Abstract

Multiple approaches to generate a smooth, powerful, and stable supercontinuum in cobweb photonic-crystal fibers were undertaken by use of 18-fs pulses. These approaches include utilization of incident pulses with various chirp, power, and polarization states, as well as fibers with different lengths and core sizes. For long fibers (tens of centimeters) the supercontinuum contains a finely modulated structure that can be smoothed when the oscillator is in a regime of relaxation oscillations. Short fibers provide a supercontinuum free of gaps. By optimization of these parameters supercontinua exceeding one octave with modulations of less than 10 dB have been generated.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Hartl, X. D. Li, C. Chudoba, R. K. Rhanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
    [CrossRef]
  2. B. Povazay, A. Apolonski, A. Unterhuber, B. Hermann, K. K. Bizheva, H. Sattmann, P. St. J. Russell, F. Krausz, A. F. Fercher, and W. Drexler, “Visible light optical coherence tomography” (to be published), Proc. SPIE paper 4619–17.
  3. S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72, 3749–3771 (2001).
    [CrossRef]
  4. A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipoecs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175–188 (1997).
    [CrossRef]
  5. A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Haensch, and F. Krausz, “Experimental access to the absolute phase of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
    [CrossRef] [PubMed]
  6. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [CrossRef] [PubMed]
  7. U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kaertner, J. F. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86, 5462–5465 (2001).
    [CrossRef] [PubMed]
  8. F. W. Helbing, G. Steinmeyer, R. S. Windeler, J. Stenger, H. R. Telle, and U. Keller, “Carrier-envelope offset dynamics of mode-locked lasers,” Opt. Lett. 27, 194–196 (2002).
    [CrossRef]
  9. T. M. Fortier, J. Ye, and S. T. Cundiff, “Nonlinear phase noise generated in air–silica microstructure fibers and its effect on carrier-envelope phase,” Opt. Lett. 27, 445–447 (2002).
    [CrossRef]
  10. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  11. L. Xu, M. W. Kimmel, P. O’Shea, R. Trebino, J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Measuring the intensity and phase of ultrabroadband continuum,” in Ultrafast Phenomena, T. Elsaesser, S. Mukamel, M. M. Murnane, and N. F. Scherer, eds. (Springer-Verlag, Berlin, 2000), Vol. 43, pp. 304–306.
  12. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901–203903 (2001).
    [CrossRef] [PubMed]
  13. A. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Opt. Lett. 27, 924–926 (2002).
    [CrossRef]
  14. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2001).
  15. M. J. Steel, T. P. White, C. Martijn de Sterke, R. C. McPhedran, and L. C. Bolten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26, 488–490 (2001).
    [CrossRef]
  16. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic-crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
    [CrossRef]
  17. M. Oberthaler and R. A. Hoepfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993).
    [CrossRef]
  18. P. A. Champert, S. V. Popov, and J. R. Taylor, “Generation of multiwatt, broadband continua in holey fibers,” Opt. Lett. 27, 122–124 (2002).
    [CrossRef]
  19. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersionin photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
    [CrossRef]
  20. Q. Xing, W. Zhang, and K. M. Yoo, “Self-Q-switched self-mode-locked Ti:sapphire laser,” Opt. Commun. 119, 113–116 (1995).
    [CrossRef]
  21. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  22. St. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60-ps pump pulses in a photonic-crystal fiber,” Opt. Lett. 26, 1356–1358 (2001).
    [CrossRef]
  23. N. Nishizawa, M. Yoshida, and T. Goto, “Generation and characterization of 1.1–1.2 μm widely broadened supercontinuum in highly nonlinear dispersion shifted fibers,” in Conference on Lasers and Electro-Optics 2001 (CLEO/Pacific Rim) (Optical Society of America, Washington, D.C., 2001), paper THJ2–4.
  24. N. Karasawa, Sh. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).
    [CrossRef]
  25. A. Apolonski, Institute of Photonics, Vienna University of Technology, Vienna, Austria (personal communication, November 10, 2001). In this case a high-power Ti:sapphire oscillator (see Ref. 5) was used with similar focusing conditions for fibers.

2002 (4)

2001 (7)

N. Karasawa, Sh. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).
[CrossRef]

M. J. Steel, T. P. White, C. Martijn de Sterke, R. C. McPhedran, and L. C. Bolten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26, 488–490 (2001).
[CrossRef]

I. Hartl, X. D. Li, C. Chudoba, R. K. Rhanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
[CrossRef]

St. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60-ps pump pulses in a photonic-crystal fiber,” Opt. Lett. 26, 1356–1358 (2001).
[CrossRef]

S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72, 3749–3771 (2001).
[CrossRef]

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kaertner, J. F. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86, 5462–5465 (2001).
[CrossRef] [PubMed]

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901–203903 (2001).
[CrossRef] [PubMed]

2000 (5)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersionin photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Haensch, and F. Krausz, “Experimental access to the absolute phase of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic-crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

1997 (1)

A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipoecs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175–188 (1997).
[CrossRef]

1995 (1)

Q. Xing, W. Zhang, and K. M. Yoo, “Self-Q-switched self-mode-locked Ti:sapphire laser,” Opt. Commun. 119, 113–116 (1995).
[CrossRef]

1993 (1)

M. Oberthaler and R. A. Hoepfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993).
[CrossRef]

Apolonski, A.

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Haensch, and F. Krausz, “Experimental access to the absolute phase of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[CrossRef] [PubMed]

Arriaga, J.

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic-crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersionin photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Baltuska, A.

A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipoecs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175–188 (1997).
[CrossRef]

Birks, T. A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersionin photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic-crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

Bolten, L. C.

Champert, P. A.

Chau, A. H. L.

Chudoba, C.

Coen, St.

Cundiff, S. T.

T. M. Fortier, J. Ye, and S. T. Cundiff, “Nonlinear phase noise generated in air–silica microstructure fibers and its effect on carrier-envelope phase,” Opt. Lett. 27, 445–447 (2002).
[CrossRef]

S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72, 3749–3771 (2001).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

de Sterke, C. Martijn

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Ell, R.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kaertner, J. F. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86, 5462–5465 (2001).
[CrossRef] [PubMed]

Fortier, T. M.

Fujimoto, J. F.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kaertner, J. F. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86, 5462–5465 (2001).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gaeta, A.

Haensch, T. W.

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Haensch, and F. Krausz, “Experimental access to the absolute phase of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[CrossRef] [PubMed]

Hall, J. L.

S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72, 3749–3771 (2001).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Hartl, I.

Harvey, J. D.

Haus, H. A.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kaertner, J. F. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86, 5462–5465 (2001).
[CrossRef] [PubMed]

Helbing, F. W.

Herrmann, J.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901–203903 (2001).
[CrossRef] [PubMed]

Hoepfel, R. A.

M. Oberthaler and R. A. Hoepfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993).
[CrossRef]

Holzwarth, R.

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Haensch, and F. Krausz, “Experimental access to the absolute phase of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[CrossRef] [PubMed]

Husakou, A. V.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901–203903 (2001).
[CrossRef] [PubMed]

Ippen, E. P.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kaertner, J. F. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86, 5462–5465 (2001).
[CrossRef] [PubMed]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Kaertner, F. X.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kaertner, J. F. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86, 5462–5465 (2001).
[CrossRef] [PubMed]

Karasawa, N.

N. Karasawa, Sh. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).
[CrossRef]

Keller, U.

Knight, J. C.

Ko, T. H.

Krausz, F.

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Haensch, and F. Krausz, “Experimental access to the absolute phase of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[CrossRef] [PubMed]

Leonhardt, R.

Li, X. D.

Mangan, B. J.

McPhedran, R. C.

Metzler, G.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kaertner, J. F. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86, 5462–5465 (2001).
[CrossRef] [PubMed]

Morgner, U.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kaertner, J. F. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86, 5462–5465 (2001).
[CrossRef] [PubMed]

Morita, R.

N. Karasawa, Sh. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).
[CrossRef]

Nakagawa, N.

N. Karasawa, Sh. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).
[CrossRef]

Nakamura, Sh.

N. Karasawa, Sh. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).
[CrossRef]

Oberthaler, M.

M. Oberthaler and R. A. Hoepfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993).
[CrossRef]

Ortigosa-Blanch, A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersionin photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic-crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

Popov, S. V.

Poppe, A.

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Haensch, and F. Krausz, “Experimental access to the absolute phase of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[CrossRef] [PubMed]

Pshenichnikov, M. S.

A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipoecs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175–188 (1997).
[CrossRef]

Ranka, J. K.

Rhanta, R. K.

Russell, P. St. J.

Schibli, T. R.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kaertner, J. F. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86, 5462–5465 (2001).
[CrossRef] [PubMed]

Shibata, M.

N. Karasawa, Sh. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).
[CrossRef]

Shigekawa, H.

N. Karasawa, Sh. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).
[CrossRef]

Spielmann, Ch.

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Haensch, and F. Krausz, “Experimental access to the absolute phase of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[CrossRef] [PubMed]

Steel, M. J.

Steinmeyer, G.

Stenger, J.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Stentz, A. J.

Szipoecs, R.

A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipoecs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175–188 (1997).
[CrossRef]

Taylor, J. R.

Telle, H. R.

Tempea, G.

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Haensch, and F. Krausz, “Experimental access to the absolute phase of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[CrossRef] [PubMed]

Udem, Th.

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Haensch, and F. Krausz, “Experimental access to the absolute phase of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[CrossRef] [PubMed]

Wadsworth, W. J.

Wei, Z.

A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipoecs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175–188 (1997).
[CrossRef]

White, T. P.

Wiersma, D. A.

A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipoecs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175–188 (1997).
[CrossRef]

Windeler, R. S.

Xing, Q.

Q. Xing, W. Zhang, and K. M. Yoo, “Self-Q-switched self-mode-locked Ti:sapphire laser,” Opt. Commun. 119, 113–116 (1995).
[CrossRef]

Yamashita, M.

N. Karasawa, Sh. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).
[CrossRef]

Ye, J.

T. M. Fortier, J. Ye, and S. T. Cundiff, “Nonlinear phase noise generated in air–silica microstructure fibers and its effect on carrier-envelope phase,” Opt. Lett. 27, 445–447 (2002).
[CrossRef]

S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72, 3749–3771 (2001).
[CrossRef]

Yoo, K. M.

Q. Xing, W. Zhang, and K. M. Yoo, “Self-Q-switched self-mode-locked Ti:sapphire laser,” Opt. Commun. 119, 113–116 (1995).
[CrossRef]

Zhang, W.

Q. Xing, W. Zhang, and K. M. Yoo, “Self-Q-switched self-mode-locked Ti:sapphire laser,” Opt. Commun. 119, 113–116 (1995).
[CrossRef]

Appl. Phys. B (1)

A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipoecs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175–188 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

M. Oberthaler and R. A. Hoepfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. Karasawa, Sh. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersionin photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Opt. Commun. (1)

Q. Xing, W. Zhang, and K. M. Yoo, “Self-Q-switched self-mode-locked Ti:sapphire laser,” Opt. Commun. 119, 113–116 (1995).
[CrossRef]

Opt. Lett. (9)

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic-crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

M. J. Steel, T. P. White, C. Martijn de Sterke, R. C. McPhedran, and L. C. Bolten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26, 488–490 (2001).
[CrossRef]

I. Hartl, X. D. Li, C. Chudoba, R. K. Rhanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
[CrossRef]

St. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60-ps pump pulses in a photonic-crystal fiber,” Opt. Lett. 26, 1356–1358 (2001).
[CrossRef]

P. A. Champert, S. V. Popov, and J. R. Taylor, “Generation of multiwatt, broadband continua in holey fibers,” Opt. Lett. 27, 122–124 (2002).
[CrossRef]

F. W. Helbing, G. Steinmeyer, R. S. Windeler, J. Stenger, H. R. Telle, and U. Keller, “Carrier-envelope offset dynamics of mode-locked lasers,” Opt. Lett. 27, 194–196 (2002).
[CrossRef]

T. M. Fortier, J. Ye, and S. T. Cundiff, “Nonlinear phase noise generated in air–silica microstructure fibers and its effect on carrier-envelope phase,” Opt. Lett. 27, 445–447 (2002).
[CrossRef]

A. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Opt. Lett. 27, 924–926 (2002).
[CrossRef]

Phys. Rev. Lett. (3)

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Haensch, and F. Krausz, “Experimental access to the absolute phase of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[CrossRef] [PubMed]

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kaertner, J. F. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86, 5462–5465 (2001).
[CrossRef] [PubMed]

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901–203903 (2001).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72, 3749–3771 (2001).
[CrossRef]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Other (6)

B. Povazay, A. Apolonski, A. Unterhuber, B. Hermann, K. K. Bizheva, H. Sattmann, P. St. J. Russell, F. Krausz, A. F. Fercher, and W. Drexler, “Visible light optical coherence tomography” (to be published), Proc. SPIE paper 4619–17.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2001).

L. Xu, M. W. Kimmel, P. O’Shea, R. Trebino, J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Measuring the intensity and phase of ultrabroadband continuum,” in Ultrafast Phenomena, T. Elsaesser, S. Mukamel, M. M. Murnane, and N. F. Scherer, eds. (Springer-Verlag, Berlin, 2000), Vol. 43, pp. 304–306.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

N. Nishizawa, M. Yoshida, and T. Goto, “Generation and characterization of 1.1–1.2 μm widely broadened supercontinuum in highly nonlinear dispersion shifted fibers,” in Conference on Lasers and Electro-Optics 2001 (CLEO/Pacific Rim) (Optical Society of America, Washington, D.C., 2001), paper THJ2–4.

A. Apolonski, Institute of Photonics, Vienna University of Technology, Vienna, Austria (personal communication, November 10, 2001). In this case a high-power Ti:sapphire oscillator (see Ref. 5) was used with similar focusing conditions for fibers.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Cobweb PCF structure.

Fig. 2
Fig. 2

SC without polarization or shape control, scaled to the maximum intensity, and with the pump source spectrum resized for better readability.

Fig. 3
Fig. 3

SC (2.5-µm core diameter, 90 cm long) in two regimes: Curve a shows relaxation oscillations (self-Q switching), and curve b shows stable pulses of equal amplitude. Inset: The pulse train for curve a with polarization and chirp control enabled.

Fig. 4
Fig. 4

SC (core diameter of 2.5 µm, 41-mm length) for different fiber orientations along the azimuthal axis.

Fig. 5
Fig. 5

SC (PCF with a 2.5-µm core) for different prechirps of the incident 18-fs pulse. The input average power was 400 mW.

Fig. 6
Fig. 6

Power dependence of the SC spectra for the PCF with a 1.9-µm core. Polarization and chirp control were used.

Fig. 7
Fig. 7

SC for PCFs with different core diameters at an input power of 300 mW. The throughput is 10%–50%, depending on core diameter.

Fig. 8
Fig. 8

SC for different-length PCFs with a 1.9-µm core. The output power is 25–28 mW.

Metrics