Abstract

We report on our investigation of the potential for all-optical reversible photostructuring of the photochromic molecule 1,2-bis(2-methylbenzo[b]thiophen-3-yl)perfluorocyclopentene (BFCP). The light-induced isomerization of BFCP was studied in solution as well as in polymeric thin films. The absorption change that is due to the photochromic reaction of BFCP was determined by conventional spectroscopic measurements. The absolute values of the refractive indices of doped polymer films were measured by the waveguide grating coupling technique for the two states of the photochromic molecule. The dynamics of the reactions and the light-induced refractive-index changes Δn of doped polymer samples were investigated in holographic grating experiments. Changes of as much as Δn=(3.5±0.5)×10-4 were obtained at 806 nm for 41.16-wt. % doping. Finally, a modified two-beam coupling experiment permitted the separation of absorption and refractive-index contributions to the grating buildup and the determination of the phase shifts of these gratings with respect to the intensity grating.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Hornak, Polymers for Lightwave and Integrated Optics: Technology and Applications (Marcel Dekker, New York, 1992).
  2. H. S. Nalwa and S. Miyata, Nonlinear Optics of Molecules and Polymers (CRC Press, New York, 1998).
  3. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
    [CrossRef]
  4. G. H. Brown, Photochromism (Wiley-Interscience, New York, 1971).
  5. H. Dürr and H. Bouas-Laurent, Photochromism, Molecules and Systems (Elsevier, Amsterdam, 1990).
  6. A. Toriumi and S. Kawata, “Reflection confocal microscope readout system for three-dimensional photochromic optical data storage,” Opt. Lett. 23, 1924–1926 (1988).
    [CrossRef]
  7. T. Tsujioka, Y. Shimizu, and M. Irie, “Crosstalk in photon-mode photochromic multiwavelength recording,” Jpn. J. Appl. Phys. 33, 1914–1919 (1994).
    [CrossRef]
  8. S. H. Kawai, S. L. Gilat, R. Ponsinet, and J.-M. Lehn, “A dual-mode molecular switching device: bisphenolic diarylethenes with integrated photochromic and electrochromic properties,” Chem. Eur. J. 1, 285–293 (1995).
    [CrossRef]
  9. S. L. Gilat, S. H. Kawai, and J.-M. Lehn, “Light-triggered molecular devices: photochemical switching of optical and electrochemical properties in molecular wire type diarylethene species,” Chem. Eur. J. 1, 275–284 (1995).
    [CrossRef]
  10. F. Ebisawa, M. Hoshino, and K. Sukegawa, “Self-holding photochromic polymer Mach–Zehnder optical switch,” Appl. Phys. Lett. 65, 2919–2921 (1994).
    [CrossRef]
  11. S. Lecomte, U. Gubler, M. Jäger, Ch. Bosshard, G. Montemezzani, P. Günter, L. Gobbi, and F. Diederich, “Reversible optical structuring of polymer waveguides doped with photochromic molecules,” Appl. Phys. Lett. 77, 921–923 (2000).
    [CrossRef]
  12. M. Irie and M. Mohri, “Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives,” J. Org. Chem. 53, 803–808 (1988).
    [CrossRef]
  13. M. Hanazawa, R. Sumiya, Y. Horikawa, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 1, 2-bis(2-methylbenzo[b]thiophen-3-yl)perfluorocycloalkene derivatives,” J. Chem. Soc. Chem. Commun. 3, 206–207 (1992).
    [CrossRef]
  14. N. Tanio and M. Irie, “Photooptical switching of polymer film waveguide containing photochromic diarylethenes,” Jpn. J. Appl. Phys. 33, 1550–1553 (1994).
    [CrossRef]
  15. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, Boston, Mass., 1991).
  16. H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
  17. K. Meerholz, E. Mecher, R. Bittner, and Y. De Nardin, “Competing photorefractive gratings in organic thin-films devices,” J. Opt. Soc. Am. B 15, 2114–2124 (1998).
    [CrossRef]
  18. M. Duelli, G. Montemezzani, C. Keller, F. Lehr, and P. Günter, “Colorant doped polymethylmethacrylate used as a holographic recording medium and as an intensity tunable saturable absorber,” Pure Appl. Opt. 3, 215–220 (1994).
    [CrossRef]
  19. K. Sutter and P. Günter, “Photorefractive gratings in the organic crystal 2-cyclotylamino-5-nitropyridine doped with 7, 7, 8, 8-tetracyanoquinodimethane,” J. Opt. Soc. Am. B 7, 2274–2278 (1990).
    [CrossRef]
  20. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  21. M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100, 1685–1716 (2000).
    [CrossRef]
  22. S. Kobatake, T. Yamada, K. Uchida, N. Kato, and M. Irie, “Photochromism of 1, 2-bis(2, 5-dimethyl-3-thienyl)perfluorocyclopentene in a single crystalline phase,” J. Am. Chem. Soc. 121, 2380–2386 (1999).
    [CrossRef]
  23. M. Irie, S. Kobatake, and M. Horichi, “Reversible surface morphology changes of a photochromic diarylethene single crystal by photoirradiation,” Science 291, 1769–1772 (2001).
    [CrossRef] [PubMed]

2001 (1)

M. Irie, S. Kobatake, and M. Horichi, “Reversible surface morphology changes of a photochromic diarylethene single crystal by photoirradiation,” Science 291, 1769–1772 (2001).
[CrossRef] [PubMed]

2000 (3)

M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100, 1685–1716 (2000).
[CrossRef]

S. Lecomte, U. Gubler, M. Jäger, Ch. Bosshard, G. Montemezzani, P. Günter, L. Gobbi, and F. Diederich, “Reversible optical structuring of polymer waveguides doped with photochromic molecules,” Appl. Phys. Lett. 77, 921–923 (2000).
[CrossRef]

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

1999 (1)

S. Kobatake, T. Yamada, K. Uchida, N. Kato, and M. Irie, “Photochromism of 1, 2-bis(2, 5-dimethyl-3-thienyl)perfluorocyclopentene in a single crystalline phase,” J. Am. Chem. Soc. 121, 2380–2386 (1999).
[CrossRef]

1998 (1)

1995 (2)

S. H. Kawai, S. L. Gilat, R. Ponsinet, and J.-M. Lehn, “A dual-mode molecular switching device: bisphenolic diarylethenes with integrated photochromic and electrochromic properties,” Chem. Eur. J. 1, 285–293 (1995).
[CrossRef]

S. L. Gilat, S. H. Kawai, and J.-M. Lehn, “Light-triggered molecular devices: photochemical switching of optical and electrochemical properties in molecular wire type diarylethene species,” Chem. Eur. J. 1, 275–284 (1995).
[CrossRef]

1994 (4)

F. Ebisawa, M. Hoshino, and K. Sukegawa, “Self-holding photochromic polymer Mach–Zehnder optical switch,” Appl. Phys. Lett. 65, 2919–2921 (1994).
[CrossRef]

M. Duelli, G. Montemezzani, C. Keller, F. Lehr, and P. Günter, “Colorant doped polymethylmethacrylate used as a holographic recording medium and as an intensity tunable saturable absorber,” Pure Appl. Opt. 3, 215–220 (1994).
[CrossRef]

T. Tsujioka, Y. Shimizu, and M. Irie, “Crosstalk in photon-mode photochromic multiwavelength recording,” Jpn. J. Appl. Phys. 33, 1914–1919 (1994).
[CrossRef]

N. Tanio and M. Irie, “Photooptical switching of polymer film waveguide containing photochromic diarylethenes,” Jpn. J. Appl. Phys. 33, 1550–1553 (1994).
[CrossRef]

1992 (1)

M. Hanazawa, R. Sumiya, Y. Horikawa, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 1, 2-bis(2-methylbenzo[b]thiophen-3-yl)perfluorocycloalkene derivatives,” J. Chem. Soc. Chem. Commun. 3, 206–207 (1992).
[CrossRef]

1990 (1)

1988 (2)

A. Toriumi and S. Kawata, “Reflection confocal microscope readout system for three-dimensional photochromic optical data storage,” Opt. Lett. 23, 1924–1926 (1988).
[CrossRef]

M. Irie and M. Mohri, “Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives,” J. Org. Chem. 53, 803–808 (1988).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Bechtel, J. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Bittner, R.

Bosshard, Ch.

S. Lecomte, U. Gubler, M. Jäger, Ch. Bosshard, G. Montemezzani, P. Günter, L. Gobbi, and F. Diederich, “Reversible optical structuring of polymer waveguides doped with photochromic molecules,” Appl. Phys. Lett. 77, 921–923 (2000).
[CrossRef]

Dalton, L. R.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

De Nardin, Y.

Diederich, F.

S. Lecomte, U. Gubler, M. Jäger, Ch. Bosshard, G. Montemezzani, P. Günter, L. Gobbi, and F. Diederich, “Reversible optical structuring of polymer waveguides doped with photochromic molecules,” Appl. Phys. Lett. 77, 921–923 (2000).
[CrossRef]

Duelli, M.

M. Duelli, G. Montemezzani, C. Keller, F. Lehr, and P. Günter, “Colorant doped polymethylmethacrylate used as a holographic recording medium and as an intensity tunable saturable absorber,” Pure Appl. Opt. 3, 215–220 (1994).
[CrossRef]

Ebisawa, F.

F. Ebisawa, M. Hoshino, and K. Sukegawa, “Self-holding photochromic polymer Mach–Zehnder optical switch,” Appl. Phys. Lett. 65, 2919–2921 (1994).
[CrossRef]

Gilat, S. L.

S. H. Kawai, S. L. Gilat, R. Ponsinet, and J.-M. Lehn, “A dual-mode molecular switching device: bisphenolic diarylethenes with integrated photochromic and electrochromic properties,” Chem. Eur. J. 1, 285–293 (1995).
[CrossRef]

S. L. Gilat, S. H. Kawai, and J.-M. Lehn, “Light-triggered molecular devices: photochemical switching of optical and electrochemical properties in molecular wire type diarylethene species,” Chem. Eur. J. 1, 275–284 (1995).
[CrossRef]

Gobbi, L.

S. Lecomte, U. Gubler, M. Jäger, Ch. Bosshard, G. Montemezzani, P. Günter, L. Gobbi, and F. Diederich, “Reversible optical structuring of polymer waveguides doped with photochromic molecules,” Appl. Phys. Lett. 77, 921–923 (2000).
[CrossRef]

Gubler, U.

S. Lecomte, U. Gubler, M. Jäger, Ch. Bosshard, G. Montemezzani, P. Günter, L. Gobbi, and F. Diederich, “Reversible optical structuring of polymer waveguides doped with photochromic molecules,” Appl. Phys. Lett. 77, 921–923 (2000).
[CrossRef]

Günter, P.

S. Lecomte, U. Gubler, M. Jäger, Ch. Bosshard, G. Montemezzani, P. Günter, L. Gobbi, and F. Diederich, “Reversible optical structuring of polymer waveguides doped with photochromic molecules,” Appl. Phys. Lett. 77, 921–923 (2000).
[CrossRef]

M. Duelli, G. Montemezzani, C. Keller, F. Lehr, and P. Günter, “Colorant doped polymethylmethacrylate used as a holographic recording medium and as an intensity tunable saturable absorber,” Pure Appl. Opt. 3, 215–220 (1994).
[CrossRef]

K. Sutter and P. Günter, “Photorefractive gratings in the organic crystal 2-cyclotylamino-5-nitropyridine doped with 7, 7, 8, 8-tetracyanoquinodimethane,” J. Opt. Soc. Am. B 7, 2274–2278 (1990).
[CrossRef]

Hanazawa, M.

M. Hanazawa, R. Sumiya, Y. Horikawa, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 1, 2-bis(2-methylbenzo[b]thiophen-3-yl)perfluorocycloalkene derivatives,” J. Chem. Soc. Chem. Commun. 3, 206–207 (1992).
[CrossRef]

Horichi, M.

M. Irie, S. Kobatake, and M. Horichi, “Reversible surface morphology changes of a photochromic diarylethene single crystal by photoirradiation,” Science 291, 1769–1772 (2001).
[CrossRef] [PubMed]

Horikawa, Y.

M. Hanazawa, R. Sumiya, Y. Horikawa, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 1, 2-bis(2-methylbenzo[b]thiophen-3-yl)perfluorocycloalkene derivatives,” J. Chem. Soc. Chem. Commun. 3, 206–207 (1992).
[CrossRef]

Hoshino, M.

F. Ebisawa, M. Hoshino, and K. Sukegawa, “Self-holding photochromic polymer Mach–Zehnder optical switch,” Appl. Phys. Lett. 65, 2919–2921 (1994).
[CrossRef]

Irie, M.

M. Irie, S. Kobatake, and M. Horichi, “Reversible surface morphology changes of a photochromic diarylethene single crystal by photoirradiation,” Science 291, 1769–1772 (2001).
[CrossRef] [PubMed]

M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100, 1685–1716 (2000).
[CrossRef]

S. Kobatake, T. Yamada, K. Uchida, N. Kato, and M. Irie, “Photochromism of 1, 2-bis(2, 5-dimethyl-3-thienyl)perfluorocyclopentene in a single crystalline phase,” J. Am. Chem. Soc. 121, 2380–2386 (1999).
[CrossRef]

T. Tsujioka, Y. Shimizu, and M. Irie, “Crosstalk in photon-mode photochromic multiwavelength recording,” Jpn. J. Appl. Phys. 33, 1914–1919 (1994).
[CrossRef]

N. Tanio and M. Irie, “Photooptical switching of polymer film waveguide containing photochromic diarylethenes,” Jpn. J. Appl. Phys. 33, 1550–1553 (1994).
[CrossRef]

M. Hanazawa, R. Sumiya, Y. Horikawa, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 1, 2-bis(2-methylbenzo[b]thiophen-3-yl)perfluorocycloalkene derivatives,” J. Chem. Soc. Chem. Commun. 3, 206–207 (1992).
[CrossRef]

M. Irie and M. Mohri, “Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives,” J. Org. Chem. 53, 803–808 (1988).
[CrossRef]

Jäger, M.

S. Lecomte, U. Gubler, M. Jäger, Ch. Bosshard, G. Montemezzani, P. Günter, L. Gobbi, and F. Diederich, “Reversible optical structuring of polymer waveguides doped with photochromic molecules,” Appl. Phys. Lett. 77, 921–923 (2000).
[CrossRef]

Kato, N.

S. Kobatake, T. Yamada, K. Uchida, N. Kato, and M. Irie, “Photochromism of 1, 2-bis(2, 5-dimethyl-3-thienyl)perfluorocyclopentene in a single crystalline phase,” J. Am. Chem. Soc. 121, 2380–2386 (1999).
[CrossRef]

Kawai, S. H.

S. H. Kawai, S. L. Gilat, R. Ponsinet, and J.-M. Lehn, “A dual-mode molecular switching device: bisphenolic diarylethenes with integrated photochromic and electrochromic properties,” Chem. Eur. J. 1, 285–293 (1995).
[CrossRef]

S. L. Gilat, S. H. Kawai, and J.-M. Lehn, “Light-triggered molecular devices: photochemical switching of optical and electrochemical properties in molecular wire type diarylethene species,” Chem. Eur. J. 1, 275–284 (1995).
[CrossRef]

Kawata, S.

Keller, C.

M. Duelli, G. Montemezzani, C. Keller, F. Lehr, and P. Günter, “Colorant doped polymethylmethacrylate used as a holographic recording medium and as an intensity tunable saturable absorber,” Pure Appl. Opt. 3, 215–220 (1994).
[CrossRef]

Kobatake, S.

M. Irie, S. Kobatake, and M. Horichi, “Reversible surface morphology changes of a photochromic diarylethene single crystal by photoirradiation,” Science 291, 1769–1772 (2001).
[CrossRef] [PubMed]

S. Kobatake, T. Yamada, K. Uchida, N. Kato, and M. Irie, “Photochromism of 1, 2-bis(2, 5-dimethyl-3-thienyl)perfluorocyclopentene in a single crystalline phase,” J. Am. Chem. Soc. 121, 2380–2386 (1999).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Lecomte, S.

S. Lecomte, U. Gubler, M. Jäger, Ch. Bosshard, G. Montemezzani, P. Günter, L. Gobbi, and F. Diederich, “Reversible optical structuring of polymer waveguides doped with photochromic molecules,” Appl. Phys. Lett. 77, 921–923 (2000).
[CrossRef]

Lehn, J.-M.

S. H. Kawai, S. L. Gilat, R. Ponsinet, and J.-M. Lehn, “A dual-mode molecular switching device: bisphenolic diarylethenes with integrated photochromic and electrochromic properties,” Chem. Eur. J. 1, 285–293 (1995).
[CrossRef]

S. L. Gilat, S. H. Kawai, and J.-M. Lehn, “Light-triggered molecular devices: photochemical switching of optical and electrochemical properties in molecular wire type diarylethene species,” Chem. Eur. J. 1, 275–284 (1995).
[CrossRef]

Lehr, F.

M. Duelli, G. Montemezzani, C. Keller, F. Lehr, and P. Günter, “Colorant doped polymethylmethacrylate used as a holographic recording medium and as an intensity tunable saturable absorber,” Pure Appl. Opt. 3, 215–220 (1994).
[CrossRef]

Mecher, E.

Meerholz, K.

Mohri, M.

M. Irie and M. Mohri, “Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives,” J. Org. Chem. 53, 803–808 (1988).
[CrossRef]

Montemezzani, G.

S. Lecomte, U. Gubler, M. Jäger, Ch. Bosshard, G. Montemezzani, P. Günter, L. Gobbi, and F. Diederich, “Reversible optical structuring of polymer waveguides doped with photochromic molecules,” Appl. Phys. Lett. 77, 921–923 (2000).
[CrossRef]

M. Duelli, G. Montemezzani, C. Keller, F. Lehr, and P. Günter, “Colorant doped polymethylmethacrylate used as a holographic recording medium and as an intensity tunable saturable absorber,” Pure Appl. Opt. 3, 215–220 (1994).
[CrossRef]

Ponsinet, R.

S. H. Kawai, S. L. Gilat, R. Ponsinet, and J.-M. Lehn, “A dual-mode molecular switching device: bisphenolic diarylethenes with integrated photochromic and electrochromic properties,” Chem. Eur. J. 1, 285–293 (1995).
[CrossRef]

Robinson, B. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Shi, Y.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Shimizu, Y.

T. Tsujioka, Y. Shimizu, and M. Irie, “Crosstalk in photon-mode photochromic multiwavelength recording,” Jpn. J. Appl. Phys. 33, 1914–1919 (1994).
[CrossRef]

Steier, W. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Sukegawa, K.

F. Ebisawa, M. Hoshino, and K. Sukegawa, “Self-holding photochromic polymer Mach–Zehnder optical switch,” Appl. Phys. Lett. 65, 2919–2921 (1994).
[CrossRef]

Sumiya, R.

M. Hanazawa, R. Sumiya, Y. Horikawa, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 1, 2-bis(2-methylbenzo[b]thiophen-3-yl)perfluorocycloalkene derivatives,” J. Chem. Soc. Chem. Commun. 3, 206–207 (1992).
[CrossRef]

Sutter, K.

Tanio, N.

N. Tanio and M. Irie, “Photooptical switching of polymer film waveguide containing photochromic diarylethenes,” Jpn. J. Appl. Phys. 33, 1550–1553 (1994).
[CrossRef]

Toriumi, A.

Tsujioka, T.

T. Tsujioka, Y. Shimizu, and M. Irie, “Crosstalk in photon-mode photochromic multiwavelength recording,” Jpn. J. Appl. Phys. 33, 1914–1919 (1994).
[CrossRef]

Uchida, K.

S. Kobatake, T. Yamada, K. Uchida, N. Kato, and M. Irie, “Photochromism of 1, 2-bis(2, 5-dimethyl-3-thienyl)perfluorocyclopentene in a single crystalline phase,” J. Am. Chem. Soc. 121, 2380–2386 (1999).
[CrossRef]

Yamada, T.

S. Kobatake, T. Yamada, K. Uchida, N. Kato, and M. Irie, “Photochromism of 1, 2-bis(2, 5-dimethyl-3-thienyl)perfluorocyclopentene in a single crystalline phase,” J. Am. Chem. Soc. 121, 2380–2386 (1999).
[CrossRef]

Zhang, C.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Zhang, H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Appl. Phys. Lett. (2)

F. Ebisawa, M. Hoshino, and K. Sukegawa, “Self-holding photochromic polymer Mach–Zehnder optical switch,” Appl. Phys. Lett. 65, 2919–2921 (1994).
[CrossRef]

S. Lecomte, U. Gubler, M. Jäger, Ch. Bosshard, G. Montemezzani, P. Günter, L. Gobbi, and F. Diederich, “Reversible optical structuring of polymer waveguides doped with photochromic molecules,” Appl. Phys. Lett. 77, 921–923 (2000).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Chem. Eur. J. (2)

S. H. Kawai, S. L. Gilat, R. Ponsinet, and J.-M. Lehn, “A dual-mode molecular switching device: bisphenolic diarylethenes with integrated photochromic and electrochromic properties,” Chem. Eur. J. 1, 285–293 (1995).
[CrossRef]

S. L. Gilat, S. H. Kawai, and J.-M. Lehn, “Light-triggered molecular devices: photochemical switching of optical and electrochemical properties in molecular wire type diarylethene species,” Chem. Eur. J. 1, 275–284 (1995).
[CrossRef]

Chem. Rev. (1)

M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100, 1685–1716 (2000).
[CrossRef]

J. Am. Chem. Soc. (1)

S. Kobatake, T. Yamada, K. Uchida, N. Kato, and M. Irie, “Photochromism of 1, 2-bis(2, 5-dimethyl-3-thienyl)perfluorocyclopentene in a single crystalline phase,” J. Am. Chem. Soc. 121, 2380–2386 (1999).
[CrossRef]

J. Chem. Soc. Chem. Commun. (1)

M. Hanazawa, R. Sumiya, Y. Horikawa, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 1, 2-bis(2-methylbenzo[b]thiophen-3-yl)perfluorocycloalkene derivatives,” J. Chem. Soc. Chem. Commun. 3, 206–207 (1992).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Org. Chem. (1)

M. Irie and M. Mohri, “Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives,” J. Org. Chem. 53, 803–808 (1988).
[CrossRef]

Jpn. J. Appl. Phys. (2)

N. Tanio and M. Irie, “Photooptical switching of polymer film waveguide containing photochromic diarylethenes,” Jpn. J. Appl. Phys. 33, 1550–1553 (1994).
[CrossRef]

T. Tsujioka, Y. Shimizu, and M. Irie, “Crosstalk in photon-mode photochromic multiwavelength recording,” Jpn. J. Appl. Phys. 33, 1914–1919 (1994).
[CrossRef]

Opt. Lett. (1)

Pure Appl. Opt. (1)

M. Duelli, G. Montemezzani, C. Keller, F. Lehr, and P. Günter, “Colorant doped polymethylmethacrylate used as a holographic recording medium and as an intensity tunable saturable absorber,” Pure Appl. Opt. 3, 215–220 (1994).
[CrossRef]

Science (2)

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

M. Irie, S. Kobatake, and M. Horichi, “Reversible surface morphology changes of a photochromic diarylethene single crystal by photoirradiation,” Science 291, 1769–1772 (2001).
[CrossRef] [PubMed]

Other (6)

G. H. Brown, Photochromism (Wiley-Interscience, New York, 1971).

H. Dürr and H. Bouas-Laurent, Photochromism, Molecules and Systems (Elsevier, Amsterdam, 1990).

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, Boston, Mass., 1991).

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).

L. A. Hornak, Polymers for Lightwave and Integrated Optics: Technology and Applications (Marcel Dekker, New York, 1992).

H. S. Nalwa and S. Miyata, Nonlinear Optics of Molecules and Polymers (CRC Press, New York, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Light-induced transformations of BFCP. The ultraviolet illumination at 351.1 nm transforms the open-ring form (left) to the closed-ring form (right). The reverse reaction can be induced on illumination with green light at 532 nm.

Fig. 2
Fig. 2

Absorption spectra of BFCP in chloroform solutions with 0.3-wt. % doping. The dashed curve was obtained after illumination with green light at 532 nm; the solid curve was measured after illumination with ultraviolet light at 351.1 nm. The new absorption band at 521 nm is attributed to the closed-ring form of BFCP.

Fig. 3
Fig. 3

Absorption coefficient at 521 nm for BFCP in chloroform solutions after illumination with ultraviolet light at 351.1 nm, as a function of BFCP concentration. The solid curve is a linear fit with slope 50.3±0.5 1/(cm wt. %).

Fig. 4
Fig. 4

Change Δα in the absorption coefficient at 532 nm for BFCP-doped polycarbonate films, as a function of BFCP concentration. For doping levels smaller than 5 wt. %, change Δα can be described by a straight line with slope (50±4) 1/(cm wt. %).

Fig. 5
Fig. 5

Typical buildup curve measured with the holographic grating technique. The molecules were excited with ultraviolet light of intensity 1.115 mW/cm2 at 351.1 nm. The solid curve was obtained from the biexponential model of relation (2). The sample was a polycarbonate film with 41.16-wt. % BFCP doping and thickness d=1055±20 nm.

Fig. 6
Fig. 6

Buildup time constants τ1 and τ2 in the biexponential model [relation (2)] as functions of intensity IUV of the ultraviolet light (λ=351.1 nm). The measured data are well described by empirical functions of the form τi=BiIUV-βi (solid curves). The sample was a polycarbonate film with 41.16-wt. % BFCP doping and thickness d=1055±20 nm.

Fig. 7
Fig. 7

Typical erasure curve under homogeneous green illumination at 532 nm, measured with the holographic grating technique. The solid curve was obtained from the exponential model of Eq. (6). The sample was a polycarbonate film with 40.40-wt. % BFCP doping and thickness d=1255±30 nm; the intensity of the green beam was 0.112 mW/cm2.

Fig. 8
Fig. 8

Erasure time constant τe in the exponential model [Eq. (6)] as a function of intensity Igr of the green light (λ=532 nm). The measured data are well described by the relation τe=BeIgr-βe, where τe is measured in seconds and Igr in milliwatts per square centimeter. The sample was a polycarbonate film with 41.16-wt. % BFCP doping and thickness d=1255±20 nm.

Fig. 9
Fig. 9

Buildup of the phase and absorption gratings measured with the two-beam coupling technique. The sample (polycarbonate film with 41.40-wt. % BFCP doping and thickness d=2640±20 nm) was illuminated with green light of intensity 0.3 mW/cm2 at 532 nm.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Δn=2λπdη,
Δn(t)η(t)=A1[1-exp(-t/τ1)]-A2[1-exp(-t/τ2)],
τi=BiIUV-βi,i=1, 2,
Δn(t)η(t)=A exp(-t/τe),
Δn(t)=Δn(t)-Δn(t).
S=Δη1/2ΔWd=Δη1/2IΔtd,
n(r)=n0+(Δn/2)cos(K·r-ΦP),
α(r)=α0+(Δα/2)cos(K·r-ΦA).
I(1)=I0 exp-α0dcos θ(1-2P sin ΦP-2A cos ΦA),
I(2)=I0 exp-α0dcos θ(1+2P sin ΦP-2A cos ΦA).
P=πΔnd2λ cos θ,A=πΔαd8 cos θ,
I+=I(1)+I(2)=I0 exp-α0dcos θ[2-4A cos(ΦA+2πζ/Λ)],
I-=I(1)-I(2)=I0 exp-α0dcos θ[-4P sin(ΦP+2πζ/Λ)],

Metrics