Abstract

We present dark conductivity, photoconductivity, and transient photoconductivity measurements of the organic salt 4-N,N-dimethylamino-4-N-methyl stilbazolium tosylate (DAST). By correlating these measurements to microscopic structural properties including both molecular orientation and intermolecular interactions, we have determined the charge-carrier generation and transport properties of DAST. The perfect alignment of the chromophores combined with the weak Van der Waals interactions [CHHC>2.5 Å (1 Å=0.1 nm)] determines a one-dimensional thermally activated conductivity with an activation energy of 0.34±0.03 eV along the chromophore chain. Photoconductivity that incorporates both positive and negative free charge carriers has been observed at a light energy of 1.6 eV, well below the first strong optical absorption band at 2.33 eV. That band is associated with intramolecular optical excitation. From transient photoconductivity data we found an upper limit of 3 ns to the free-carrier lifetime.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd ed. (Oxford U. Press, Oxford, 1999).
  2. M. A. Reed, “Progress in molecular scale devices and circuits,” presented at the 57th Annual Device Research Conference, Santa Barbara, Calif., June 28–30, 1999.
  3. D. Jerome, A. Mazaud, M. Ribault, and K. Bechgaard, “Superconductivity in a synthetic organic conductor (TMTSF)2PF6,” J. Phys. Lett. 41, L95–L98 (1980).
    [CrossRef]
  4. A. J. Heeger and A. G. MacDiarmid, “Semiconducting and metallic organic polymers: chemically doped polyacetylene, (CH)x,” in Proceedings of the International Conference on Quasi One-Dimensional Conductors, Dubrovnik, S. Barisic, A. Bjelis, J. R. Cooper, and B. A. Leontic, eds. (Springer-Verlag, Berlin, 1979), pp. 361–383.
  5. N. S. Enikolopyan, L. N. Grigorov, and S. G. Smirnova, “Possible superconductivity near 300 K in oxidized polypropylene,” JETP Lett. 49, 326–330 (1989).
  6. R. M. Faria and O. N. Oliveira, “Exploiting the electrical properties of films of semiconducting polymers,” Braz. J. Phys. 29, 360–370 (1999).
    [CrossRef]
  7. J. H. Schön, C. Kloc, and B. Batlogg, “Universal crossover from band to hopping conduction in molecular organic semiconductors,” Phys. Rev. Lett. 86, 3843–3846 (2001).
    [CrossRef] [PubMed]
  8. A. J. Epstein, E. M. Conwell, D. J. Sandman, and J. S. Miller, “Electrical conductivity of N-methyl phenazinium tetracyanoquinodimethanide, (NMP)(TCNQ),” Solid State Commun. 23, 355–358 (1977).
    [CrossRef]
  9. H. Nakanishi, H. Matsuda, S. Okada, and M. Kato, “Nonlinear optical properties of polydiacetylenes with π-conjugation between the main chain and the substituents,” in Nonlinear Optics of Organic and Semiconductors, Proceedings of the International Symposium (Springer-Verlag, Berlin, 1989), pp. 155–162.
  10. S. Okada, H. Matsuda, H. Nakanishi, M. Kato, and R. Muramatsu, “Organic material for nonlinear optical use,” Japanese patent 63048265 JP (February 29, 1988).
  11. G. R. Meredith, “Design and characterization of molecular and polymeric nonlinear optical materials: successes and pitfalls,” in Nonlinear Optical Properties of Organic and Polymeric Materials, D. J. Williams, ed., Vol. 233 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1983), pp. 27–56.
    [CrossRef]
  12. S. R. Marder, J. W. Perry, and Ch. P. Yakymyshyn, “Organicsalts with large second-order optical nonlinearities,” Chem. Mater. 6, 1137–1147 (1994).
    [CrossRef]
  13. M. A. Baldo, M. Deutsch, P. E. Burrows, H. Gossenberg, M. Gerstenberg, V. S. Ban, and S. R. Forrest, “Organic vapor phase deposition,” Adv. Mater. 10, 1505 (1998).
    [CrossRef]
  14. G. Knöpfle, R. Schlesser, R. Ducret, and P. Günter, “Optical and nonlinear optical properties of 4-dimethylaminoN-methyl-4-stilbazolium tosylate (DAST) crystals,” Nonlinear Opt. 9, 143–149 (1995).
  15. F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N, N-dimethylamino-4-N-methylstilbazolium tosylate,” Appl. Phys. Lett. 69, 13–15 (1996).
    [CrossRef]
  16. F. Pan, M. S. Wong, Ch. Bosshard, and P. Günter, “Crystal growth and characterization of the organic salt 4-N, N-dimethylamino-4-N-methyl-stilbazolium tosylate (DAST),” Adv. Mater. 8, 592–595 (1996).
    [CrossRef]
  17. H. Adachi, Y. Takahashi, J. Yabuzaki, Y. Mori-Y, and T. Sasaki, “Growth of high quality nonlinear optical crystal 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST),” J. Cryst. Growth 198–199, 568–571 (1999).
    [CrossRef]
  18. M. Deutsch, M. C. Gerstenberg, H. F. Gossenberger, V. S. Ban, and S. R. Forrest, “Macroscopically ordered thin films of an organic salt grown by low-pressure organic vapor-phase deposition,” J. Cryst. Growth 203, 412–420 (1999).
    [CrossRef]
  19. M. Thakur, X. Jianjun, A. Bhowmik, and Z. Ligui, “Single-pass thin-film electro-optic modulator based on an organic molecular crystal,” Appl. Phys. Lett. 74, 635–637 (1999).
    [CrossRef]
  20. Ch. Bosshard, “Optical and nonlinear optical properties of 2-cyclooctylamino-5-nitropyridine and 2-docosylamino-5-nitropyridine molecules, crystals, and Langmuir–Blodgett films,” Ph.D. dissertation 9407 (Swiss Federal Institute of Technology, Zürich, Switzerland, 1991).
  21. U. Meier, Ch. Bosshard, and P. Günter, “Two photon induced fluorescence in nonlinear optical organic DAST crystals,” Bull. SPG/SSP 14, 1 (1997).
  22. S. Follonier, Ch. Bosshard, F. Pan, and P. Gunter, “Photorefractive effects observed in 4-N, N-dimethylamino-4-N-methyl-stilbazolium toluene-p-sulfonate,” Opt. Lett. 21, 1655–1657 (1996).
    [CrossRef] [PubMed]
  23. D. Mahgerefteh and J. Feinberg, “Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate,” Phys. Rev. Lett. 64, 2195–2198 (1990).
    [CrossRef] [PubMed]
  24. D. D. Nolte, ed. Photorefractive Effects and Materials (Kluwer Academic, Boston, Mass., 1995).
  25. P. M. Borsenberger and D. S. Weiss, Organic Photoreceptors for Imaging Systems (Marcel Dekker, New York, 1993).
  26. D. Massa and N. Karl, “Photoconductivity in mixed stack donor: acceptor crystals: quasi one-dimensional electron transport in anthracene: pyromellitic-dianhydride,” Mol. Cryst. Liq. Cryst. 95, 93–117 (1989).
  27. A. Tapponnier, I. Biaggio, R. Ono, M. Kiy, and P. Günter, “Transient photocurrent investigation of charge transport in electroluminescent organig thin films,” Nonlinear Opt. 25, 497–501 (2000).

2001

J. H. Schön, C. Kloc, and B. Batlogg, “Universal crossover from band to hopping conduction in molecular organic semiconductors,” Phys. Rev. Lett. 86, 3843–3846 (2001).
[CrossRef] [PubMed]

2000

A. Tapponnier, I. Biaggio, R. Ono, M. Kiy, and P. Günter, “Transient photocurrent investigation of charge transport in electroluminescent organig thin films,” Nonlinear Opt. 25, 497–501 (2000).

1999

H. Adachi, Y. Takahashi, J. Yabuzaki, Y. Mori-Y, and T. Sasaki, “Growth of high quality nonlinear optical crystal 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST),” J. Cryst. Growth 198–199, 568–571 (1999).
[CrossRef]

M. Deutsch, M. C. Gerstenberg, H. F. Gossenberger, V. S. Ban, and S. R. Forrest, “Macroscopically ordered thin films of an organic salt grown by low-pressure organic vapor-phase deposition,” J. Cryst. Growth 203, 412–420 (1999).
[CrossRef]

M. Thakur, X. Jianjun, A. Bhowmik, and Z. Ligui, “Single-pass thin-film electro-optic modulator based on an organic molecular crystal,” Appl. Phys. Lett. 74, 635–637 (1999).
[CrossRef]

R. M. Faria and O. N. Oliveira, “Exploiting the electrical properties of films of semiconducting polymers,” Braz. J. Phys. 29, 360–370 (1999).
[CrossRef]

1998

M. A. Baldo, M. Deutsch, P. E. Burrows, H. Gossenberg, M. Gerstenberg, V. S. Ban, and S. R. Forrest, “Organic vapor phase deposition,” Adv. Mater. 10, 1505 (1998).
[CrossRef]

1997

U. Meier, Ch. Bosshard, and P. Günter, “Two photon induced fluorescence in nonlinear optical organic DAST crystals,” Bull. SPG/SSP 14, 1 (1997).

1996

S. Follonier, Ch. Bosshard, F. Pan, and P. Gunter, “Photorefractive effects observed in 4-N, N-dimethylamino-4-N-methyl-stilbazolium toluene-p-sulfonate,” Opt. Lett. 21, 1655–1657 (1996).
[CrossRef] [PubMed]

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N, N-dimethylamino-4-N-methylstilbazolium tosylate,” Appl. Phys. Lett. 69, 13–15 (1996).
[CrossRef]

F. Pan, M. S. Wong, Ch. Bosshard, and P. Günter, “Crystal growth and characterization of the organic salt 4-N, N-dimethylamino-4-N-methyl-stilbazolium tosylate (DAST),” Adv. Mater. 8, 592–595 (1996).
[CrossRef]

1995

G. Knöpfle, R. Schlesser, R. Ducret, and P. Günter, “Optical and nonlinear optical properties of 4-dimethylaminoN-methyl-4-stilbazolium tosylate (DAST) crystals,” Nonlinear Opt. 9, 143–149 (1995).

1994

S. R. Marder, J. W. Perry, and Ch. P. Yakymyshyn, “Organicsalts with large second-order optical nonlinearities,” Chem. Mater. 6, 1137–1147 (1994).
[CrossRef]

1990

D. Mahgerefteh and J. Feinberg, “Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate,” Phys. Rev. Lett. 64, 2195–2198 (1990).
[CrossRef] [PubMed]

1989

D. Massa and N. Karl, “Photoconductivity in mixed stack donor: acceptor crystals: quasi one-dimensional electron transport in anthracene: pyromellitic-dianhydride,” Mol. Cryst. Liq. Cryst. 95, 93–117 (1989).

N. S. Enikolopyan, L. N. Grigorov, and S. G. Smirnova, “Possible superconductivity near 300 K in oxidized polypropylene,” JETP Lett. 49, 326–330 (1989).

1980

D. Jerome, A. Mazaud, M. Ribault, and K. Bechgaard, “Superconductivity in a synthetic organic conductor (TMTSF)2PF6,” J. Phys. Lett. 41, L95–L98 (1980).
[CrossRef]

1977

A. J. Epstein, E. M. Conwell, D. J. Sandman, and J. S. Miller, “Electrical conductivity of N-methyl phenazinium tetracyanoquinodimethanide, (NMP)(TCNQ),” Solid State Commun. 23, 355–358 (1977).
[CrossRef]

Adachi, H.

H. Adachi, Y. Takahashi, J. Yabuzaki, Y. Mori-Y, and T. Sasaki, “Growth of high quality nonlinear optical crystal 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST),” J. Cryst. Growth 198–199, 568–571 (1999).
[CrossRef]

Baldo, M. A.

M. A. Baldo, M. Deutsch, P. E. Burrows, H. Gossenberg, M. Gerstenberg, V. S. Ban, and S. R. Forrest, “Organic vapor phase deposition,” Adv. Mater. 10, 1505 (1998).
[CrossRef]

Ban, V. S.

M. Deutsch, M. C. Gerstenberg, H. F. Gossenberger, V. S. Ban, and S. R. Forrest, “Macroscopically ordered thin films of an organic salt grown by low-pressure organic vapor-phase deposition,” J. Cryst. Growth 203, 412–420 (1999).
[CrossRef]

M. A. Baldo, M. Deutsch, P. E. Burrows, H. Gossenberg, M. Gerstenberg, V. S. Ban, and S. R. Forrest, “Organic vapor phase deposition,” Adv. Mater. 10, 1505 (1998).
[CrossRef]

Batlogg, B.

J. H. Schön, C. Kloc, and B. Batlogg, “Universal crossover from band to hopping conduction in molecular organic semiconductors,” Phys. Rev. Lett. 86, 3843–3846 (2001).
[CrossRef] [PubMed]

Bechgaard, K.

D. Jerome, A. Mazaud, M. Ribault, and K. Bechgaard, “Superconductivity in a synthetic organic conductor (TMTSF)2PF6,” J. Phys. Lett. 41, L95–L98 (1980).
[CrossRef]

Bhowmik, A.

M. Thakur, X. Jianjun, A. Bhowmik, and Z. Ligui, “Single-pass thin-film electro-optic modulator based on an organic molecular crystal,” Appl. Phys. Lett. 74, 635–637 (1999).
[CrossRef]

Biaggio, I.

A. Tapponnier, I. Biaggio, R. Ono, M. Kiy, and P. Günter, “Transient photocurrent investigation of charge transport in electroluminescent organig thin films,” Nonlinear Opt. 25, 497–501 (2000).

Bosshard, Ch.

U. Meier, Ch. Bosshard, and P. Günter, “Two photon induced fluorescence in nonlinear optical organic DAST crystals,” Bull. SPG/SSP 14, 1 (1997).

F. Pan, M. S. Wong, Ch. Bosshard, and P. Günter, “Crystal growth and characterization of the organic salt 4-N, N-dimethylamino-4-N-methyl-stilbazolium tosylate (DAST),” Adv. Mater. 8, 592–595 (1996).
[CrossRef]

S. Follonier, Ch. Bosshard, F. Pan, and P. Gunter, “Photorefractive effects observed in 4-N, N-dimethylamino-4-N-methyl-stilbazolium toluene-p-sulfonate,” Opt. Lett. 21, 1655–1657 (1996).
[CrossRef] [PubMed]

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N, N-dimethylamino-4-N-methylstilbazolium tosylate,” Appl. Phys. Lett. 69, 13–15 (1996).
[CrossRef]

Burrows, P. E.

M. A. Baldo, M. Deutsch, P. E. Burrows, H. Gossenberg, M. Gerstenberg, V. S. Ban, and S. R. Forrest, “Organic vapor phase deposition,” Adv. Mater. 10, 1505 (1998).
[CrossRef]

Conwell, E. M.

A. J. Epstein, E. M. Conwell, D. J. Sandman, and J. S. Miller, “Electrical conductivity of N-methyl phenazinium tetracyanoquinodimethanide, (NMP)(TCNQ),” Solid State Commun. 23, 355–358 (1977).
[CrossRef]

Deutsch, M.

M. Deutsch, M. C. Gerstenberg, H. F. Gossenberger, V. S. Ban, and S. R. Forrest, “Macroscopically ordered thin films of an organic salt grown by low-pressure organic vapor-phase deposition,” J. Cryst. Growth 203, 412–420 (1999).
[CrossRef]

M. A. Baldo, M. Deutsch, P. E. Burrows, H. Gossenberg, M. Gerstenberg, V. S. Ban, and S. R. Forrest, “Organic vapor phase deposition,” Adv. Mater. 10, 1505 (1998).
[CrossRef]

Ducret, R.

G. Knöpfle, R. Schlesser, R. Ducret, and P. Günter, “Optical and nonlinear optical properties of 4-dimethylaminoN-methyl-4-stilbazolium tosylate (DAST) crystals,” Nonlinear Opt. 9, 143–149 (1995).

Enikolopyan, N. S.

N. S. Enikolopyan, L. N. Grigorov, and S. G. Smirnova, “Possible superconductivity near 300 K in oxidized polypropylene,” JETP Lett. 49, 326–330 (1989).

Epstein, A. J.

A. J. Epstein, E. M. Conwell, D. J. Sandman, and J. S. Miller, “Electrical conductivity of N-methyl phenazinium tetracyanoquinodimethanide, (NMP)(TCNQ),” Solid State Commun. 23, 355–358 (1977).
[CrossRef]

Faria, R. M.

R. M. Faria and O. N. Oliveira, “Exploiting the electrical properties of films of semiconducting polymers,” Braz. J. Phys. 29, 360–370 (1999).
[CrossRef]

Feinberg, J.

D. Mahgerefteh and J. Feinberg, “Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate,” Phys. Rev. Lett. 64, 2195–2198 (1990).
[CrossRef] [PubMed]

Follonier, S.

S. Follonier, Ch. Bosshard, F. Pan, and P. Gunter, “Photorefractive effects observed in 4-N, N-dimethylamino-4-N-methyl-stilbazolium toluene-p-sulfonate,” Opt. Lett. 21, 1655–1657 (1996).
[CrossRef] [PubMed]

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N, N-dimethylamino-4-N-methylstilbazolium tosylate,” Appl. Phys. Lett. 69, 13–15 (1996).
[CrossRef]

Forrest, S. R.

M. Deutsch, M. C. Gerstenberg, H. F. Gossenberger, V. S. Ban, and S. R. Forrest, “Macroscopically ordered thin films of an organic salt grown by low-pressure organic vapor-phase deposition,” J. Cryst. Growth 203, 412–420 (1999).
[CrossRef]

M. A. Baldo, M. Deutsch, P. E. Burrows, H. Gossenberg, M. Gerstenberg, V. S. Ban, and S. R. Forrest, “Organic vapor phase deposition,” Adv. Mater. 10, 1505 (1998).
[CrossRef]

Gerstenberg, M.

M. A. Baldo, M. Deutsch, P. E. Burrows, H. Gossenberg, M. Gerstenberg, V. S. Ban, and S. R. Forrest, “Organic vapor phase deposition,” Adv. Mater. 10, 1505 (1998).
[CrossRef]

Gerstenberg, M. C.

M. Deutsch, M. C. Gerstenberg, H. F. Gossenberger, V. S. Ban, and S. R. Forrest, “Macroscopically ordered thin films of an organic salt grown by low-pressure organic vapor-phase deposition,” J. Cryst. Growth 203, 412–420 (1999).
[CrossRef]

Gossenberg, H.

M. A. Baldo, M. Deutsch, P. E. Burrows, H. Gossenberg, M. Gerstenberg, V. S. Ban, and S. R. Forrest, “Organic vapor phase deposition,” Adv. Mater. 10, 1505 (1998).
[CrossRef]

Gossenberger, H. F.

M. Deutsch, M. C. Gerstenberg, H. F. Gossenberger, V. S. Ban, and S. R. Forrest, “Macroscopically ordered thin films of an organic salt grown by low-pressure organic vapor-phase deposition,” J. Cryst. Growth 203, 412–420 (1999).
[CrossRef]

Grigorov, L. N.

N. S. Enikolopyan, L. N. Grigorov, and S. G. Smirnova, “Possible superconductivity near 300 K in oxidized polypropylene,” JETP Lett. 49, 326–330 (1989).

Gunter, P.

Günter, P.

A. Tapponnier, I. Biaggio, R. Ono, M. Kiy, and P. Günter, “Transient photocurrent investigation of charge transport in electroluminescent organig thin films,” Nonlinear Opt. 25, 497–501 (2000).

U. Meier, Ch. Bosshard, and P. Günter, “Two photon induced fluorescence in nonlinear optical organic DAST crystals,” Bull. SPG/SSP 14, 1 (1997).

F. Pan, M. S. Wong, Ch. Bosshard, and P. Günter, “Crystal growth and characterization of the organic salt 4-N, N-dimethylamino-4-N-methyl-stilbazolium tosylate (DAST),” Adv. Mater. 8, 592–595 (1996).
[CrossRef]

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N, N-dimethylamino-4-N-methylstilbazolium tosylate,” Appl. Phys. Lett. 69, 13–15 (1996).
[CrossRef]

G. Knöpfle, R. Schlesser, R. Ducret, and P. Günter, “Optical and nonlinear optical properties of 4-dimethylaminoN-methyl-4-stilbazolium tosylate (DAST) crystals,” Nonlinear Opt. 9, 143–149 (1995).

Jerome, D.

D. Jerome, A. Mazaud, M. Ribault, and K. Bechgaard, “Superconductivity in a synthetic organic conductor (TMTSF)2PF6,” J. Phys. Lett. 41, L95–L98 (1980).
[CrossRef]

Jianjun, X.

M. Thakur, X. Jianjun, A. Bhowmik, and Z. Ligui, “Single-pass thin-film electro-optic modulator based on an organic molecular crystal,” Appl. Phys. Lett. 74, 635–637 (1999).
[CrossRef]

Karl, N.

D. Massa and N. Karl, “Photoconductivity in mixed stack donor: acceptor crystals: quasi one-dimensional electron transport in anthracene: pyromellitic-dianhydride,” Mol. Cryst. Liq. Cryst. 95, 93–117 (1989).

Kiy, M.

A. Tapponnier, I. Biaggio, R. Ono, M. Kiy, and P. Günter, “Transient photocurrent investigation of charge transport in electroluminescent organig thin films,” Nonlinear Opt. 25, 497–501 (2000).

Kloc, C.

J. H. Schön, C. Kloc, and B. Batlogg, “Universal crossover from band to hopping conduction in molecular organic semiconductors,” Phys. Rev. Lett. 86, 3843–3846 (2001).
[CrossRef] [PubMed]

Knöpfle, G.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N, N-dimethylamino-4-N-methylstilbazolium tosylate,” Appl. Phys. Lett. 69, 13–15 (1996).
[CrossRef]

G. Knöpfle, R. Schlesser, R. Ducret, and P. Günter, “Optical and nonlinear optical properties of 4-dimethylaminoN-methyl-4-stilbazolium tosylate (DAST) crystals,” Nonlinear Opt. 9, 143–149 (1995).

Ligui, Z.

M. Thakur, X. Jianjun, A. Bhowmik, and Z. Ligui, “Single-pass thin-film electro-optic modulator based on an organic molecular crystal,” Appl. Phys. Lett. 74, 635–637 (1999).
[CrossRef]

Mahgerefteh, D.

D. Mahgerefteh and J. Feinberg, “Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate,” Phys. Rev. Lett. 64, 2195–2198 (1990).
[CrossRef] [PubMed]

Marder, S. R.

S. R. Marder, J. W. Perry, and Ch. P. Yakymyshyn, “Organicsalts with large second-order optical nonlinearities,” Chem. Mater. 6, 1137–1147 (1994).
[CrossRef]

Massa, D.

D. Massa and N. Karl, “Photoconductivity in mixed stack donor: acceptor crystals: quasi one-dimensional electron transport in anthracene: pyromellitic-dianhydride,” Mol. Cryst. Liq. Cryst. 95, 93–117 (1989).

Mazaud, A.

D. Jerome, A. Mazaud, M. Ribault, and K. Bechgaard, “Superconductivity in a synthetic organic conductor (TMTSF)2PF6,” J. Phys. Lett. 41, L95–L98 (1980).
[CrossRef]

Meier, U.

U. Meier, Ch. Bosshard, and P. Günter, “Two photon induced fluorescence in nonlinear optical organic DAST crystals,” Bull. SPG/SSP 14, 1 (1997).

Miller, J. S.

A. J. Epstein, E. M. Conwell, D. J. Sandman, and J. S. Miller, “Electrical conductivity of N-methyl phenazinium tetracyanoquinodimethanide, (NMP)(TCNQ),” Solid State Commun. 23, 355–358 (1977).
[CrossRef]

Mori-Y, Y.

H. Adachi, Y. Takahashi, J. Yabuzaki, Y. Mori-Y, and T. Sasaki, “Growth of high quality nonlinear optical crystal 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST),” J. Cryst. Growth 198–199, 568–571 (1999).
[CrossRef]

Oliveira, O. N.

R. M. Faria and O. N. Oliveira, “Exploiting the electrical properties of films of semiconducting polymers,” Braz. J. Phys. 29, 360–370 (1999).
[CrossRef]

Ono, R.

A. Tapponnier, I. Biaggio, R. Ono, M. Kiy, and P. Günter, “Transient photocurrent investigation of charge transport in electroluminescent organig thin films,” Nonlinear Opt. 25, 497–501 (2000).

Pan, F.

F. Pan, M. S. Wong, Ch. Bosshard, and P. Günter, “Crystal growth and characterization of the organic salt 4-N, N-dimethylamino-4-N-methyl-stilbazolium tosylate (DAST),” Adv. Mater. 8, 592–595 (1996).
[CrossRef]

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N, N-dimethylamino-4-N-methylstilbazolium tosylate,” Appl. Phys. Lett. 69, 13–15 (1996).
[CrossRef]

S. Follonier, Ch. Bosshard, F. Pan, and P. Gunter, “Photorefractive effects observed in 4-N, N-dimethylamino-4-N-methyl-stilbazolium toluene-p-sulfonate,” Opt. Lett. 21, 1655–1657 (1996).
[CrossRef] [PubMed]

Perry, J. W.

S. R. Marder, J. W. Perry, and Ch. P. Yakymyshyn, “Organicsalts with large second-order optical nonlinearities,” Chem. Mater. 6, 1137–1147 (1994).
[CrossRef]

Ribault, M.

D. Jerome, A. Mazaud, M. Ribault, and K. Bechgaard, “Superconductivity in a synthetic organic conductor (TMTSF)2PF6,” J. Phys. Lett. 41, L95–L98 (1980).
[CrossRef]

Sandman, D. J.

A. J. Epstein, E. M. Conwell, D. J. Sandman, and J. S. Miller, “Electrical conductivity of N-methyl phenazinium tetracyanoquinodimethanide, (NMP)(TCNQ),” Solid State Commun. 23, 355–358 (1977).
[CrossRef]

Sasaki, T.

H. Adachi, Y. Takahashi, J. Yabuzaki, Y. Mori-Y, and T. Sasaki, “Growth of high quality nonlinear optical crystal 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST),” J. Cryst. Growth 198–199, 568–571 (1999).
[CrossRef]

Schlesser, R.

G. Knöpfle, R. Schlesser, R. Ducret, and P. Günter, “Optical and nonlinear optical properties of 4-dimethylaminoN-methyl-4-stilbazolium tosylate (DAST) crystals,” Nonlinear Opt. 9, 143–149 (1995).

Schön, J. H.

J. H. Schön, C. Kloc, and B. Batlogg, “Universal crossover from band to hopping conduction in molecular organic semiconductors,” Phys. Rev. Lett. 86, 3843–3846 (2001).
[CrossRef] [PubMed]

Smirnova, S. G.

N. S. Enikolopyan, L. N. Grigorov, and S. G. Smirnova, “Possible superconductivity near 300 K in oxidized polypropylene,” JETP Lett. 49, 326–330 (1989).

Spreiter, R.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N, N-dimethylamino-4-N-methylstilbazolium tosylate,” Appl. Phys. Lett. 69, 13–15 (1996).
[CrossRef]

Takahashi, Y.

H. Adachi, Y. Takahashi, J. Yabuzaki, Y. Mori-Y, and T. Sasaki, “Growth of high quality nonlinear optical crystal 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST),” J. Cryst. Growth 198–199, 568–571 (1999).
[CrossRef]

Tapponnier, A.

A. Tapponnier, I. Biaggio, R. Ono, M. Kiy, and P. Günter, “Transient photocurrent investigation of charge transport in electroluminescent organig thin films,” Nonlinear Opt. 25, 497–501 (2000).

Thakur, M.

M. Thakur, X. Jianjun, A. Bhowmik, and Z. Ligui, “Single-pass thin-film electro-optic modulator based on an organic molecular crystal,” Appl. Phys. Lett. 74, 635–637 (1999).
[CrossRef]

Wong, M. S.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N, N-dimethylamino-4-N-methylstilbazolium tosylate,” Appl. Phys. Lett. 69, 13–15 (1996).
[CrossRef]

F. Pan, M. S. Wong, Ch. Bosshard, and P. Günter, “Crystal growth and characterization of the organic salt 4-N, N-dimethylamino-4-N-methyl-stilbazolium tosylate (DAST),” Adv. Mater. 8, 592–595 (1996).
[CrossRef]

Yabuzaki, J.

H. Adachi, Y. Takahashi, J. Yabuzaki, Y. Mori-Y, and T. Sasaki, “Growth of high quality nonlinear optical crystal 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST),” J. Cryst. Growth 198–199, 568–571 (1999).
[CrossRef]

Yakymyshyn, Ch. P.

S. R. Marder, J. W. Perry, and Ch. P. Yakymyshyn, “Organicsalts with large second-order optical nonlinearities,” Chem. Mater. 6, 1137–1147 (1994).
[CrossRef]

Adv. Mater.

M. A. Baldo, M. Deutsch, P. E. Burrows, H. Gossenberg, M. Gerstenberg, V. S. Ban, and S. R. Forrest, “Organic vapor phase deposition,” Adv. Mater. 10, 1505 (1998).
[CrossRef]

F. Pan, M. S. Wong, Ch. Bosshard, and P. Günter, “Crystal growth and characterization of the organic salt 4-N, N-dimethylamino-4-N-methyl-stilbazolium tosylate (DAST),” Adv. Mater. 8, 592–595 (1996).
[CrossRef]

Appl. Phys. Lett.

M. Thakur, X. Jianjun, A. Bhowmik, and Z. Ligui, “Single-pass thin-film electro-optic modulator based on an organic molecular crystal,” Appl. Phys. Lett. 74, 635–637 (1999).
[CrossRef]

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N, N-dimethylamino-4-N-methylstilbazolium tosylate,” Appl. Phys. Lett. 69, 13–15 (1996).
[CrossRef]

Braz. J. Phys.

R. M. Faria and O. N. Oliveira, “Exploiting the electrical properties of films of semiconducting polymers,” Braz. J. Phys. 29, 360–370 (1999).
[CrossRef]

Bull. SPG/SSP

U. Meier, Ch. Bosshard, and P. Günter, “Two photon induced fluorescence in nonlinear optical organic DAST crystals,” Bull. SPG/SSP 14, 1 (1997).

Chem. Mater.

S. R. Marder, J. W. Perry, and Ch. P. Yakymyshyn, “Organicsalts with large second-order optical nonlinearities,” Chem. Mater. 6, 1137–1147 (1994).
[CrossRef]

J. Cryst. Growth

H. Adachi, Y. Takahashi, J. Yabuzaki, Y. Mori-Y, and T. Sasaki, “Growth of high quality nonlinear optical crystal 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST),” J. Cryst. Growth 198–199, 568–571 (1999).
[CrossRef]

M. Deutsch, M. C. Gerstenberg, H. F. Gossenberger, V. S. Ban, and S. R. Forrest, “Macroscopically ordered thin films of an organic salt grown by low-pressure organic vapor-phase deposition,” J. Cryst. Growth 203, 412–420 (1999).
[CrossRef]

J. Phys. Lett.

D. Jerome, A. Mazaud, M. Ribault, and K. Bechgaard, “Superconductivity in a synthetic organic conductor (TMTSF)2PF6,” J. Phys. Lett. 41, L95–L98 (1980).
[CrossRef]

JETP Lett.

N. S. Enikolopyan, L. N. Grigorov, and S. G. Smirnova, “Possible superconductivity near 300 K in oxidized polypropylene,” JETP Lett. 49, 326–330 (1989).

Mol. Cryst. Liq. Cryst.

D. Massa and N. Karl, “Photoconductivity in mixed stack donor: acceptor crystals: quasi one-dimensional electron transport in anthracene: pyromellitic-dianhydride,” Mol. Cryst. Liq. Cryst. 95, 93–117 (1989).

Nonlinear Opt.

A. Tapponnier, I. Biaggio, R. Ono, M. Kiy, and P. Günter, “Transient photocurrent investigation of charge transport in electroluminescent organig thin films,” Nonlinear Opt. 25, 497–501 (2000).

G. Knöpfle, R. Schlesser, R. Ducret, and P. Günter, “Optical and nonlinear optical properties of 4-dimethylaminoN-methyl-4-stilbazolium tosylate (DAST) crystals,” Nonlinear Opt. 9, 143–149 (1995).

Opt. Lett.

Phys. Rev. Lett.

D. Mahgerefteh and J. Feinberg, “Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate,” Phys. Rev. Lett. 64, 2195–2198 (1990).
[CrossRef] [PubMed]

J. H. Schön, C. Kloc, and B. Batlogg, “Universal crossover from band to hopping conduction in molecular organic semiconductors,” Phys. Rev. Lett. 86, 3843–3846 (2001).
[CrossRef] [PubMed]

Solid State Commun.

A. J. Epstein, E. M. Conwell, D. J. Sandman, and J. S. Miller, “Electrical conductivity of N-methyl phenazinium tetracyanoquinodimethanide, (NMP)(TCNQ),” Solid State Commun. 23, 355–358 (1977).
[CrossRef]

Other

H. Nakanishi, H. Matsuda, S. Okada, and M. Kato, “Nonlinear optical properties of polydiacetylenes with π-conjugation between the main chain and the substituents,” in Nonlinear Optics of Organic and Semiconductors, Proceedings of the International Symposium (Springer-Verlag, Berlin, 1989), pp. 155–162.

S. Okada, H. Matsuda, H. Nakanishi, M. Kato, and R. Muramatsu, “Organic material for nonlinear optical use,” Japanese patent 63048265 JP (February 29, 1988).

G. R. Meredith, “Design and characterization of molecular and polymeric nonlinear optical materials: successes and pitfalls,” in Nonlinear Optical Properties of Organic and Polymeric Materials, D. J. Williams, ed., Vol. 233 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1983), pp. 27–56.
[CrossRef]

A. J. Heeger and A. G. MacDiarmid, “Semiconducting and metallic organic polymers: chemically doped polyacetylene, (CH)x,” in Proceedings of the International Conference on Quasi One-Dimensional Conductors, Dubrovnik, S. Barisic, A. Bjelis, J. R. Cooper, and B. A. Leontic, eds. (Springer-Verlag, Berlin, 1979), pp. 361–383.

M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd ed. (Oxford U. Press, Oxford, 1999).

M. A. Reed, “Progress in molecular scale devices and circuits,” presented at the 57th Annual Device Research Conference, Santa Barbara, Calif., June 28–30, 1999.

Ch. Bosshard, “Optical and nonlinear optical properties of 2-cyclooctylamino-5-nitropyridine and 2-docosylamino-5-nitropyridine molecules, crystals, and Langmuir–Blodgett films,” Ph.D. dissertation 9407 (Swiss Federal Institute of Technology, Zürich, Switzerland, 1991).

D. D. Nolte, ed. Photorefractive Effects and Materials (Kluwer Academic, Boston, Mass., 1995).

P. M. Borsenberger and D. S. Weiss, Organic Photoreceptors for Imaging Systems (Marcel Dekker, New York, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Molecular structure of DAST. The direction of the charge-transfer axis of the stilbazolium is defined by the two nitrogen atoms. The two molecules are displayed as they are packed in the crystal structure.

Fig. 2
Fig. 2

Projections of two unit cells of the DAST crystal along principal crystallographic axes (a) a, (b) b, and (c) c. For clarity we have omitted the hydrogen atoms in these views and drawn the unit cell along—C in (a) and—A in (c). The representation of the atoms is similar to that of Fig. 1. Notice the stacking in the sheet along the c axis and the angle of 20° of the chromophores with respect to the polar a axis.

Fig. 3
Fig. 3

(a) Absorption spectrum of DAST in methanol, with the peak absorption at 475 nm. (b) Room-temperature absorption spectra of DAST for light polarization along the three axes, x1, x2, and x3, obtained from reflection spectroscopy.

Fig. 4
Fig. 4

Typical absorption spectra of polished DAST crystals used in this study. We calculated the absorption from the measured transmission, taking into account Fresnel losses as well as multiple reflections at the surfaces.

Fig. 5
Fig. 5

Absorption spectrum of a c plate of DAST (4 mm×5 mm×0.23 mm) for polarization along the dielectric x1 and x2 axes. The curve displays the dispersion as calculated with two Gaussian functions. The only parameters in the two curves that vary are the amplitudes of the prefactors. The centers of the peaks as well as their widths are kept equal. Inset, the remaining peak centered at λ=643 nm after subtraction of the Gaussian functions.

Fig. 6
Fig. 6

Energy exchange between two beams interfering in a DAST crystal. The two beams (intensity, I0=1 W/cm2; wavelength, λ=750 nm) were polarized parallel to the x1 axis in the plane of incidence. Their crossing angle produced a period of the interference pattern of ΛG=8.5 µm. The energy exchange is caused by photoexcitation of mobile charges and charge transport along the x1 direction.

Fig. 7
Fig. 7

Typical pulsed photocurrent signal, i.e., voltage drop measured across a 50-Ω detection resistance, as a function of time for a 160-µm-thick a plate. The excitation source was a frequency-doubled 11-ps Nd:YLF laser. Solid curves, Eq. (4) for τ=τ0=3 ns.

Fig. 8
Fig. 8

Time integral of the pulsed photocurrent voltage as a function of the fluence measured by use of 1-MΩ detection resistance and a 160-µm-thick a plate.

Fig. 9
Fig. 9

Temperature dependence of the time integral of the pulsed photocurrent voltage. The sample was mounted upon a special copper holder in a helium-flow cryostat. The parameters are the same as in Fig. 8.

Fig. 10
Fig. 10

Temperature dependence of dark conductivity (filled circles) and of photoconductivity (open circles) in DAST. Solid lines, thermally activated conductivity with an activation energy of EAct=0.34±0.03 eV. The incident-light intensity in the photoconductivity measurement was 300 mW/cm2.

Fig. 11
Fig. 11

(a) Main interatomic distances for the chromophore–chromophore interactions. Darker lines, direct donor–acceptor bonds, lighter lines, weaker interactions. For clarity, only half of the chromophores (those that lie in the same sheet) are displayed and drawn along—A. (b) Main intermolecular binding forces between a set of anions in the DAST crystal structure. Darker lines, tosylate–tosylate interactions along the a axis, lighter lines, interactions between chains perpendicular to the a axis. For clarity we have drawn only one sheet of tosylate anions. The representation of the atoms is similar to that in (a). (c) Main interactions between anions and cations along the c axis. Notice the A-B-A-B packing of the alternate chromophores and tosylates. As a result of the tilt angle, 20°, binding interactions are different in the A-B and the A-B sheets. Darker lines, shortest tosylate–stilbazolium bindings; lighter lines, weaker interactions. For clarity, only half of the chromophores are displayed. The representation of the atoms is similar to that in (a).

Tables (1)

Tables Icon

Table 1 Summary of the Values of the Important Parameters of DAST Presented in This Paper

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ηcalculated(x1/x2)=cos(20°)cos(70°)=2.75,
ηaverage(x1/x2)measured=3±0.4,
ηcalculated(x3/x1)1,
ηaverage(x3/x1)measured=0.1±0.01,
ηcalculated(x3/x2)1,
ηaverage(x3/x2)measured=0.03±0.01.
U(t)=RdetI(t)=RdetU0R01τ0exp(-t/τ)-exp(-t/τ0)1/τ-1/τ0,
QTOT=0I(t)dt=U0R0τ=U0Neμτd2,

Metrics