Abstract

Supercontinuum emission is generated by the propagation of frequency-tunable femtosecond pulses of 1.1–1.5-µm radiation of an optical parametric amplifier through a photonic-crystal fiber. Nearly an octave’s spectral broadening was observed when laser pulses with a duration of 80–100 fs and an energy of several nanojoules per pulse were coupled into a photonic-crystal fiber with a core radius of 1.5–3 µm. The spectral broadening of femtosecond pulses at 1.1–1.5 µm is shown to be much more efficient than the spectral broadening of femtosecond pulses of 800-nm Ti:sapphire laser radiation. The role of dispersion in spectral broadening and supercontinuum generation is discussed. In experiments on supercontinuum generation with an optical parametric amplifier, the influence of dispersion effects was reduced by decreasing the size of the fiber core, which allowed the efficiency of supercontinuum generation to be improved without increasing the laser intensity.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, Berlin, 1989).
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  3. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
    [CrossRef]
  4. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [CrossRef] [PubMed]
  5. T. A. Birks, J. C. Knight, P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [CrossRef] [PubMed]
  6. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic bandgap guidance in optical fibers,” Science 282, 1476–1478 (1998).
    [CrossRef] [PubMed]
  7. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
    [CrossRef]
  8. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Photonic crystals as optical fibres—physics and applications,” Opt. Mater. 11, 143–151 (1999).
    [CrossRef]
  9. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic guidance of light in air,” Science 285, 1537–1539 (1999).
    [CrossRef] [PubMed]
  10. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093–1102 (1999).
    [CrossRef]
  11. T. M. Monro, P. J. Bennett, N. G. R. Broderick, and D. J. Richardson, “Holey fibers with random cladding distributions,” Opt. Lett. 25, 206–208 (2000).
    [CrossRef]
  12. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
    [CrossRef]
  13. A. B. Fedotov, A. M. Zheltikov, L. A. Mel’nikov, A. P. Tarasevitch, and D. von der Linde, “Spectral broadening of femtosecond laser pulses in fibers with a photonic-crystal cladding,” JETP Lett. 71, 281–285 (2000).
    [CrossRef]
  14. A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-m-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).
  15. A. M. Zheltikov, “Holey fibers,” Phys. Usp. 170, 1203–1224 (2000).
    [CrossRef]
  16. D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr: forsterite femtosecond laser pulses in a tapered fiber,” J. Catal. 74, 460–463 (2001).
  17. Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
    [CrossRef]
  18. J. Reichert, M. Niering, R. Holzwarth, M. Weitz, Th. Udem, and T. W. Hänsch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser,” Phys. Rev. Lett. 84, 3232–3235 (2000).
    [CrossRef] [PubMed]
  19. S. A. Diddams, D. J. Jones, Jun Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 tHz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
    [CrossRef] [PubMed]
  20. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [CrossRef] [PubMed]
  21. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
    [CrossRef] [PubMed]
  22. S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).
  23. M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, V. I. Beloglazov, B. A. Kirillov, S. A. Magnitskii, A. V. Tarasishin, A. B. Fedotov, L. A. Mel’nikov, and N. B. Skibina, “Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm,” JETP Lett. 71, 489–492 (2000).
    [CrossRef]
  24. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air–silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000).
    [CrossRef]
  25. A. B. Fedotov, V. V. Yakovlev, and A. M. Zheltikov, “Generation of cross-phase-modulated third harmonic of unamplified femtosecond Cr: forsterite laser pulses in a holey fiber,” Laser Phys. 12, 268–272 (2002).
  26. A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, “Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,” Appl. Phys. B 73, 181–184 (2001).
    [CrossRef]
  27. A. M. Zheltikov, M. V. Alfimov, A. B. Fedotov, A. A. Ivanov, M. S. Syrchin, A. P. Tarasevitch, and D. von der Linde, “Controlled light localization and nonlinear-optical interactions of ultrashort laser pulses in micro- and nanostructured fibers with a tunable photonic band gap,” JETP 93, 499–509 (2001).
    [CrossRef]
  28. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).
  29. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).
  30. J. M. Dudley and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. Sel. Top. Quantum Electron (to be published).
  31. N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun. 191, 353–362 (2001).
    [CrossRef]
  32. N. Aközbek, C. M. Bowden, A. Talebpour, and S. L. Chin, “Laser pulse propagation in ionizing air: a semianalytical approach,” Laser Phys. 10, 101–106 (2000).
  33. S. Petit, A. Talebpour, A. Proulx, and S. L. Chin, “Some consequences during the propagation of an intense femtosecond laser pulse in transparent optical media: a strongly deformed white-light laser,” Laser Phys. 10, 93–100 (2000).

2002 (1)

A. B. Fedotov, V. V. Yakovlev, and A. M. Zheltikov, “Generation of cross-phase-modulated third harmonic of unamplified femtosecond Cr: forsterite laser pulses in a holey fiber,” Laser Phys. 12, 268–272 (2002).

2001 (6)

A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, “Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,” Appl. Phys. B 73, 181–184 (2001).
[CrossRef]

A. M. Zheltikov, M. V. Alfimov, A. B. Fedotov, A. A. Ivanov, M. S. Syrchin, A. P. Tarasevitch, and D. von der Linde, “Controlled light localization and nonlinear-optical interactions of ultrashort laser pulses in micro- and nanostructured fibers with a tunable photonic band gap,” JETP 93, 499–509 (2001).
[CrossRef]

N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun. 191, 353–362 (2001).
[CrossRef]

D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr: forsterite femtosecond laser pulses in a tapered fiber,” J. Catal. 74, 460–463 (2001).

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-m-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

2000 (13)

A. M. Zheltikov, “Holey fibers,” Phys. Usp. 170, 1203–1224 (2000).
[CrossRef]

A. B. Fedotov, A. M. Zheltikov, L. A. Mel’nikov, A. P. Tarasevitch, and D. von der Linde, “Spectral broadening of femtosecond laser pulses in fibers with a photonic-crystal cladding,” JETP Lett. 71, 281–285 (2000).
[CrossRef]

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, Th. Udem, and T. W. Hänsch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser,” Phys. Rev. Lett. 84, 3232–3235 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, Jun Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 tHz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

T. M. Monro, P. J. Bennett, N. G. R. Broderick, and D. J. Richardson, “Holey fibers with random cladding distributions,” Opt. Lett. 25, 206–208 (2000).
[CrossRef]

M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, V. I. Beloglazov, B. A. Kirillov, S. A. Magnitskii, A. V. Tarasishin, A. B. Fedotov, L. A. Mel’nikov, and N. B. Skibina, “Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm,” JETP Lett. 71, 489–492 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air–silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000).
[CrossRef]

N. Aközbek, C. M. Bowden, A. Talebpour, and S. L. Chin, “Laser pulse propagation in ionizing air: a semianalytical approach,” Laser Phys. 10, 101–106 (2000).

S. Petit, A. Talebpour, A. Proulx, and S. L. Chin, “Some consequences during the propagation of an intense femtosecond laser pulse in transparent optical media: a strongly deformed white-light laser,” Laser Phys. 10, 93–100 (2000).

1999 (5)

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[CrossRef]

N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
[CrossRef]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Photonic crystals as optical fibres—physics and applications,” Opt. Mater. 11, 143–151 (1999).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093–1102 (1999).
[CrossRef]

1998 (2)

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic bandgap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

1997 (1)

1996 (1)

Akimov, D. A.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-m-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr: forsterite femtosecond laser pulses in a tapered fiber,” J. Catal. 74, 460–463 (2001).

Aközbek, N.

N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun. 191, 353–362 (2001).
[CrossRef]

N. Aközbek, C. M. Bowden, A. Talebpour, and S. L. Chin, “Laser pulse propagation in ionizing air: a semianalytical approach,” Laser Phys. 10, 101–106 (2000).

Alfimov, M. V.

A. M. Zheltikov, M. V. Alfimov, A. B. Fedotov, A. A. Ivanov, M. S. Syrchin, A. P. Tarasevitch, and D. von der Linde, “Controlled light localization and nonlinear-optical interactions of ultrashort laser pulses in micro- and nanostructured fibers with a tunable photonic band gap,” JETP 93, 499–509 (2001).
[CrossRef]

D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr: forsterite femtosecond laser pulses in a tapered fiber,” J. Catal. 74, 460–463 (2001).

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-m-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, V. I. Beloglazov, B. A. Kirillov, S. A. Magnitskii, A. V. Tarasishin, A. B. Fedotov, L. A. Mel’nikov, and N. B. Skibina, “Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm,” JETP Lett. 71, 489–492 (2000).
[CrossRef]

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Atkin, D. M.

Bagayev, S. N.

D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr: forsterite femtosecond laser pulses in a tapered fiber,” J. Catal. 74, 460–463 (2001).

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

Beloglazov, V. I.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-m-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, V. I. Beloglazov, B. A. Kirillov, S. A. Magnitskii, A. V. Tarasishin, A. B. Fedotov, L. A. Mel’nikov, and N. B. Skibina, “Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm,” JETP Lett. 71, 489–492 (2000).
[CrossRef]

Bennett, P. J.

Birks, T. A.

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr: forsterite femtosecond laser pulses in a tapered fiber,” J. Catal. 74, 460–463 (2001).

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Photonic crystals as optical fibres—physics and applications,” Opt. Mater. 11, 143–151 (1999).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic bandgap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

T. A. Birks, J. C. Knight, P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

Bowden, C. M.

N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun. 191, 353–362 (2001).
[CrossRef]

N. Aközbek, C. M. Bowden, A. Talebpour, and S. L. Chin, “Laser pulse propagation in ionizing air: a semianalytical approach,” Laser Phys. 10, 101–106 (2000).

Broderick, N. G. R.

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic bandgap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

Chepurov, S. V.

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

Chin, S. L.

N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun. 191, 353–362 (2001).
[CrossRef]

N. Aközbek, C. M. Bowden, A. Talebpour, and S. L. Chin, “Laser pulse propagation in ionizing air: a semianalytical approach,” Laser Phys. 10, 101–106 (2000).

S. Petit, A. Talebpour, A. Proulx, and S. L. Chin, “Some consequences during the propagation of an intense femtosecond laser pulse in transparent optical media: a strongly deformed white-light laser,” Laser Phys. 10, 93–100 (2000).

Chorvat, D.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-m-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

Chorvat Jr., D.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-m-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Photonic crystals as optical fibres—physics and applications,” Opt. Mater. 11, 143–151 (1999).
[CrossRef]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

Cundi, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Cundiff, S. T.

S. A. Diddams, D. J. Jones, Jun Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 tHz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

De Sandro, J.-P.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Photonic crystals as optical fibres—physics and applications,” Opt. Mater. 11, 143–151 (1999).
[CrossRef]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

Diddams, S. A.

S. A. Diddams, D. J. Jones, Jun Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 tHz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Dmitriyev, A. K.

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

Dychkov, A. S.

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

Fedotov, A. B.

A. B. Fedotov, V. V. Yakovlev, and A. M. Zheltikov, “Generation of cross-phase-modulated third harmonic of unamplified femtosecond Cr: forsterite laser pulses in a holey fiber,” Laser Phys. 12, 268–272 (2002).

A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, “Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,” Appl. Phys. B 73, 181–184 (2001).
[CrossRef]

A. M. Zheltikov, M. V. Alfimov, A. B. Fedotov, A. A. Ivanov, M. S. Syrchin, A. P. Tarasevitch, and D. von der Linde, “Controlled light localization and nonlinear-optical interactions of ultrashort laser pulses in micro- and nanostructured fibers with a tunable photonic band gap,” JETP 93, 499–509 (2001).
[CrossRef]

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-m-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr: forsterite femtosecond laser pulses in a tapered fiber,” J. Catal. 74, 460–463 (2001).

A. B. Fedotov, A. M. Zheltikov, L. A. Mel’nikov, A. P. Tarasevitch, and D. von der Linde, “Spectral broadening of femtosecond laser pulses in fibers with a photonic-crystal cladding,” JETP Lett. 71, 281–285 (2000).
[CrossRef]

M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, V. I. Beloglazov, B. A. Kirillov, S. A. Magnitskii, A. V. Tarasishin, A. B. Fedotov, L. A. Mel’nikov, and N. B. Skibina, “Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm,” JETP Lett. 71, 489–492 (2000).
[CrossRef]

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, Jun Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 tHz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Hänsch, T. W.

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, Th. Udem, and T. W. Hänsch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser,” Phys. Rev. Lett. 84, 3232–3235 (2000).
[CrossRef] [PubMed]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, Jun Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 tHz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[CrossRef]

Holzwarth, R.

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, Th. Udem, and T. W. Hänsch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser,” Phys. Rev. Lett. 84, 3232–3235 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, Jun Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 tHz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[CrossRef]

Ivanov, A. A.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-m-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr: forsterite femtosecond laser pulses in a tapered fiber,” J. Catal. 74, 460–463 (2001).

A. M. Zheltikov, M. V. Alfimov, A. B. Fedotov, A. A. Ivanov, M. S. Syrchin, A. P. Tarasevitch, and D. von der Linde, “Controlled light localization and nonlinear-optical interactions of ultrashort laser pulses in micro- and nanostructured fibers with a tunable photonic band gap,” JETP 93, 499–509 (2001).
[CrossRef]

M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, V. I. Beloglazov, B. A. Kirillov, S. A. Magnitskii, A. V. Tarasishin, A. B. Fedotov, L. A. Mel’nikov, and N. B. Skibina, “Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm,” JETP Lett. 71, 489–492 (2000).
[CrossRef]

Jones, D. J.

S. A. Diddams, D. J. Jones, Jun Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 tHz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Kirillov, B. A.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-m-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, V. I. Beloglazov, B. A. Kirillov, S. A. Magnitskii, A. V. Tarasishin, A. B. Fedotov, L. A. Mel’nikov, and N. B. Skibina, “Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm,” JETP Lett. 71, 489–492 (2000).
[CrossRef]

Klementyev, V. M.

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

Knight, J. C.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Photonic crystals as optical fibres—physics and applications,” Opt. Mater. 11, 143–151 (1999).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic bandgap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

Kolevatova, O. A.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-m-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

Kolker, D. B.

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

Kuznetsov, S. A.

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

Magnitskii, S. A.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-m-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, V. I. Beloglazov, B. A. Kirillov, S. A. Magnitskii, A. V. Tarasishin, A. B. Fedotov, L. A. Mel’nikov, and N. B. Skibina, “Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm,” JETP Lett. 71, 489–492 (2000).
[CrossRef]

Makarov, V. A.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-m-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Matyugin, Yu. A.

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

Mel’nikov, L. A.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-m-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

A. B. Fedotov, A. M. Zheltikov, L. A. Mel’nikov, A. P. Tarasevitch, and D. von der Linde, “Spectral broadening of femtosecond laser pulses in fibers with a photonic-crystal cladding,” JETP Lett. 71, 281–285 (2000).
[CrossRef]

M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, V. I. Beloglazov, B. A. Kirillov, S. A. Magnitskii, A. V. Tarasishin, A. B. Fedotov, L. A. Mel’nikov, and N. B. Skibina, “Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm,” JETP Lett. 71, 489–492 (2000).
[CrossRef]

Monro, T. M.

Naumov, A. N.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-m-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

Niering, M.

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, Th. Udem, and T. W. Hänsch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser,” Phys. Rev. Lett. 84, 3232–3235 (2000).
[CrossRef] [PubMed]

Okhapkin, M. V.

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

Petit, S.

S. Petit, A. Talebpour, A. Proulx, and S. L. Chin, “Some consequences during the propagation of an intense femtosecond laser pulse in transparent optical media: a strongly deformed white-light laser,” Laser Phys. 10, 93–100 (2000).

Pivtsov, V. S.

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr: forsterite femtosecond laser pulses in a tapered fiber,” J. Catal. 74, 460–463 (2001).

Podshivalov, A. A.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-m-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr: forsterite femtosecond laser pulses in a tapered fiber,” J. Catal. 74, 460–463 (2001).

Proulx, A.

S. Petit, A. Talebpour, A. Proulx, and S. L. Chin, “Some consequences during the propagation of an intense femtosecond laser pulse in transparent optical media: a strongly deformed white-light laser,” Laser Phys. 10, 93–100 (2000).

Ranka, J. K.

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

S. A. Diddams, D. J. Jones, Jun Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 tHz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air–silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000).
[CrossRef]

Reichert, J.

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, Th. Udem, and T. W. Hänsch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser,” Phys. Rev. Lett. 84, 3232–3235 (2000).
[CrossRef] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[CrossRef]

Richardson, D. J.

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Russell, P. St. J.

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr: forsterite femtosecond laser pulses in a tapered fiber,” J. Catal. 74, 460–463 (2001).

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Photonic crystals as optical fibres—physics and applications,” Opt. Mater. 11, 143–151 (1999).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic bandgap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

Scalora, M.

N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun. 191, 353–362 (2001).
[CrossRef]

Sidorov-Biryukov, D. A.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-m-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

Skibina, N. B.

M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, V. I. Beloglazov, B. A. Kirillov, S. A. Magnitskii, A. V. Tarasishin, A. B. Fedotov, L. A. Mel’nikov, and N. B. Skibina, “Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm,” JETP Lett. 71, 489–492 (2000).
[CrossRef]

Skibina, Yu. S.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-m-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

Skvortsov, M. N.

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Stentz, A. J.

Syrchin, M. S.

A. M. Zheltikov, M. V. Alfimov, A. B. Fedotov, A. A. Ivanov, M. S. Syrchin, A. P. Tarasevitch, and D. von der Linde, “Controlled light localization and nonlinear-optical interactions of ultrashort laser pulses in micro- and nanostructured fibers with a tunable photonic band gap,” JETP 93, 499–509 (2001).
[CrossRef]

Talebpour, A.

S. Petit, A. Talebpour, A. Proulx, and S. L. Chin, “Some consequences during the propagation of an intense femtosecond laser pulse in transparent optical media: a strongly deformed white-light laser,” Laser Phys. 10, 93–100 (2000).

N. Aközbek, C. M. Bowden, A. Talebpour, and S. L. Chin, “Laser pulse propagation in ionizing air: a semianalytical approach,” Laser Phys. 10, 101–106 (2000).

Tarasevitch, A. P.

A. M. Zheltikov, M. V. Alfimov, A. B. Fedotov, A. A. Ivanov, M. S. Syrchin, A. P. Tarasevitch, and D. von der Linde, “Controlled light localization and nonlinear-optical interactions of ultrashort laser pulses in micro- and nanostructured fibers with a tunable photonic band gap,” JETP 93, 499–509 (2001).
[CrossRef]

A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, “Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,” Appl. Phys. B 73, 181–184 (2001).
[CrossRef]

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-m-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

A. B. Fedotov, A. M. Zheltikov, L. A. Mel’nikov, A. P. Tarasevitch, and D. von der Linde, “Spectral broadening of femtosecond laser pulses in fibers with a photonic-crystal cladding,” JETP Lett. 71, 281–285 (2000).
[CrossRef]

Tarasishin, A. V.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-m-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, V. I. Beloglazov, B. A. Kirillov, S. A. Magnitskii, A. V. Tarasishin, A. B. Fedotov, L. A. Mel’nikov, and N. B. Skibina, “Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm,” JETP Lett. 71, 489–492 (2000).
[CrossRef]

Udem, T.

S. A. Diddams, D. J. Jones, Jun Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 tHz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Udem, Th.

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, Th. Udem, and T. W. Hänsch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser,” Phys. Rev. Lett. 84, 3232–3235 (2000).
[CrossRef] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[CrossRef]

Vlasova, E. A.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-m-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

von der Linde, D.

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-m-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, “Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,” Appl. Phys. B 73, 181–184 (2001).
[CrossRef]

A. M. Zheltikov, M. V. Alfimov, A. B. Fedotov, A. A. Ivanov, M. S. Syrchin, A. P. Tarasevitch, and D. von der Linde, “Controlled light localization and nonlinear-optical interactions of ultrashort laser pulses in micro- and nanostructured fibers with a tunable photonic band gap,” JETP 93, 499–509 (2001).
[CrossRef]

A. B. Fedotov, A. M. Zheltikov, L. A. Mel’nikov, A. P. Tarasevitch, and D. von der Linde, “Spectral broadening of femtosecond laser pulses in fibers with a photonic-crystal cladding,” JETP Lett. 71, 281–285 (2000).
[CrossRef]

Wadsworth, W. J.

D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr: forsterite femtosecond laser pulses in a tapered fiber,” J. Catal. 74, 460–463 (2001).

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

Weitz, M.

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, Th. Udem, and T. W. Hänsch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser,” Phys. Rev. Lett. 84, 3232–3235 (2000).
[CrossRef] [PubMed]

Windeler, R. S.

S. A. Diddams, D. J. Jones, Jun Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 tHz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air–silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000).
[CrossRef]

Yakovlev, V. V.

A. B. Fedotov, V. V. Yakovlev, and A. M. Zheltikov, “Generation of cross-phase-modulated third harmonic of unamplified femtosecond Cr: forsterite laser pulses in a holey fiber,” Laser Phys. 12, 268–272 (2002).

Ye, Jun

S. A. Diddams, D. J. Jones, Jun Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 tHz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Zakharyash, V. F.

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

Zheltikov, A. M.

A. B. Fedotov, V. V. Yakovlev, and A. M. Zheltikov, “Generation of cross-phase-modulated third harmonic of unamplified femtosecond Cr: forsterite laser pulses in a holey fiber,” Laser Phys. 12, 268–272 (2002).

A. M. Zheltikov, M. V. Alfimov, A. B. Fedotov, A. A. Ivanov, M. S. Syrchin, A. P. Tarasevitch, and D. von der Linde, “Controlled light localization and nonlinear-optical interactions of ultrashort laser pulses in micro- and nanostructured fibers with a tunable photonic band gap,” JETP 93, 499–509 (2001).
[CrossRef]

A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, “Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,” Appl. Phys. B 73, 181–184 (2001).
[CrossRef]

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-m-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr: forsterite femtosecond laser pulses in a tapered fiber,” J. Catal. 74, 460–463 (2001).

A. M. Zheltikov, “Holey fibers,” Phys. Usp. 170, 1203–1224 (2000).
[CrossRef]

A. B. Fedotov, A. M. Zheltikov, L. A. Mel’nikov, A. P. Tarasevitch, and D. von der Linde, “Spectral broadening of femtosecond laser pulses in fibers with a photonic-crystal cladding,” JETP Lett. 71, 281–285 (2000).
[CrossRef]

M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, V. I. Beloglazov, B. A. Kirillov, S. A. Magnitskii, A. V. Tarasishin, A. B. Fedotov, L. A. Mel’nikov, and N. B. Skibina, “Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm,” JETP Lett. 71, 489–492 (2000).
[CrossRef]

Appl. Phys. B (1)

A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, “Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,” Appl. Phys. B 73, 181–184 (2001).
[CrossRef]

Electron. Lett. (1)

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

J. Catal. (1)

D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr: forsterite femtosecond laser pulses in a tapered fiber,” J. Catal. 74, 460–463 (2001).

J. Lightwave Technol. (1)

JETP (1)

A. M. Zheltikov, M. V. Alfimov, A. B. Fedotov, A. A. Ivanov, M. S. Syrchin, A. P. Tarasevitch, and D. von der Linde, “Controlled light localization and nonlinear-optical interactions of ultrashort laser pulses in micro- and nanostructured fibers with a tunable photonic band gap,” JETP 93, 499–509 (2001).
[CrossRef]

JETP Lett. (2)

M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, V. I. Beloglazov, B. A. Kirillov, S. A. Magnitskii, A. V. Tarasishin, A. B. Fedotov, L. A. Mel’nikov, and N. B. Skibina, “Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm,” JETP Lett. 71, 489–492 (2000).
[CrossRef]

A. B. Fedotov, A. M. Zheltikov, L. A. Mel’nikov, A. P. Tarasevitch, and D. von der Linde, “Spectral broadening of femtosecond laser pulses in fibers with a photonic-crystal cladding,” JETP Lett. 71, 281–285 (2000).
[CrossRef]

Laser Phys. (5)

A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-m-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).

S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).

A. B. Fedotov, V. V. Yakovlev, and A. M. Zheltikov, “Generation of cross-phase-modulated third harmonic of unamplified femtosecond Cr: forsterite laser pulses in a holey fiber,” Laser Phys. 12, 268–272 (2002).

N. Aközbek, C. M. Bowden, A. Talebpour, and S. L. Chin, “Laser pulse propagation in ionizing air: a semianalytical approach,” Laser Phys. 10, 101–106 (2000).

S. Petit, A. Talebpour, A. Proulx, and S. L. Chin, “Some consequences during the propagation of an intense femtosecond laser pulse in transparent optical media: a strongly deformed white-light laser,” Laser Phys. 10, 93–100 (2000).

Opt. Commun. (1)

N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun. 191, 353–362 (2001).
[CrossRef]

Opt. Lett. (7)

Opt. Mater. (1)

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Photonic crystals as optical fibres—physics and applications,” Opt. Mater. 11, 143–151 (1999).
[CrossRef]

Phys. Rev. Lett. (4)

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[CrossRef]

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, Th. Udem, and T. W. Hänsch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser,” Phys. Rev. Lett. 84, 3232–3235 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, Jun Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 tHz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Phys. Usp. (1)

A. M. Zheltikov, “Holey fibers,” Phys. Usp. 170, 1203–1224 (2000).
[CrossRef]

Science (3)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic bandgap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

Other (4)

R. Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, Berlin, 1989).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).

J. M. Dudley and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. Sel. Top. Quantum Electron (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Effective area of the fundamental mode of a PCF with an air-filling fraction of 16% and core radii of curve 1: 1.5 µm; curve 2: 2 µm; and curve 3: 3 µm plotted as functions of the radiation wavelength. The pitch of the cladding is equal to the core radius.

Fig. 2
Fig. 2

Group index plotted as a function of the radiation wavelength for the fundamental mode of a PCF with an air-filling fraction of 16% and the core radii of curve 1: 1.5 µm; curve 2: 2 µm; and curve 3: 3 µm. The pitch of the cladding is equal to the core radius.

Fig. 3
Fig. 3

Spectral dependence of the walk-off length Lw of 100-fs light pulses with the wavelength λ with respect to 100-fs light pulses with a wavelength of 1.2 µm in a PCF with an air-filling fraction of 16% and the core radii of curve 1: 1.5 µm; curve 2: 2 µm; and curve 3: 3 µm. The pitch of the cladding is equal to the core radius.

Fig. 4
Fig. 4

Frequency-tunable femtosecond system based on an OPA: Ti:S, Ti:sapphire femtosecond master oscillator; Nd:YAG, Nd:YAG pump laser; MO1, MO2, micro-objectives.

Fig. 5
Fig. 5

Cross-sectional images of holey fibers with a cladding pitch equal to 3 µm. The air-filling fraction is (a) 16% and (b) 65%.

Fig. 6
Fig. 6

Spectra of 70-fs Ti:sapphire laser pulses (bold curve) at the input and the output of a holey fiber with a length of 3 cm, a cladding pitch equal to 3 µm, and an air-filling fraction of f=16% for pulse energies of curve 1: 0.5 nJ; curve 2: 5 nJ; curve 3: 10 nJ; curve 4: 20 nJ; curve 5: 30 nJ; curve 6: 40 nJ; and curve 7: 50 nJ.

Fig. 7
Fig. 7

Spectral width Δω of 70-fs pulses of 800-nm Ti:sapphire laser radiation transmitted through 2-µm-pitch PCF samples with a length of 3 cm and an air-filling fraction equal to curve 1: 65% and curve 2: 16% plotted as a function of the radiation energy coupled into the fiber.

Fig. 8
Fig. 8

Spectra of laser pulses coming out of PCFs with an air-filling fraction of 16%, a length of 4 cm, and core radii equal to (a) 3, (b) 2, and (c) 1.5 µm. OPA pulses with a duration of approximately 80 fs and a wavelength of 1.25 µm are coupled into the fiber. The energies of pulses coupled into the fiber are specified near the curves.

Fig. 9
Fig. 9

Spectra of laser pulses coming out of PCFs with an air-filling fraction of 16%, a length of 4 cm, and core radii equal to (a) 1.5 and (b) 2 µm. OPA radiation pulses with (a) wavelengths of 1.10 and 1.25 µm and energies of 5 nJ and (b) wavelengths of 1.10 and 1.30 µm and energies of 8 nJ are coupled into the fiber. The initial duration of light pulses is 80–100 fs.

Metrics