, 50–56 (2000).
    [CrossRef]
  42. T. P. White, R. C. McPhedran, L. C. Botten, G. H. Smith, and C. Martijn de Sterke, “Calculations of air-guided modes in photonic crystal fibers using the multipole method,” Opt. Express 9, 721–732 (2001).
    [CrossRef] [PubMed]
  43. A. M. Zheltikov, M. V. Alfimov, A. B. Fedotov, A. A. Ivanov, M. S. Syrchin, A. P. Tarasevitch, and D. von der Linde, “Controlled light localization and nonlinear-optical interactions of ultrashort laser pulses in micro- and nanostructured fibers with a tunable photonic band gap,” JETP 93, 499–509 (2001).
    [CrossRef]
  44. V. Shcheslavskiy, V. V. Yakovlev, and A. A. Ivanov, “High-energy self-starting femtosecond Cr4+:Mg2SiO4 oscillator operating at a low repetition rate,” Opt. Lett. 26, 1952–1954 (2001).
    [CrossRef]
  45. M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, V. I. Beloglazov, B. A. Kirillov, S. A. Magnitskii, A. V. Tarasishin, A. B. Fedotov, L. A. Mel’nikov, and N. B. Skibina, “Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm,” JETP Lett. 71, 489–492 (2000).
    [CrossRef]
  46. A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-μm-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).
  47. C. G. Durfee III, S. Backus, H. C. Kapteyn, and M. M. Murnane, “Intense 8-fs pulse generation in the deep ultraviolet,” Opt. Lett. 24, 697–699 (1999).
    [CrossRef]

2002 (2)

2001 (7)

D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr:forsterite femtosecond laser pulses in a tapered fiber,” JETP Lett. 74, 460–463 (2001).
[CrossRef]

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, “Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,” Appl. Phys. B 73, 181–184 (2001).
[CrossRef]

T. P. White, R. C. McPhedran, L. C. Botten, G. H. Smith, and C. Martijn de Sterke, “Calculations of air-guided modes in photonic crystal fibers using the multipole method,” Opt. Express 9, 721–732 (2001).
[CrossRef] [PubMed]

A. M. Zheltikov, M. V. Alfimov, A. B. Fedotov, A. A. Ivanov, M. S. Syrchin, A. P. Tarasevitch, and D. von der Linde, “Controlled light localization and nonlinear-optical interactions of ultrashort laser pulses in micro- and nanostructured fibers with a tunable photonic band gap,” JETP 93, 499–509 (2001).
[CrossRef]

V. Shcheslavskiy, V. V. Yakovlev, and A. A. Ivanov, “High-energy self-starting femtosecond Cr4+:Mg2SiO4 oscillator operating at a low repetition rate,” Opt. Lett. 26, 1952–1954 (2001).
[CrossRef]

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-μm-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

2000 (16)

M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, V. I. Beloglazov, B. A. Kirillov, S. A. Magnitskii, A. V. Tarasishin, A. B. Fedotov, L. A. Mel’nikov, and N. B. Skibina, “Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm,” JETP Lett. 71, 489–492 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

A. B. Fedotov, A. M. Zheltikov, L. A. Mel’nikov, A. P. Tarasevitch, and D. von der Linde, “Spectral broadening of femtosecond laser pulses in fibers with a photonic-crystal cladding,” JETP Lett. 71, 281–285 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air–silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

A. M. Zheltikov, “Holey fibers,” Phys. Usp. 170, 1203–1220 (2000).
[CrossRef]

T. M. Monro, P. J. Bennett, N. G. R. Broderick, and D. J. Richardson, “Holey fibers with random cladding distributions,” Opt. Lett. 25, 206–208 (2000).
[CrossRef]

A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “An all-solid-state sub-40-fs self-starting Cr4+:forsterite laser broadly tunable within therapeutic-window range for high-resolution coherence-domain and nonlinear-optical biomedical applications,” Laser Phys. 10, 796–799 (2000).

J. Broeng, S. E. Barkou, T. Søndergaard, and A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett. 25, 96–98 (2000).
[CrossRef]

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol.: Mater., Devices Syst. 6, 181–191 (2000).
[CrossRef]

A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, and M. V. Andrés, “Vector description of higher-order modes in photonic crystal fibers,” J. Opt. Soc. Am. B 17, 1333–1340 (2000).
[CrossRef]

T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennet, “Modeling large air fraction holey optical fibers,” J. Lightwave Technol. 18, 50–56 (2000).
[CrossRef]

H. Z. Hu, K. Sh. Zhong, D. Q. Tang, and Zh. X. Lu, “Theoretical analysis of Cherenkov frequency-doubling in a periodically poled LiNbO3 waveguide,” Opt. Commun. 174, 105–118 (2000).
[CrossRef]

1999 (8)

R. Ramponi, M. Marangoni, R. Osellame, and V. Russo, “Nonconventional characterization of single-mode planar proton-exchanged LiNbO3 waveguides by Cerenkov second harmonic generation,” Opt. Commun. 159, 37–42 (1999).
[CrossRef]

T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093–1102 (1999).
[CrossRef]

A. M. Zheltikov, N. I. Koroteev, and A. N. Naumov, “Self- and cross-phase modulation accompanying third-harmonic generation in a hollow waveguide,” JETP 88, 857–867 (1999).
[CrossRef]

N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
[CrossRef]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Photonic crystals as optical fibres—physics and applications,” Opt. Mater. 11, 143–151 (1999).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[CrossRef]

C. G. Durfee III, S. Backus, H. C. Kapteyn, and M. M. Murnane, “Intense 8-fs pulse generation in the deep ultraviolet,” Opt. Lett. 24, 697–699 (1999).
[CrossRef]

1998 (4)

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic bandgap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

N. I. Koroteev and A. M. Zheltikov, “Chirp control in third-harmonic generation due to cross-phase modulation,” Appl. Phys. B 67, 53–57 (1998).
[CrossRef]

R. Ramponi, R. Osellame, M. Marangoni, and V. Russo, “Near-infrared refractometry of liquids by means of waveguide Čerenkov second-harmonic generation,” Appl. Opt. 37, 1–6 (1998).

1997 (2)

1996 (2)

1987 (1)

1970 (1)

P. K. Tien, R. Ultich, and R. Martin, “Optical second-harmonic generation in form of coherent Cerenkov radia-tion from a thin-film waveguide,” Appl. Phys. Lett. 17, 447–450 (1970).
[CrossRef]

Akimov, D. A.

D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr:forsterite femtosecond laser pulses in a tapered fiber,” JETP Lett. 74, 460–463 (2001).
[CrossRef]

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-μm-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

Alfimov, M. V.

A. M. Zheltikov, M. V. Alfimov, A. B. Fedotov, A. A. Ivanov, M. S. Syrchin, A. P. Tarasevitch, and D. von der Linde, “Controlled light localization and nonlinear-optical interactions of ultrashort laser pulses in micro- and nanostructured fibers with a tunable photonic band gap,” JETP 93, 499–509 (2001).
[CrossRef]

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-μm-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr:forsterite femtosecond laser pulses in a tapered fiber,” JETP Lett. 74, 460–463 (2001).
[CrossRef]

A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “An all-solid-state sub-40-fs self-starting Cr4+:forsterite laser broadly tunable within therapeutic-window range for high-resolution coherence-domain and nonlinear-optical biomedical applications,” Laser Phys. 10, 796–799 (2000).

M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, V. I. Beloglazov, B. A. Kirillov, S. A. Magnitskii, A. V. Tarasishin, A. B. Fedotov, L. A. Mel’nikov, and N. B. Skibina, “Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm,” JETP Lett. 71, 489–492 (2000).
[CrossRef]

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Andrés, M. V.

A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, and M. V. Andrés, “Vector description of higher-order modes in photonic crystal fibers,” J. Opt. Soc. Am. B 17, 1333–1340 (2000).
[CrossRef]

Andrés, P.

A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, and M. V. Andrés, “Vector description of higher-order modes in photonic crystal fibers,” J. Opt. Soc. Am. B 17, 1333–1340 (2000).
[CrossRef]

Atkin, D. M.

Backus, S.

Bagayev, S. N.

D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr:forsterite femtosecond laser pulses in a tapered fiber,” JETP Lett. 74, 460–463 (2001).
[CrossRef]

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

Barkou, S. E.

Beloglazov, V. I.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-μm-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, V. I. Beloglazov, B. A. Kirillov, S. A. Magnitskii, A. V. Tarasishin, A. B. Fedotov, L. A. Mel’nikov, and N. B. Skibina, “Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm,” JETP Lett. 71, 489–492 (2000).
[CrossRef]

Bennet, P. J.

Bennett, P. J.

Bertolotti, M.

Bilinsky, I. P.

Birks, T. A.

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr:forsterite femtosecond laser pulses in a tapered fiber,” JETP Lett. 74, 460–463 (2001).
[CrossRef]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Photonic crystals as optical fibres—physics and applications,” Opt. Mater. 11, 143–151 (1999).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic bandgap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

Bjarklev, A.

Bloemer, M. J.

Botten, L. C.

Bouma, B. E.

Bowden, C. M.

Brechet, F.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol.: Mater., Devices Syst. 6, 181–191 (2000).
[CrossRef]

Broderick, N. G. R.

Broeng, J.

J. Broeng, S. E. Barkou, T. Søndergaard, and A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett. 25, 96–98 (2000).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic bandgap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

Chepurov, S. V.

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

Chorvat, D.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-μm-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

Chorvat Jr., D.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-μm-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

Cregan, R. F.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Photonic crystals as optical fibres—physics and applications,” Opt. Mater. 11, 143–151 (1999).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

Cundi, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Cundiff, S. T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

De Sandro, J.-P.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Photonic crystals as optical fibres—physics and applications,” Opt. Mater. 11, 143–151 (1999).
[CrossRef]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

Diddams, S. A.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Dmitriyev, A. K.

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

Ducasse, A.

Durfee III, C. G.

Dychkov, A. S.

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

Fedotov, A. B.

D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr:forsterite femtosecond laser pulses in a tapered fiber,” JETP Lett. 74, 460–463 (2001).
[CrossRef]

A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, “Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,” Appl. Phys. B 73, 181–184 (2001).
[CrossRef]

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-μm-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

A. M. Zheltikov, M. V. Alfimov, A. B. Fedotov, A. A. Ivanov, M. S. Syrchin, A. P. Tarasevitch, and D. von der Linde, “Controlled light localization and nonlinear-optical interactions of ultrashort laser pulses in micro- and nanostructured fibers with a tunable photonic band gap,” JETP 93, 499–509 (2001).
[CrossRef]

M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, V. I. Beloglazov, B. A. Kirillov, S. A. Magnitskii, A. V. Tarasishin, A. B. Fedotov, L. A. Mel’nikov, and N. B. Skibina, “Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm,” JETP Lett. 71, 489–492 (2000).
[CrossRef]

A. B. Fedotov, A. M. Zheltikov, L. A. Mel’nikov, A. P. Tarasevitch, and D. von der Linde, “Spectral broadening of femtosecond laser pulses in fibers with a photonic-crystal cladding,” JETP Lett. 71, 281–285 (2000).
[CrossRef]

Ferrando, A.

A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, and M. V. Andrés, “Vector description of higher-order modes in photonic crystal fibers,” J. Opt. Soc. Am. B 17, 1333–1340 (2000).
[CrossRef]

Freysz, E.

Fujimoto, J. G.

Golubovic, B.

Hache, F.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Hänsch, T. W.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[CrossRef]

Haus, J. W.

Holzwarth, R.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[CrossRef]

Hu, H. Z.

H. Z. Hu, K. Sh. Zhong, D. Q. Tang, and Zh. X. Lu, “Theoretical analysis of Cherenkov frequency-doubling in a periodically poled LiNbO3 waveguide,” Opt. Commun. 174, 105–118 (2000).
[CrossRef]

Ivanov, A.

Ivanov, A. A.

D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr:forsterite femtosecond laser pulses in a tapered fiber,” JETP Lett. 74, 460–463 (2001).
[CrossRef]

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-μm-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

A. M. Zheltikov, M. V. Alfimov, A. B. Fedotov, A. A. Ivanov, M. S. Syrchin, A. P. Tarasevitch, and D. von der Linde, “Controlled light localization and nonlinear-optical interactions of ultrashort laser pulses in micro- and nanostructured fibers with a tunable photonic band gap,” JETP 93, 499–509 (2001).
[CrossRef]

V. Shcheslavskiy, V. V. Yakovlev, and A. A. Ivanov, “High-energy self-starting femtosecond Cr4+:Mg2SiO4 oscillator operating at a low repetition rate,” Opt. Lett. 26, 1952–1954 (2001).
[CrossRef]

M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, V. I. Beloglazov, B. A. Kirillov, S. A. Magnitskii, A. V. Tarasishin, A. B. Fedotov, L. A. Mel’nikov, and N. B. Skibina, “Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm,” JETP Lett. 71, 489–492 (2000).
[CrossRef]

A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “An all-solid-state sub-40-fs self-starting Cr4+:forsterite laser broadly tunable within therapeutic-window range for high-resolution coherence-domain and nonlinear-optical biomedical applications,” Laser Phys. 10, 796–799 (2000).

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Kapteyn, H. C.

Kirillov, B. A.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-μm-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, V. I. Beloglazov, B. A. Kirillov, S. A. Magnitskii, A. V. Tarasishin, A. B. Fedotov, L. A. Mel’nikov, and N. B. Skibina, “Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm,” JETP Lett. 71, 489–492 (2000).
[CrossRef]

Klementyev, V. M.

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

Knight, J. C.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Photonic crystals as optical fibres—physics and applications,” Opt. Mater. 11, 143–151 (1999).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic bandgap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

Kolevatova, O. A.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-μm-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

Kolker, D. B.

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

Koroteev, N. I.

A. M. Zheltikov, N. I. Koroteev, and A. N. Naumov, “Self- and cross-phase modulation accompanying third-harmonic generation in a hollow waveguide,” JETP 88, 857–867 (1999).
[CrossRef]

N. I. Koroteev and A. M. Zheltikov, “Chirp control in third-harmonic generation due to cross-phase modulation,” Appl. Phys. B 67, 53–57 (1998).
[CrossRef]

Kuznetsov, S. A.

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

Lu, Zh. X.

H. Z. Hu, K. Sh. Zhong, D. Q. Tang, and Zh. X. Lu, “Theoretical analysis of Cherenkov frequency-doubling in a periodically poled LiNbO3 waveguide,” Opt. Commun. 174, 105–118 (2000).
[CrossRef]

Magnitskii, S. A.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-μm-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, V. I. Beloglazov, B. A. Kirillov, S. A. Magnitskii, A. V. Tarasishin, A. B. Fedotov, L. A. Mel’nikov, and N. B. Skibina, “Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm,” JETP Lett. 71, 489–492 (2000).
[CrossRef]

Makarov, V. A.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-μm-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

Maleck Rassoul, R.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Marangoni, M.

D. Pezzetta, C. Sibilia, R. Ramponi, R. Osellame, M. Marangoni, M. Bertolotti, J. W. Haus, M. Scalora, M. J. Bloemer, and C. M. Bowden, “Enhanced Čerenkov second-harmonic generation in planar nonlinear waveguide reproducing a one-dimensional photonic bandgap,” J. Opt. Soc. Am. B 19, 2102–2110 (2002).
[CrossRef]

R. Ramponi, M. Marangoni, R. Osellame, and V. Russo, “Nonconventional characterization of single-mode planar proton-exchanged LiNbO3 waveguides by Cerenkov second harmonic generation,” Opt. Commun. 159, 37–42 (1999).
[CrossRef]

R. Ramponi, R. Osellame, M. Marangoni, and V. Russo, “Near-infrared refractometry of liquids by means of waveguide Čerenkov second-harmonic generation,” Appl. Opt. 37, 1–6 (1998).

Marcou, J.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol.: Mater., Devices Syst. 6, 181–191 (2000).
[CrossRef]

Martijn de Sterke, C.

Martin, R.

P. K. Tien, R. Ultich, and R. Martin, “Optical second-harmonic generation in form of coherent Cerenkov radia-tion from a thin-film waveguide,” Appl. Phys. Lett. 17, 447–450 (1970).
[CrossRef]

Matyugin, Yu. A.

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

McPhedran, R. C.

Mel’nikov, L. A.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-μm-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, V. I. Beloglazov, B. A. Kirillov, S. A. Magnitskii, A. V. Tarasishin, A. B. Fedotov, L. A. Mel’nikov, and N. B. Skibina, “Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm,” JETP Lett. 71, 489–492 (2000).
[CrossRef]

A. B. Fedotov, A. M. Zheltikov, L. A. Mel’nikov, A. P. Tarasevitch, and D. von der Linde, “Spectral broadening of femtosecond laser pulses in fibers with a photonic-crystal cladding,” JETP Lett. 71, 281–285 (2000).
[CrossRef]

Miret, J. J.

A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, and M. V. Andrés, “Vector description of higher-order modes in photonic crystal fibers,” J. Opt. Soc. Am. B 17, 1333–1340 (2000).
[CrossRef]

Monro, T. M.

Murnane, M. M.

Naumov, A. N.

A. N. Naumov and A. M. Zheltikov, “Asymmetric spectral broadening and temporal evolution of cross-phase-modulated third harmonic pulses,” Opt. Express 10, 122–127 (2002).
[CrossRef] [PubMed]

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-μm-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

A. M. Zheltikov, N. I. Koroteev, and A. N. Naumov, “Self- and cross-phase modulation accompanying third-harmonic generation in a hollow waveguide,” JETP 88, 857–867 (1999).
[CrossRef]

Okhapkin, M. V.

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

Osellame, R.

D. Pezzetta, C. Sibilia, R. Ramponi, R. Osellame, M. Marangoni, M. Bertolotti, J. W. Haus, M. Scalora, M. J. Bloemer, and C. M. Bowden, “Enhanced Čerenkov second-harmonic generation in planar nonlinear waveguide reproducing a one-dimensional photonic bandgap,” J. Opt. Soc. Am. B 19, 2102–2110 (2002).
[CrossRef]

R. Ramponi, M. Marangoni, R. Osellame, and V. Russo, “Nonconventional characterization of single-mode planar proton-exchanged LiNbO3 waveguides by Cerenkov second harmonic generation,” Opt. Commun. 159, 37–42 (1999).
[CrossRef]

R. Ramponi, R. Osellame, M. Marangoni, and V. Russo, “Near-infrared refractometry of liquids by means of waveguide Čerenkov second-harmonic generation,” Appl. Opt. 37, 1–6 (1998).

Pagnoux, D.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol.: Mater., Devices Syst. 6, 181–191 (2000).
[CrossRef]

Pezzetta, D.

Pivtsov, V. S.

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr:forsterite femtosecond laser pulses in a tapered fiber,” JETP Lett. 74, 460–463 (2001).
[CrossRef]

Podshivalov, A. A.

D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr:forsterite femtosecond laser pulses in a tapered fiber,” JETP Lett. 74, 460–463 (2001).
[CrossRef]

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-μm-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

Ramponi, R.

D. Pezzetta, C. Sibilia, R. Ramponi, R. Osellame, M. Marangoni, M. Bertolotti, J. W. Haus, M. Scalora, M. J. Bloemer, and C. M. Bowden, “Enhanced Čerenkov second-harmonic generation in planar nonlinear waveguide reproducing a one-dimensional photonic bandgap,” J. Opt. Soc. Am. B 19, 2102–2110 (2002).
[CrossRef]

R. Ramponi, M. Marangoni, R. Osellame, and V. Russo, “Nonconventional characterization of single-mode planar proton-exchanged LiNbO3 waveguides by Cerenkov second harmonic generation,” Opt. Commun. 159, 37–42 (1999).
[CrossRef]

R. Ramponi, R. Osellame, M. Marangoni, and V. Russo, “Near-infrared refractometry of liquids by means of waveguide Čerenkov second-harmonic generation,” Appl. Opt. 37, 1–6 (1998).

Ranka, J. K.

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air–silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Reichert, J.

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[CrossRef]

Richardson, D. J.

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Robinson, W. C.

Roy, P.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol.: Mater., Devices Syst. 6, 181–191 (2000).
[CrossRef]

Russell, P. St. J.

D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr:forsterite femtosecond laser pulses in a tapered fiber,” JETP Lett. 74, 460–463 (2001).
[CrossRef]

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Photonic crystals as optical fibres—physics and applications,” Opt. Mater. 11, 143–151 (1999).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic bandgap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

Russo, V.

R. Ramponi, M. Marangoni, R. Osellame, and V. Russo, “Nonconventional characterization of single-mode planar proton-exchanged LiNbO3 waveguides by Cerenkov second harmonic generation,” Opt. Commun. 159, 37–42 (1999).
[CrossRef]

R. Ramponi, R. Osellame, M. Marangoni, and V. Russo, “Near-infrared refractometry of liquids by means of waveguide Čerenkov second-harmonic generation,” Appl. Opt. 37, 1–6 (1998).

Sanford, N. A.

Scalora, M.

Shcheslavskiy, V.

Sibilia, C.

Sidorov-Biryukov, D. A.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-μm-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

Silvestre, E.

A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, and M. V. Andrés, “Vector description of higher-order modes in photonic crystal fibers,” J. Opt. Soc. Am. B 17, 1333–1340 (2000).
[CrossRef]

Skibina, N. B.

M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, V. I. Beloglazov, B. A. Kirillov, S. A. Magnitskii, A. V. Tarasishin, A. B. Fedotov, L. A. Mel’nikov, and N. B. Skibina, “Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm,” JETP Lett. 71, 489–492 (2000).
[CrossRef]

Skibina, Yu. S.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-μm-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

Skvortsov, M. N.

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

Smith, G. H.

Søndergaard, T.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Stentz, A. J.

Syrchin, M. S.

A. M. Zheltikov, M. V. Alfimov, A. B. Fedotov, A. A. Ivanov, M. S. Syrchin, A. P. Tarasevitch, and D. von der Linde, “Controlled light localization and nonlinear-optical interactions of ultrashort laser pulses in micro- and nanostructured fibers with a tunable photonic band gap,” JETP 93, 499–509 (2001).
[CrossRef]

Tang, D. Q.

H. Z. Hu, K. Sh. Zhong, D. Q. Tang, and Zh. X. Lu, “Theoretical analysis of Cherenkov frequency-doubling in a periodically poled LiNbO3 waveguide,” Opt. Commun. 174, 105–118 (2000).
[CrossRef]

Tarasevitch, A. P.

A. M. Zheltikov, M. V. Alfimov, A. B. Fedotov, A. A. Ivanov, M. S. Syrchin, A. P. Tarasevitch, and D. von der Linde, “Controlled light localization and nonlinear-optical interactions of ultrashort laser pulses in micro- and nanostructured fibers with a tunable photonic band gap,” JETP 93, 499–509 (2001).
[CrossRef]

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-μm-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, “Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,” Appl. Phys. B 73, 181–184 (2001).
[CrossRef]

A. B. Fedotov, A. M. Zheltikov, L. A. Mel’nikov, A. P. Tarasevitch, and D. von der Linde, “Spectral broadening of femtosecond laser pulses in fibers with a photonic-crystal cladding,” JETP Lett. 71, 281–285 (2000).
[CrossRef]

Tarasishin, A. V.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-μm-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, V. I. Beloglazov, B. A. Kirillov, S. A. Magnitskii, A. V. Tarasishin, A. B. Fedotov, L. A. Mel’nikov, and N. B. Skibina, “Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm,” JETP Lett. 71, 489–492 (2000).
[CrossRef]

Tearney, G. J.

Tien, P. K.

P. K. Tien, R. Ultich, and R. Martin, “Optical second-harmonic generation in form of coherent Cerenkov radia-tion from a thin-film waveguide,” Appl. Phys. Lett. 17, 447–450 (1970).
[CrossRef]

Udem, T.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Udem, Th.

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[CrossRef]

Ultich, R.

P. K. Tien, R. Ultich, and R. Martin, “Optical second-harmonic generation in form of coherent Cerenkov radia-tion from a thin-film waveguide,” Appl. Phys. Lett. 17, 447–450 (1970).
[CrossRef]

Vlasova, E. A.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-μm-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

von der Linde, D.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-μm-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

A. M. Zheltikov, M. V. Alfimov, A. B. Fedotov, A. A. Ivanov, M. S. Syrchin, A. P. Tarasevitch, and D. von der Linde, “Controlled light localization and nonlinear-optical interactions of ultrashort laser pulses in micro- and nanostructured fibers with a tunable photonic band gap,” JETP 93, 499–509 (2001).
[CrossRef]

A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, “Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,” Appl. Phys. B 73, 181–184 (2001).
[CrossRef]

A. B. Fedotov, A. M. Zheltikov, L. A. Mel’nikov, A. P. Tarasevitch, and D. von der Linde, “Spectral broadening of femtosecond laser pulses in fibers with a photonic-crystal cladding,” JETP Lett. 71, 281–285 (2000).
[CrossRef]

Wadsworth, W. J.

D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr:forsterite femtosecond laser pulses in a tapered fiber,” JETP Lett. 74, 460–463 (2001).
[CrossRef]

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

White, T. P.

Windeler, R. S.

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air–silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Yakovlev, V. V.

Ye, J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Zakharyash, V. F.

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

Zheltikov, A. M.

A. N. Naumov and A. M. Zheltikov, “Asymmetric spectral broadening and temporal evolution of cross-phase-modulated third harmonic pulses,” Opt. Express 10, 122–127 (2002).
[CrossRef] [PubMed]

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr:forsterite femtosecond laser pulses in a tapered fiber,” JETP Lett. 74, 460–463 (2001).
[CrossRef]

A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, “Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,” Appl. Phys. B 73, 181–184 (2001).
[CrossRef]

A. M. Zheltikov, M. V. Alfimov, A. B. Fedotov, A. A. Ivanov, M. S. Syrchin, A. P. Tarasevitch, and D. von der Linde, “Controlled light localization and nonlinear-optical interactions of ultrashort laser pulses in micro- and nanostructured fibers with a tunable photonic band gap,” JETP 93, 499–509 (2001).
[CrossRef]

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-μm-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, V. I. Beloglazov, B. A. Kirillov, S. A. Magnitskii, A. V. Tarasishin, A. B. Fedotov, L. A. Mel’nikov, and N. B. Skibina, “Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm,” JETP Lett. 71, 489–492 (2000).
[CrossRef]

A. B. Fedotov, A. M. Zheltikov, L. A. Mel’nikov, A. P. Tarasevitch, and D. von der Linde, “Spectral broadening of femtosecond laser pulses in fibers with a photonic-crystal cladding,” JETP Lett. 71, 281–285 (2000).
[CrossRef]

A. M. Zheltikov, “Holey fibers,” Phys. Usp. 170, 1203–1220 (2000).
[CrossRef]

A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “An all-solid-state sub-40-fs self-starting Cr4+:forsterite laser broadly tunable within therapeutic-window range for high-resolution coherence-domain and nonlinear-optical biomedical applications,” Laser Phys. 10, 796–799 (2000).

A. M. Zheltikov, N. I. Koroteev, and A. N. Naumov, “Self- and cross-phase modulation accompanying third-harmonic generation in a hollow waveguide,” JETP 88, 857–867 (1999).
[CrossRef]

N. I. Koroteev and A. M. Zheltikov, “Chirp control in third-harmonic generation due to cross-phase modulation,” Appl. Phys. B 67, 53–57 (1998).
[CrossRef]

Zhong, K. Sh.

H. Z. Hu, K. Sh. Zhong, D. Q. Tang, and Zh. X. Lu, “Theoretical analysis of Cherenkov frequency-doubling in a periodically poled LiNbO3 waveguide,” Opt. Commun. 174, 105–118 (2000).
[CrossRef]

Appl. Opt. (1)

R. Ramponi, R. Osellame, M. Marangoni, and V. Russo, “Near-infrared refractometry of liquids by means of waveguide Čerenkov second-harmonic generation,” Appl. Opt. 37, 1–6 (1998).

Appl. Phys. B (2)

N. I. Koroteev and A. M. Zheltikov, “Chirp control in third-harmonic generation due to cross-phase modulation,” Appl. Phys. B 67, 53–57 (1998).
[CrossRef]

A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, “Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,” Appl. Phys. B 73, 181–184 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

P. K. Tien, R. Ultich, and R. Martin, “Optical second-harmonic generation in form of coherent Cerenkov radia-tion from a thin-film waveguide,” Appl. Phys. Lett. 17, 447–450 (1970).
[CrossRef]

Electron. Lett. (1)

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

JETP (2)

A. M. Zheltikov, N. I. Koroteev, and A. N. Naumov, “Self- and cross-phase modulation accompanying third-harmonic generation in a hollow waveguide,” JETP 88, 857–867 (1999).
[CrossRef]

A. M. Zheltikov, M. V. Alfimov, A. B. Fedotov, A. A. Ivanov, M. S. Syrchin, A. P. Tarasevitch, and D. von der Linde, “Controlled light localization and nonlinear-optical interactions of ultrashort laser pulses in micro- and nanostructured fibers with a tunable photonic band gap,” JETP 93, 499–509 (2001).
[CrossRef]

JETP Lett. (3)

M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, V. I. Beloglazov, B. A. Kirillov, S. A. Magnitskii, A. V. Tarasishin, A. B. Fedotov, L. A. Mel’nikov, and N. B. Skibina, “Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm,” JETP Lett. 71, 489–492 (2000).
[CrossRef]

A. B. Fedotov, A. M. Zheltikov, L. A. Mel’nikov, A. P. Tarasevitch, and D. von der Linde, “Spectral broadening of femtosecond laser pulses in fibers with a photonic-crystal cladding,” JETP Lett. 71, 281–285 (2000).
[CrossRef]

D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr:forsterite femtosecond laser pulses in a tapered fiber,” JETP Lett. 74, 460–463 (2001).
[CrossRef]

Laser Phys. (3)

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “An all-solid-state sub-40-fs self-starting Cr4+:forsterite laser broadly tunable within therapeutic-window range for high-resolution coherence-domain and nonlinear-optical biomedical applications,” Laser Phys. 10, 796–799 (2000).

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-μm-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

Opt. Commun. (2)

R. Ramponi, M. Marangoni, R. Osellame, and V. Russo, “Nonconventional characterization of single-mode planar proton-exchanged LiNbO3 waveguides by Cerenkov second harmonic generation,” Opt. Commun. 159, 37–42 (1999).
[CrossRef]

H. Z. Hu, K. Sh. Zhong, D. Q. Tang, and Zh. X. Lu, “Theoretical analysis of Cherenkov frequency-doubling in a periodically poled LiNbO3 waveguide,” Opt. Commun. 174, 105–118 (2000).
[CrossRef]

Opt. Express (2)

Opt. Fiber Technol.: Mater., Devices Syst. (1)

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol.: Mater., Devices Syst. 6, 181–191 (2000).
[CrossRef]

Opt. Lett. (13)

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

J. Broeng, S. E. Barkou, T. Søndergaard, and A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett. 25, 96–98 (2000).
[CrossRef]

N. A. Sanford and W. C. Robinson, “Direct measurement of effective indices of guided modes in LiNbO3 waveguides using the Čerenkov second harmonic,” Opt. Lett. 12, 445–447 (1987).
[CrossRef] [PubMed]

R. Maleck Rassoul, A. Ivanov, E. Freysz, A. Ducasse, and F. Hache, “Second-harmonic generation under phase-velocity and group-velocity mismatch: influence of cascading self-phase and cross-phase modulation,” Opt. Lett. 22, 268–270 (1997).
[CrossRef]

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21, 1839–1841 (1996).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air–silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000).
[CrossRef]

T. M. Monro, P. J. Bennett, N. G. R. Broderick, and D. J. Richardson, “Holey fibers with random cladding distributions,” Opt. Lett. 25, 206–208 (2000).
[CrossRef]

N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

V. Shcheslavskiy, V. V. Yakovlev, and A. A. Ivanov, “High-energy self-starting femtosecond Cr4+:Mg2SiO4 oscillator operating at a low repetition rate,” Opt. Lett. 26, 1952–1954 (2001).
[CrossRef]

C. G. Durfee III, S. Backus, H. C. Kapteyn, and M. M. Murnane, “Intense 8-fs pulse generation in the deep ultraviolet,” Opt. Lett. 24, 697–699 (1999).
[CrossRef]

Opt. Mater. (1)

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Photonic crystals as optical fibres—physics and applications,” Opt. Mater. 11, 143–151 (1999).
[CrossRef]

Phys. Rev. Lett. (3)

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Phys. Usp. (1)

A. M. Zheltikov, “Holey fibers,” Phys. Usp. 170, 1203–1220 (2000).
[CrossRef]

Science (3)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic bandgap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

Other (4)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, 1989).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

I. S. Grigor’ev and E. Z. Meilikhov, eds., Physical Quantities Handbook (Energoatomizdat, Moscow, 1991) (in Russian).

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, New York, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Normalized spectra of a 30-fs pump pulse (8) with φ0(ηp)=αηp4 and α=0.13 (curve 1) at the input of the fiber and (curves 2–4) at the output of an 8-cm fiber with n2=3.2×10-16 cm2/W calculated with the use of Eqs. (1) and (3) for pulse energies of (curve 2) 0.1, (curve 3) 0.2, and (curve 4) 0.3 nJ.

Fig. 2
Fig. 2

Refractive index as a function of the wavelength for the bulk material of the fiber (curve 1) and the effective refractive indices calculated for (curve 2) the fundamental (curve 3) and LP11 modes of a PCF with an air-filling fraction of 16% and core radius of 1.5 µm. The pitch of the cladding is equal to the core radius.

Fig. 3
Fig. 3

Refractive index n, group index ng, and dispersion D of the bulk material of the fiber as functions of the wavelength.

Fig. 4
Fig. 4

Diagram of Čerenkov-type phase matching in THG in a fiber with (a) an infinite and (b) finite cladding. The angle θ corresponds to phase-matched THG. The shaded area corresponds to the range of angles where Čerenkov-type modes of the third harmonic have a continuous spectrum of propagation constants and the third harmonic may be emitted in an arbitrary direction. In the nonshaded area, Čerenkov-type modes have a discrete spectrum of propagation constants and the third harmonic may be emitted at an angle θ(m) with respect to the fiber axis, with Kh(m) and U(m) being the relevant propagation constant and the transverse wave number in the fiber core. (c) Geometry of Čerenkov-phase-matched THG in a fiber. The dashed arrows show the third harmonic Čerenkov radiation emitted along the entire length L of the fiber, 2; Lg is the interaction length, bounded by the finite radius a of the pump mode. The dotted arrows show the fundamental mode of the third harmonic generated in a very thin layer, 1, with the thickness equal to the coherence length Lph close to the output end of the fiber.

Fig. 5
Fig. 5

Diagram of the experimental arrangement for studying the generation of the cross-phase-modulated third harmonic in a PCF. NDF, neutral-density filter; MO1, MO2, micro-objectives; BS, beam splitter; IRSA, IR spectrum analyzer; SM, spectrometer; CCD, liquid-nitrogen-cooled CCD camera; Ge PD, Ge photodetector. The inset shows the cross-sectional image of a PCF sample with the pitch of the cladding equal to 1.5 µm and the air-filling fraction equal to 16%.

Fig. 6
Fig. 6

Normalized spectra of Cr:forsterite laser pulses at the input and at the output of a PCF with a length of 8 cm, the pitch of the cladding equal to 1.5 µm, and an air-filling fraction of 16%. The duration of laser pulses coupled into the fiber is ∼30 fs, and their energies are 0.1, 0.2, and 0.3 nJ (as shown near the curves).

Fig. 7
Fig. 7

Normalized spectra of the third harmonic produced by 30-fs Cr:forsterite laser pulses with an energy of 0.3 nJ in a PCF with a length of 8 cm, the pitch of the cladding equal to 1.5 µm, and an air-filling fraction of 16%.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

A(ηp, z)=A0(ηp)exp[iφSPM(ηp, z)],
B(ηh, z)=iβ exp[iφXPM(ηh, z)]×0zdzA03(ηh+ςz)exp[-iΔkz+3iφSPM(ηh+ζz, z)-iφXPM(ηh, z)],
φSPM(ηp, z)=γ1|A0(ηp)|2z
φXPM(ηh, z)=2γ20z|A0(ηh+ςz)|2dz
γ1=3πω22Kpc2χ(3)(ω;ω,-ω, ω) [fp(ρ)]4ρdρdθ[fp(ρ)]2ρdρdθ,
γ2=27πω22Khc2χ(3)(3ω;3ω,-ω, ω)×[fh(ρ)]2[fp(ρ)]2ρdρdθ[fh(ρ)]2ρdρdθ,
β=9πω22Khc2χ(3)(3ω;ω, ω, ω)×fh(ρ)[fp(ρ)]3ρdρdθ[fh(ρ)]2ρdρdθ,
A0(ηp)=A˜ exp[iφ0(ηp)]cosh ηp,
φXPM(ηh, z)=2γ2A˜2ζ[tanh(ηh+ζz)-tanh(ηh)].
B(ηh, z)=i βA˜3ς expi 2γA˜2ς tanh(ηh+ςz)-i Δkςηh×ηhηh+ςzdx 1cosh(x)3 exp-i Δkζx+i3φ0(x)+i 3γ1A˜2(x-ηh)ς cosh(x)2-i 2γ2A˜2ς tanh(x).
Δφ(ηh, z)=Δkz-3φSPM(ηh+ζz, z)-3φ0(ηh+ζz)+φXPM(ηh, z).
Δkeff(ηh, z)=z[Δφ(ηh, z)].
Δkeff=Δk+3ςω¯p(ηh+ζz, z),
ω¯p(η, z)=-η arg[A(η, z)]
Kh+dKhdω 3ω¯pτ=3Kp+dKhdω ω¯pτ.
cos θ=n˜p/nc,
Lg=a/cos θ.
C=2La sin[θ(m)] LgLph2.

Metrics