Abstract

The criticisms raised by Poumellec and Niay in their Comment on our paper are primarily based on their misreading the original paper. We respond to their concerns and reiterate that Bragg gratings are not formed primarily by compaction from 248-nm exposure. New calculations are presented that corroborate our previous analysis.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Poumellec and P. Niay, “Direct measurement of 248- and 193-nm excimer-induced densification in silica-germania waveguide blanks: comment,” J. Opt. Soc. Am. B 19, 2039–2041 (2002).
    [CrossRef]
  2. N. F. Borrelli, D. C. Allan, and R. A. Modavis, “Direct measurement of 248- and 193-nm excimer-induced densification in silica-germania waveguide blanks,” J. Opt. Soc. Am. B 16, 1672–1679 (1999).
    [CrossRef]
  3. There is extensive literature on the origin, explanation, and device manifestation of the fiber Bragg grating. For a short review the reader may consult N. F. Borrelli, Microoptics Technology (Marcel-Dekker, New York, 1999), pp. 238–247, and the references therein.
  4. D. C. Allan, C. Smith, N. F. Borrelli, and T. P. Seward III, “193-nm excimer-laser-induced densification of fused silica,” Opt. Lett. 21, 1960–1962 (1996).
    [CrossRef] [PubMed]
  5. N. F. Borrelli, C. Smith, D. C. Allan, and T. P. Seward III, “Densification of fused silica under 193-nm excitation,” J. Opt. Soc. Am. B 14, 1607–1615 (1997).
    [CrossRef]
  6. J. Albert, K. O. Hill, D. C. Johnson, F. Bilodeau, S. J. Mihailov, N. F. Borrelli, and J. Amin, “Bragg gratings in defect-free germanium-doped optical fibers,” Opt. Lett. 24, 1266–1268 (1999).
    [CrossRef]
  7. N. F. Borrelli, C. M. Smith, and D. C. Allan, “Excimer-laser-induced densification in binary silica glasses,” Opt. Lett. 24, 1401–1403 (1999).
    [CrossRef]

2002 (1)

1999 (3)

1997 (1)

N. F. Borrelli, C. Smith, D. C. Allan, and T. P. Seward III, “Densification of fused silica under 193-nm excitation,” J. Opt. Soc. Am. B 14, 1607–1615 (1997).
[CrossRef]

1996 (1)

Albert, J.

Allan, D. C.

Amin, J.

Bilodeau, F.

Borrelli, N. F.

Hill, K. O.

Johnson, D. C.

Mihailov, S. J.

Modavis, R. A.

Niay, P.

Poumellec, B.

Seward III, T. P.

N. F. Borrelli, C. Smith, D. C. Allan, and T. P. Seward III, “Densification of fused silica under 193-nm excitation,” J. Opt. Soc. Am. B 14, 1607–1615 (1997).
[CrossRef]

D. C. Allan, C. Smith, N. F. Borrelli, and T. P. Seward III, “193-nm excimer-laser-induced densification of fused silica,” Opt. Lett. 21, 1960–1962 (1996).
[CrossRef] [PubMed]

Smith, C.

N. F. Borrelli, C. Smith, D. C. Allan, and T. P. Seward III, “Densification of fused silica under 193-nm excitation,” J. Opt. Soc. Am. B 14, 1607–1615 (1997).
[CrossRef]

D. C. Allan, C. Smith, N. F. Borrelli, and T. P. Seward III, “193-nm excimer-laser-induced densification of fused silica,” Opt. Lett. 21, 1960–1962 (1996).
[CrossRef] [PubMed]

Smith, C. M.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Recalculation of Fig. 5 of Ref. 2 using improved finite element grids and both the original isotropic and the more sophisticated two-constant model for δn, as described in text. The two curves for δn calculated by the two methods lie mostly above zero and are nearly superimposed. The peak-to-valley variation in δn is sensibly the same for both methods.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

δn(1)=(0.45)δρρtot
δn(2)=(0.42)δρρunconst+(0.35)δρρelast
δρρtot=δρρunconst+δρρelast

Metrics