Abstract

We theoretically predict and experimentally demonstrate the effect of optical bistability in a Cr:LiSrGaF6 laser, where one of its parameters (emission quantum yield) has a strongly nonlinear dependence on temperature. The effects of various experimental parameters on optical bistability and the size of the hysteresis loop are theoretically studied. The theoretical and experimental results are in good agreement with each other.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled fabry–perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
    [CrossRef]
  2. A. E. Siegman, “Bistable optical systems,” in Lasers (University Science, Mill Valley, Calif., 1986), Chap. 13.7.
  3. E. Arimondo and B. M. Dinelli, “Optical bistability of a CO2 laser with intracavity saturable absorber: experiment and mode,” Opt. Commun. 44, 277–282 (1983).
    [CrossRef]
  4. Janossy, M. R. Taghizadeh, J. G. H. Mathew, and S. D. Smith, “Thermally induced optical bistability in thin film devices,” IEEE J. Quantum Electron. QE-21, 1447–1452 (1985).
    [CrossRef]
  5. L. Kowalczyk, B. Koziarska-Glinka, L. V. Khoi, R. R. Galazka, and A. Suchocki, “Near band-gap optical nonlinearities and bistability in Cd1−xMnxTe,” Opt. Mater. 14, 161–170 (2000).
    [CrossRef]
  6. D. R. Gamelin, S. R. Lüthi, and H. U. Güdel, “The role of laser heating in the intrinsic optical bistability of Yb3+-doped bromide lattices,” J. Phys. Chem. 104, 11045–11057 (2000).
    [CrossRef]
  7. M. A. Noginov, M. Vondrova, and B. D. Lucas, “Optical bistability without cavity in Cr:LiSrGaF6 and Cr:LiSrAlF6 laser crystals,” in Advanced Solid-State Lasers, Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington D.C., 2001), pp. 76–78.
  8. L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
    [CrossRef]
  9. S. A. Payne, L. K. Smith, R. J. Beach, B. H. T. Chai, J. H. Tassano, L. D. DeLoach, W. L. Kway, R. W. Solarz, and W. F. Krupke, “Properties of Cr:LiSrAlF6 crystals for laser operation,” Appl. Opt. 33, 5526–5536 (1994).
    [CrossRef] [PubMed]
  10. D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235–244 (1997).
    [CrossRef]
  11. I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassando, H. P. Jenssen, and R. Szipocs, “Sub-20 fs pulse generation from the mirror dispersion controlled Cr:LiSGaF and Cr:LiSAF lasers,” Appl. Phys. B 65, 245–254 (1997).
    [CrossRef]
  12. M. Stadler, B. H. T. Chai, and M. Bass, “Crystal growth and spectroscopy of Cr:LiBaAlF6,” in Advanced Solid-State Lasers, G. Dubé and L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington D. C., 1991), pp. 18–20.
  13. J. M. Eichenholz and M. Richardson, “Measurements of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998).
    [CrossRef]
  14. M. A. Noginov, H. P. Jenssen, and A. Cassanho, “Upconversion in Cr:LiSGaF and Cr:LiSAF,” in Advanced Solid-State Lasers, Vol. 15 of OSA Proceedings Series, A. A. Pinto and T. Y. Fan, eds. (Optical Society of America, Washington D.C., 1993), pp. 376–380.
  15. The Cr:LiSGaF laser rod was provided by A. Cassanho, currently with AC Materials, Winter Park, Fla. 32792.
  16. M. A. Noginov, B. D. Lucas, and M. Vondrova, “Study of optical bistability in stimulated emission from Cr:LiSrGaF6 laser” in Advanced Solid-State Lasers, Vol. 68 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), paper TuB10.

2000

L. Kowalczyk, B. Koziarska-Glinka, L. V. Khoi, R. R. Galazka, and A. Suchocki, “Near band-gap optical nonlinearities and bistability in Cd1−xMnxTe,” Opt. Mater. 14, 161–170 (2000).
[CrossRef]

D. R. Gamelin, S. R. Lüthi, and H. U. Güdel, “The role of laser heating in the intrinsic optical bistability of Yb3+-doped bromide lattices,” J. Phys. Chem. 104, 11045–11057 (2000).
[CrossRef]

1998

J. M. Eichenholz and M. Richardson, “Measurements of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998).
[CrossRef]

1997

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235–244 (1997).
[CrossRef]

I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassando, H. P. Jenssen, and R. Szipocs, “Sub-20 fs pulse generation from the mirror dispersion controlled Cr:LiSGaF and Cr:LiSAF lasers,” Appl. Phys. B 65, 245–254 (1997).
[CrossRef]

1994

1992

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

1985

Janossy, M. R. Taghizadeh, J. G. H. Mathew, and S. D. Smith, “Thermally induced optical bistability in thin film devices,” IEEE J. Quantum Electron. QE-21, 1447–1452 (1985).
[CrossRef]

1983

E. Arimondo and B. M. Dinelli, “Optical bistability of a CO2 laser with intracavity saturable absorber: experiment and mode,” Opt. Commun. 44, 277–282 (1983).
[CrossRef]

1976

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled fabry–perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

Arimondo, E.

E. Arimondo and B. M. Dinelli, “Optical bistability of a CO2 laser with intracavity saturable absorber: experiment and mode,” Opt. Commun. 44, 277–282 (1983).
[CrossRef]

Beach, R. J.

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235–244 (1997).
[CrossRef]

S. A. Payne, L. K. Smith, R. J. Beach, B. H. T. Chai, J. H. Tassano, L. D. DeLoach, W. L. Kway, R. W. Solarz, and W. F. Krupke, “Properties of Cr:LiSrAlF6 crystals for laser operation,” Appl. Opt. 33, 5526–5536 (1994).
[CrossRef] [PubMed]

Cassando, A.

I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassando, H. P. Jenssen, and R. Szipocs, “Sub-20 fs pulse generation from the mirror dispersion controlled Cr:LiSGaF and Cr:LiSAF lasers,” Appl. Phys. B 65, 245–254 (1997).
[CrossRef]

Chai, B. H. T.

S. A. Payne, L. K. Smith, R. J. Beach, B. H. T. Chai, J. H. Tassano, L. D. DeLoach, W. L. Kway, R. W. Solarz, and W. F. Krupke, “Properties of Cr:LiSrAlF6 crystals for laser operation,” Appl. Opt. 33, 5526–5536 (1994).
[CrossRef] [PubMed]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

Chase, L. L.

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

DeLoach, L. D.

Dinelli, B. M.

E. Arimondo and B. M. Dinelli, “Optical bistability of a CO2 laser with intracavity saturable absorber: experiment and mode,” Opt. Commun. 44, 277–282 (1983).
[CrossRef]

Eichenholz, J. M.

J. M. Eichenholz and M. Richardson, “Measurements of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998).
[CrossRef]

Emanuel, M. A.

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235–244 (1997).
[CrossRef]

Galazka, R. R.

L. Kowalczyk, B. Koziarska-Glinka, L. V. Khoi, R. R. Galazka, and A. Suchocki, “Near band-gap optical nonlinearities and bistability in Cd1−xMnxTe,” Opt. Mater. 14, 161–170 (2000).
[CrossRef]

Gamelin, D. R.

D. R. Gamelin, S. R. Lüthi, and H. U. Güdel, “The role of laser heating in the intrinsic optical bistability of Yb3+-doped bromide lattices,” J. Phys. Chem. 104, 11045–11057 (2000).
[CrossRef]

Gibbs, H. M.

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled fabry–perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

Güdel, H. U.

D. R. Gamelin, S. R. Lüthi, and H. U. Güdel, “The role of laser heating in the intrinsic optical bistability of Yb3+-doped bromide lattices,” J. Phys. Chem. 104, 11045–11057 (2000).
[CrossRef]

Janossy,

Janossy, M. R. Taghizadeh, J. G. H. Mathew, and S. D. Smith, “Thermally induced optical bistability in thin film devices,” IEEE J. Quantum Electron. QE-21, 1447–1452 (1985).
[CrossRef]

Jenssen, H. P.

I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassando, H. P. Jenssen, and R. Szipocs, “Sub-20 fs pulse generation from the mirror dispersion controlled Cr:LiSGaF and Cr:LiSAF lasers,” Appl. Phys. B 65, 245–254 (1997).
[CrossRef]

Keller, U.

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235–244 (1997).
[CrossRef]

Khoi, L. V.

L. Kowalczyk, B. Koziarska-Glinka, L. V. Khoi, R. R. Galazka, and A. Suchocki, “Near band-gap optical nonlinearities and bistability in Cd1−xMnxTe,” Opt. Mater. 14, 161–170 (2000).
[CrossRef]

Kopf, D.

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235–244 (1997).
[CrossRef]

Kowalczyk, L.

L. Kowalczyk, B. Koziarska-Glinka, L. V. Khoi, R. R. Galazka, and A. Suchocki, “Near band-gap optical nonlinearities and bistability in Cd1−xMnxTe,” Opt. Mater. 14, 161–170 (2000).
[CrossRef]

Koziarska-Glinka, B.

L. Kowalczyk, B. Koziarska-Glinka, L. V. Khoi, R. R. Galazka, and A. Suchocki, “Near band-gap optical nonlinearities and bistability in Cd1−xMnxTe,” Opt. Mater. 14, 161–170 (2000).
[CrossRef]

Krupke, W. F.

Kway, W. L.

S. A. Payne, L. K. Smith, R. J. Beach, B. H. T. Chai, J. H. Tassano, L. D. DeLoach, W. L. Kway, R. W. Solarz, and W. F. Krupke, “Properties of Cr:LiSrAlF6 crystals for laser operation,” Appl. Opt. 33, 5526–5536 (1994).
[CrossRef] [PubMed]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

Lüthi, S. R.

D. R. Gamelin, S. R. Lüthi, and H. U. Güdel, “The role of laser heating in the intrinsic optical bistability of Yb3+-doped bromide lattices,” J. Phys. Chem. 104, 11045–11057 (2000).
[CrossRef]

Mathew, J. G. H.

Janossy, M. R. Taghizadeh, J. G. H. Mathew, and S. D. Smith, “Thermally induced optical bistability in thin film devices,” IEEE J. Quantum Electron. QE-21, 1447–1452 (1985).
[CrossRef]

McCall, S. L.

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled fabry–perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

Moser, M.

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235–244 (1997).
[CrossRef]

Payne, S. A.

S. A. Payne, L. K. Smith, R. J. Beach, B. H. T. Chai, J. H. Tassano, L. D. DeLoach, W. L. Kway, R. W. Solarz, and W. F. Krupke, “Properties of Cr:LiSrAlF6 crystals for laser operation,” Appl. Opt. 33, 5526–5536 (1994).
[CrossRef] [PubMed]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

Richardson, M.

J. M. Eichenholz and M. Richardson, “Measurements of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998).
[CrossRef]

Skidmore, J. A.

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235–244 (1997).
[CrossRef]

Smith, L. K.

S. A. Payne, L. K. Smith, R. J. Beach, B. H. T. Chai, J. H. Tassano, L. D. DeLoach, W. L. Kway, R. W. Solarz, and W. F. Krupke, “Properties of Cr:LiSrAlF6 crystals for laser operation,” Appl. Opt. 33, 5526–5536 (1994).
[CrossRef] [PubMed]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

Smith, S. D.

Janossy, M. R. Taghizadeh, J. G. H. Mathew, and S. D. Smith, “Thermally induced optical bistability in thin film devices,” IEEE J. Quantum Electron. QE-21, 1447–1452 (1985).
[CrossRef]

Solarz, R. W.

Sorokin, E.

I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassando, H. P. Jenssen, and R. Szipocs, “Sub-20 fs pulse generation from the mirror dispersion controlled Cr:LiSGaF and Cr:LiSAF lasers,” Appl. Phys. B 65, 245–254 (1997).
[CrossRef]

Sorokina, I. T.

I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassando, H. P. Jenssen, and R. Szipocs, “Sub-20 fs pulse generation from the mirror dispersion controlled Cr:LiSGaF and Cr:LiSAF lasers,” Appl. Phys. B 65, 245–254 (1997).
[CrossRef]

Suchocki, A.

L. Kowalczyk, B. Koziarska-Glinka, L. V. Khoi, R. R. Galazka, and A. Suchocki, “Near band-gap optical nonlinearities and bistability in Cd1−xMnxTe,” Opt. Mater. 14, 161–170 (2000).
[CrossRef]

Szipocs, R.

I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassando, H. P. Jenssen, and R. Szipocs, “Sub-20 fs pulse generation from the mirror dispersion controlled Cr:LiSGaF and Cr:LiSAF lasers,” Appl. Phys. B 65, 245–254 (1997).
[CrossRef]

Taghizadeh, M. R.

Janossy, M. R. Taghizadeh, J. G. H. Mathew, and S. D. Smith, “Thermally induced optical bistability in thin film devices,” IEEE J. Quantum Electron. QE-21, 1447–1452 (1985).
[CrossRef]

Tassano, J. H.

Venkatesan, T. N. C.

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled fabry–perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

Weingarten, K. J.

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235–244 (1997).
[CrossRef]

Wintner, E.

I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassando, H. P. Jenssen, and R. Szipocs, “Sub-20 fs pulse generation from the mirror dispersion controlled Cr:LiSGaF and Cr:LiSAF lasers,” Appl. Phys. B 65, 245–254 (1997).
[CrossRef]

Zhang, G.

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235–244 (1997).
[CrossRef]

Appl. Opt.

Appl. Phys. B

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235–244 (1997).
[CrossRef]

I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassando, H. P. Jenssen, and R. Szipocs, “Sub-20 fs pulse generation from the mirror dispersion controlled Cr:LiSGaF and Cr:LiSAF lasers,” Appl. Phys. B 65, 245–254 (1997).
[CrossRef]

IEEE J. Quantum Electron.

J. M. Eichenholz and M. Richardson, “Measurements of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998).
[CrossRef]

Janossy, M. R. Taghizadeh, J. G. H. Mathew, and S. D. Smith, “Thermally induced optical bistability in thin film devices,” IEEE J. Quantum Electron. QE-21, 1447–1452 (1985).
[CrossRef]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

J. Phys. Chem.

D. R. Gamelin, S. R. Lüthi, and H. U. Güdel, “The role of laser heating in the intrinsic optical bistability of Yb3+-doped bromide lattices,” J. Phys. Chem. 104, 11045–11057 (2000).
[CrossRef]

Opt. Commun.

E. Arimondo and B. M. Dinelli, “Optical bistability of a CO2 laser with intracavity saturable absorber: experiment and mode,” Opt. Commun. 44, 277–282 (1983).
[CrossRef]

Opt. Mater.

L. Kowalczyk, B. Koziarska-Glinka, L. V. Khoi, R. R. Galazka, and A. Suchocki, “Near band-gap optical nonlinearities and bistability in Cd1−xMnxTe,” Opt. Mater. 14, 161–170 (2000).
[CrossRef]

Phys. Rev. Lett.

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled fabry–perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

Other

A. E. Siegman, “Bistable optical systems,” in Lasers (University Science, Mill Valley, Calif., 1986), Chap. 13.7.

M. A. Noginov, M. Vondrova, and B. D. Lucas, “Optical bistability without cavity in Cr:LiSrGaF6 and Cr:LiSrAlF6 laser crystals,” in Advanced Solid-State Lasers, Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington D.C., 2001), pp. 76–78.

M. A. Noginov, H. P. Jenssen, and A. Cassanho, “Upconversion in Cr:LiSGaF and Cr:LiSAF,” in Advanced Solid-State Lasers, Vol. 15 of OSA Proceedings Series, A. A. Pinto and T. Y. Fan, eds. (Optical Society of America, Washington D.C., 1993), pp. 376–380.

The Cr:LiSGaF laser rod was provided by A. Cassanho, currently with AC Materials, Winter Park, Fla. 32792.

M. A. Noginov, B. D. Lucas, and M. Vondrova, “Study of optical bistability in stimulated emission from Cr:LiSrGaF6 laser” in Advanced Solid-State Lasers, Vol. 68 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), paper TuB10.

M. Stadler, B. H. T. Chai, and M. Bass, “Crystal growth and spectroscopy of Cr:LiBaAlF6,” in Advanced Solid-State Lasers, G. Dubé and L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington D. C., 1991), pp. 18–20.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the energy levels in Cr-doped colquiriite crystals. 1, absorption; 2, emission; ΔE, the energy gap between the crossing level of the  4T2 and  4A2 states (point A) and the minimum of the  4T2 excited state. Inset, Boltzmann population of the  4T2 vibrational states.

Fig. 2
Fig. 2

Hysteresis loops for a, the output laser emission W1, b, temperature T, and, c, excited-state concentration n calculated for various values of the reflection coefficient of the output coupler, R. Curves 1, R=96%; 2, R=97%; 3, R=98%; 4, R=99%; λp=488 nm, T0=295 K, χ=6.0×10-3 W/deg, d=0.01 cm.

Fig. 3
Fig. 3

Hysteresis loops for the output laser emission W1, calculated for various values of a, the heat-sink temperature T0 (curves 1, T0=275 K; 2, T0=285 K; 3, T0=295 K; 4, T0=310 K; χ=6.0×10-3 W/deg, λp=488 nm, R=99%, d=0.01 cm), b, the heat-sink factor χ (1; χ=3.0×10-2 W/deg; 2, χ=3.0×10-3 W/deg; 3, χ=3.0×10-4 W/deg; λp=647 nm, R=99%, T0=295 K, d=0.01 cm), c, the pumping wavelength λp (1, λp=488 nm; 2, λp=514 nm; 3, λp=647 nm; 4, λp=700 nm; χ=3.0×10-3W/deg, T0=295 K, R=99%, d=0.01 cm), d, the pumping beam waist diameter d (1, d=0.01 cm; 2, d=0.015 cm; 3, d=0.02cm; χ=3.0×10-3 W/deg, T0=295 K, R=99%).

Fig. 4
Fig. 4

Bistability in stimulated emission from a Cr:LiSGaF laser. Experiment: squares, increasing pumping power; diamonds, decreasing pumping power. Calculation (at T0=295 K, R=98%, d=0.015 cm, χ=6.0×10-3 W/deg): solid curve.

Fig. 5
Fig. 5

Dependence of luminescence intensity on pumping power in the Cr:LiSGaF crystal without cavity. Experiment: squares, increasing pumping power; diamonds, decreasing pumping power. Calculation (at T0=295 K, d=0.015 cm, χ=1.0×10-3 W/deg): solid curve.

Fig. 6
Fig. 6

Kinetics of Cr:LiSGaF laser emission close to the laser shutoff recorded at various rates of pumping power increase. a: Curve 1, 0.0005 W/s; 2, 0.001 W/s; 3, 0.004 W/s. b: 0.01 W/s.

Fig. 7
Fig. 7

Dependence of, a, the switching time and, b, the switch-off pumping power on the rate of pumping increase.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

0=dQdt=Wp1-ηνspνp-μνlνp-(T-T0)χ.
η=AA+(Wlσl/hνls)+B exp(-ΔE/kT).
μ=Wlσl/hνlsA+(Wlσl/hνls)+B exp(-ΔE/kT).
0=dndt=Wphνpsx-nA-Wlnσlhνls-nB exp(-ΔE/kT),
n=Wp/hνpsxA+B exp(-ΔE/kT),
0=dWldt=-Wlτc+Wlnσlc.
nth=1τcσ1c.
τc=2lc(1-R).

Metrics