Abstract

The absorption and emission spectra and the rate parameters for the important energy-exchange processes relevant to the  4I11/2  4I13/2 laser transition in Er3+-doped and Er3+, Pr3+-codoped GeGaS glasses are presented. The rate parameters are determined after optical excitation with a tunable pulsed optical parametric oscillator that excites the  4I11/2 and  4I13/2 energy levels directly. For the Er3+ singly doped samples, the energy-transfer upconversion (ETU) macroscopic rate parameters for the upper and lower laser levels were measured for a range of Er3+ concentrations. In correspondence with ZBLAN and the fluoride crystals, the (4I13/2, 4I13/2)(4I9/2, 4I15/2) ETU process of the lower laser level is measured to be stronger than the corresponding ETU process of the upper laser level. Such a condition enables energy recycling to occur. A higher rate of energy transfer from the  4I13/2 level of Er3+ to Pr3+ deactivator is measured as compared with the corresponding energy transfer from  4I11/2 level to both the Pr3+ deactivator and OH impurity. With these favorable energy-transfer conditions, the prospect for the future development of highly efficient ∼3-µm fiber lasers with GeGaS glass as the host material is excellent.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Reisfeld, “Chalcogenide glasses doped by rare earths: structure and optical properties,” Ann. Chim. (Paris) 7, 147–160 (1982).
  2. J. Flahaut, M. Guittard, and A. M. Loireau-Lozac’h, “Rare-earth sulphide and oxysulphide glasses,” Glass Technol. 24, 149–156 (1983).
  3. P. N. Kumta and S. H. Risbud, “Rare-earth chalcogenides: an emerging class of optical materials,” J. Mater. Sci. 29, 1135–1158 (1994).
    [CrossRef]
  4. Y. D. West, T. Schweizer, D. J. Brady, and D. W. Hewak, “Gallium lanthanum sulfide fibers for infrared transmission,” Fiber Integr. Opt. 19, 229–250 (2000).
    [CrossRef]
  5. K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Pr3+-doped Ge-Ga-S glasses for 1.3 μm optical fiber amplifiers,” J. Non-Cryst. Solids 182, 257–261 (1995).
    [CrossRef]
  6. K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Spectroscopy of Dy3+ in Ge-Ga-S glass and its suitability for 1.3 μm fiber-optical amplifier applications,” Opt. Lett. 19, 904–906 (1994).
    [CrossRef] [PubMed]
  7. Y. B. Shin, W. Y. Cho, and J. Heo, “Multiphonon and cross relaxation phenomena in Ge-As(or Ga)-S glasses doped with Tm3+,” J. Non-Cryst. Solids 208, 29–35 (1996).
    [CrossRef]
  8. Y. S. Kim, W. Y. Cho, Y. B. Shin, and J. Jeo, “Emission characteristics of Ge-Ga-S glasses doped with Tm3+/Ho3+,” J. Non-Cryst. Solids 203, 176–181 (1996).
    [CrossRef]
  9. U. Keller and R. Hibst, “Effects of Er:YAG laser in caries treatment,” Lasers Surg. Med. 20, 32–38 (1997).
    [CrossRef]
  10. T. S. Alster, “Clinical and histologic evaluation of six erbium:YAG lasers for cutaneous resurfacing,” Lasers Surg. Med. 24, 87–94 (1995).
    [CrossRef]
  11. M. Frenz, H. Pratisto, F. Konz, E. Duco Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12-μm and 2.79-μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025–2036 (1996).
    [CrossRef]
  12. S. Jacques, “Role of tissue optics and pulse duration on tissue effects during high-power laser irradiation,” Appl. Opt. 32, 2447–2454 (1993).
    [CrossRef] [PubMed]
  13. C. Ziolek, H. Ernst, G. F. Will, H. Lubatschowski, H. Welling, and W. Ertmer, “High-repetition-rate, high-average-power, diode-pumped 2.94-μm Er:YAG laser,” Opt. Lett. 26, 599–601 (2001).
    [CrossRef]
  14. D. W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, and R. A. Fields, “Diode-pumped 1-W continuous-wave Er:YAG 3-μm laser,” Opt. Lett. 24, 385–387 (1999).
    [CrossRef]
  15. Chr. Wyss, W. Luthy, H. P. Weber, P. Rogin, and J. Hulliger, “Emission properties of an optimised 2.8 μm Er3+:YLF laser,” Opt. Commun. 139, 215–218 (1997).
    [CrossRef]
  16. M. Pollnau, W. Luthy, H. P. Weber, T. Jensen, G. Huber, A. Cassanho, H. P. Jenssen, and R. A. McFarlane, “Investigation of diode-pumped 2.8-μm laser performance in Er:BaY2F8,” Opt. Lett. 21, 48–50 (1996).
    [CrossRef] [PubMed]
  17. S. D. Jackson, T. A. King, and M. Pollnau, “Diode pumped 1.7-W erbium fiber laser,” Opt. Lett. 24, 1133–1134 (1999).
    [CrossRef]
  18. T. Sandrock, D. Fischer, P. Glas, M. Leitner, and M. Wrage, “Diode-pumped 1-W Er-doped fluoride glass M-profile fiber laser emitting at 2.9 μm,” Opt. Lett. 24, 1284–1286 (1999).
    [CrossRef]
  19. B. Srinivasan, J. Tafoya, and R. K. Jain, “High-power “Watt-level” CW operation of diode-pumped 2.7 μm fiber lasers using efficient cross-relaxation and energy transfer mechanisms,” Opt. Express 4, 490–495 (1999).
    [CrossRef] [PubMed]
  20. M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with continuous wave 3 μm fibre laser: preliminary studies with soft tissue,” Lasers Surg. Med. 26, 491–495 (2000).
    [CrossRef]
  21. J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibres for IR applications: a review,” J. Non-Cryst. Solids 256&257, 6–16 (1999).
    [CrossRef]
  22. J. Heo, “Optical characteristics of rare-earth-doped sulphide glasses,” J. Mater. Sci. Lett. 14, 1014–1016 (1995).
    [CrossRef]
  23. K. Wei, “Synthesis and characterization of rare earth doped chalcogenide glasses,” Ph.D. dissertation (Rutgers, The State University of New Jersey, New Brunswick, New Jersey, 1994), p. 87.
  24. A. Mori, Y. Ohishi, T. Kanamori, and S. Sudo, “Optical amplification with neodymium-doped chalcogenide glass fibre,” Appl. Phys. Lett. 70, 1230–1232 (1997).
    [CrossRef]
  25. T. Schweizer, D. W. Hewak, D. N. Payne, T. Jessen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32, 666–667 (1996).
    [CrossRef]
  26. T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33, 414–416 (1997).
    [CrossRef]
  27. P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
    [CrossRef]
  28. M. Pollnau, Th. Graf, J. E. Balmer, W. Luthy, and H. P. Weber, “Explanation of the cw operation of the Er3+ 3-μm crystal laser,” Phys. Rev. A 49, 3990–3996 (1994).
    [CrossRef] [PubMed]
  29. V. Lupei, S. Georgesecu, and V. Florea, “On the dynamics of population inversion for 3 μm Er3+ lasers,” IEEE J. Quantum Electron. 29, 426–434 (1993).
    [CrossRef]
  30. V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Energy exchange processes in Er3+-doped fluorozirconate glasses,” J. Non-Cryst. Solids 256&257, 288–293 (1999).
    [CrossRef]
  31. D. S. Knowles and H. P. Jenssen, “Upconversion versus Pr-deactivation for efficient 3 μm laser operation,” IEEE J. Quantum Electron. 28, 1197–1208 (1992).
    [CrossRef]
  32. S. H. Park, J. Heo, and H. S. Kim, “Composition depen-dence of the 1.3 μm emission and energy transfer mechanism in Ge-Ga-S glasses doped with Pr3+,” J. Non-Cryst. Solids 259, 31–38 (1999).
    [CrossRef]
  33. K. Wei, “Synthesis and characterization of rare earth doped chalcogenide glasses,” Ph.D. dissertation (Rutgers, The State University of New Jersey, New Brunswick, New Jersey, 1994), p. 116.
  34. R. S. Quimby, W. J. Miniscalco, and B. Thomson, “Excited state absorption in erbium doped glass,” in Fiber Laser Source and Amplifiers III, Proc. SPIE 1581, 72–79 (1991).
    [CrossRef]
  35. D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett. 19, 1343–1345 (1994).
    [CrossRef] [PubMed]
  36. C. C. Ye, D. W. Hewak, M. Hempstead, B. N. Samson, and D. N. Payne, “Spectral properties of Er3+-doped gallium lanthanum sulphide glass,” J. Non-Cryst. Solids 208, 56–63 (1996).
    [CrossRef]
  37. P. France, Fluoride Glass Optical Fibres (Blackie, London, 1990).
  38. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
    [CrossRef]
  39. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
    [CrossRef]
  40. M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–273 (1967).
    [CrossRef]
  41. F. Auzel, D. Meichenin, and H. Poignant, “Laser cross-section and quantum yield of Er3+ at 2.7 μm in a ZrF4-based fluoride glass,” Electron. Lett. 24, 909–910 (1988).
    [CrossRef]
  42. Y. G. Choi, K. H. Kim, and J. Heo, “Spectroscopic properties of and energy transfer in PbO-Bi2O3Ga2O3 glass doped with Er2O3,” J. Am. Ceram. Soc. 32, 2762–2768 (1999).
  43. Y. G. Choi, K. H. Kim, B. J. Lee, Y. B. Shin, Y. S. Kim, and J. Heo, “Emission properties of the Er3+:4I11/24I13/2 transition in Er3+ and Er3+/Tm3+-doped Ge-Ga-As-S glasses,” J. Non-Cryst. Solids 278, 137–144 (2000).
    [CrossRef]
  44. Y. Guimond, J.-L. Adam, A.-M. Jurdyc, H. L. Ma, J. Mugnier, and B. Jacquier, “Optical properties of antimony-stabilised sulphide glasses doped with Dy3+ and Er3+ ions,” J. Non-Cryst. Solids 256&257, 378–382 (1999).
    [CrossRef]
  45. T. Jensen, “Upconversion Prozesse und Wirkungsquerschnitte in Er3+-dotierten 3 μm Fluorid- und Granat-Lasern, gepumpt mit cw und quasi-cw Dioden-Arrays” Ph.D. dissertation (Institute of Laser-Physics, University of Hamburg, Germany, 1996).
  46. P. Nachimuthu, M. Vithal, and R. Jagannathan, “Absorption and emission spectral properties of Pr3+, Nd3+ and Eu3+ ions in heavy-metal oxide glasses,” J. Am. Ceram. Soc. 83, 597–604 (2000).
    [CrossRef]
  47. Y. G. Choi and J. Heo, “Influence of OH and Nd3+ concentrations on the lifetimes of Nd3+: 4F3/2 level in PbO-Bi2O3-Ga2O3 glasses,” Phys. Chem. Glasses 39, 311–317 (1998).
  48. Y. G. Chio and J. Heo, “1.3 μm emission and multiphonon relaxation phenomena in PbO-Bi2O3-Ga2O3 glasses doped with rare-earths,” J. Non-Cryst. Solids 217, 199–207 (1997).
    [CrossRef]
  49. A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62, 6215–6227 (2000).
    [CrossRef]
  50. H. Takebe, K. Yoshino, T. Murata, K. Morinaga, J. Hector, W. S. Brocklesby, D. W. Hewak, J. Wang, and D. N. Payne, “Spectroscopic properties of Nd3+ and Pr3+ in gallate glasses with low phonon energies,” Appl. Opt. 36, 5839–5843 (1997).
    [CrossRef] [PubMed]

2001 (1)

2000 (6)

P. Nachimuthu, M. Vithal, and R. Jagannathan, “Absorption and emission spectral properties of Pr3+, Nd3+ and Eu3+ ions in heavy-metal oxide glasses,” J. Am. Ceram. Soc. 83, 597–604 (2000).
[CrossRef]

Y. D. West, T. Schweizer, D. J. Brady, and D. W. Hewak, “Gallium lanthanum sulfide fibers for infrared transmission,” Fiber Integr. Opt. 19, 229–250 (2000).
[CrossRef]

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with continuous wave 3 μm fibre laser: preliminary studies with soft tissue,” Lasers Surg. Med. 26, 491–495 (2000).
[CrossRef]

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
[CrossRef]

Y. G. Choi, K. H. Kim, B. J. Lee, Y. B. Shin, Y. S. Kim, and J. Heo, “Emission properties of the Er3+:4I11/24I13/2 transition in Er3+ and Er3+/Tm3+-doped Ge-Ga-As-S glasses,” J. Non-Cryst. Solids 278, 137–144 (2000).
[CrossRef]

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62, 6215–6227 (2000).
[CrossRef]

1999 (9)

Y. Guimond, J.-L. Adam, A.-M. Jurdyc, H. L. Ma, J. Mugnier, and B. Jacquier, “Optical properties of antimony-stabilised sulphide glasses doped with Dy3+ and Er3+ ions,” J. Non-Cryst. Solids 256&257, 378–382 (1999).
[CrossRef]

Y. G. Choi, K. H. Kim, and J. Heo, “Spectroscopic properties of and energy transfer in PbO-Bi2O3Ga2O3 glass doped with Er2O3,” J. Am. Ceram. Soc. 32, 2762–2768 (1999).

V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Energy exchange processes in Er3+-doped fluorozirconate glasses,” J. Non-Cryst. Solids 256&257, 288–293 (1999).
[CrossRef]

S. H. Park, J. Heo, and H. S. Kim, “Composition depen-dence of the 1.3 μm emission and energy transfer mechanism in Ge-Ga-S glasses doped with Pr3+,” J. Non-Cryst. Solids 259, 31–38 (1999).
[CrossRef]

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibres for IR applications: a review,” J. Non-Cryst. Solids 256&257, 6–16 (1999).
[CrossRef]

D. W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, and R. A. Fields, “Diode-pumped 1-W continuous-wave Er:YAG 3-μm laser,” Opt. Lett. 24, 385–387 (1999).
[CrossRef]

S. D. Jackson, T. A. King, and M. Pollnau, “Diode pumped 1.7-W erbium fiber laser,” Opt. Lett. 24, 1133–1134 (1999).
[CrossRef]

T. Sandrock, D. Fischer, P. Glas, M. Leitner, and M. Wrage, “Diode-pumped 1-W Er-doped fluoride glass M-profile fiber laser emitting at 2.9 μm,” Opt. Lett. 24, 1284–1286 (1999).
[CrossRef]

B. Srinivasan, J. Tafoya, and R. K. Jain, “High-power “Watt-level” CW operation of diode-pumped 2.7 μm fiber lasers using efficient cross-relaxation and energy transfer mechanisms,” Opt. Express 4, 490–495 (1999).
[CrossRef] [PubMed]

1998 (1)

Y. G. Choi and J. Heo, “Influence of OH and Nd3+ concentrations on the lifetimes of Nd3+: 4F3/2 level in PbO-Bi2O3-Ga2O3 glasses,” Phys. Chem. Glasses 39, 311–317 (1998).

1997 (6)

Y. G. Chio and J. Heo, “1.3 μm emission and multiphonon relaxation phenomena in PbO-Bi2O3-Ga2O3 glasses doped with rare-earths,” J. Non-Cryst. Solids 217, 199–207 (1997).
[CrossRef]

H. Takebe, K. Yoshino, T. Murata, K. Morinaga, J. Hector, W. S. Brocklesby, D. W. Hewak, J. Wang, and D. N. Payne, “Spectroscopic properties of Nd3+ and Pr3+ in gallate glasses with low phonon energies,” Appl. Opt. 36, 5839–5843 (1997).
[CrossRef] [PubMed]

A. Mori, Y. Ohishi, T. Kanamori, and S. Sudo, “Optical amplification with neodymium-doped chalcogenide glass fibre,” Appl. Phys. Lett. 70, 1230–1232 (1997).
[CrossRef]

U. Keller and R. Hibst, “Effects of Er:YAG laser in caries treatment,” Lasers Surg. Med. 20, 32–38 (1997).
[CrossRef]

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33, 414–416 (1997).
[CrossRef]

Chr. Wyss, W. Luthy, H. P. Weber, P. Rogin, and J. Hulliger, “Emission properties of an optimised 2.8 μm Er3+:YLF laser,” Opt. Commun. 139, 215–218 (1997).
[CrossRef]

1996 (6)

C. C. Ye, D. W. Hewak, M. Hempstead, B. N. Samson, and D. N. Payne, “Spectral properties of Er3+-doped gallium lanthanum sulphide glass,” J. Non-Cryst. Solids 208, 56–63 (1996).
[CrossRef]

Y. B. Shin, W. Y. Cho, and J. Heo, “Multiphonon and cross relaxation phenomena in Ge-As(or Ga)-S glasses doped with Tm3+,” J. Non-Cryst. Solids 208, 29–35 (1996).
[CrossRef]

Y. S. Kim, W. Y. Cho, Y. B. Shin, and J. Jeo, “Emission characteristics of Ge-Ga-S glasses doped with Tm3+/Ho3+,” J. Non-Cryst. Solids 203, 176–181 (1996).
[CrossRef]

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jessen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32, 666–667 (1996).
[CrossRef]

M. Frenz, H. Pratisto, F. Konz, E. Duco Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12-μm and 2.79-μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025–2036 (1996).
[CrossRef]

M. Pollnau, W. Luthy, H. P. Weber, T. Jensen, G. Huber, A. Cassanho, H. P. Jenssen, and R. A. McFarlane, “Investigation of diode-pumped 2.8-μm laser performance in Er:BaY2F8,” Opt. Lett. 21, 48–50 (1996).
[CrossRef] [PubMed]

1995 (3)

J. Heo, “Optical characteristics of rare-earth-doped sulphide glasses,” J. Mater. Sci. Lett. 14, 1014–1016 (1995).
[CrossRef]

T. S. Alster, “Clinical and histologic evaluation of six erbium:YAG lasers for cutaneous resurfacing,” Lasers Surg. Med. 24, 87–94 (1995).
[CrossRef]

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Pr3+-doped Ge-Ga-S glasses for 1.3 μm optical fiber amplifiers,” J. Non-Cryst. Solids 182, 257–261 (1995).
[CrossRef]

1994 (4)

1993 (2)

V. Lupei, S. Georgesecu, and V. Florea, “On the dynamics of population inversion for 3 μm Er3+ lasers,” IEEE J. Quantum Electron. 29, 426–434 (1993).
[CrossRef]

S. Jacques, “Role of tissue optics and pulse duration on tissue effects during high-power laser irradiation,” Appl. Opt. 32, 2447–2454 (1993).
[CrossRef] [PubMed]

1992 (1)

D. S. Knowles and H. P. Jenssen, “Upconversion versus Pr-deactivation for efficient 3 μm laser operation,” IEEE J. Quantum Electron. 28, 1197–1208 (1992).
[CrossRef]

1991 (1)

R. S. Quimby, W. J. Miniscalco, and B. Thomson, “Excited state absorption in erbium doped glass,” in Fiber Laser Source and Amplifiers III, Proc. SPIE 1581, 72–79 (1991).
[CrossRef]

1988 (1)

F. Auzel, D. Meichenin, and H. Poignant, “Laser cross-section and quantum yield of Er3+ at 2.7 μm in a ZrF4-based fluoride glass,” Electron. Lett. 24, 909–910 (1988).
[CrossRef]

1983 (1)

J. Flahaut, M. Guittard, and A. M. Loireau-Lozac’h, “Rare-earth sulphide and oxysulphide glasses,” Glass Technol. 24, 149–156 (1983).

1982 (1)

R. Reisfeld, “Chalcogenide glasses doped by rare earths: structure and optical properties,” Ann. Chim. (Paris) 7, 147–160 (1982).

1967 (1)

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–273 (1967).
[CrossRef]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Adam, J.-L.

Y. Guimond, J.-L. Adam, A.-M. Jurdyc, H. L. Ma, J. Mugnier, and B. Jacquier, “Optical properties of antimony-stabilised sulphide glasses doped with Dy3+ and Er3+ ions,” J. Non-Cryst. Solids 256&257, 378–382 (1999).
[CrossRef]

Aggarwal, I. D.

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibres for IR applications: a review,” J. Non-Cryst. Solids 256&257, 6–16 (1999).
[CrossRef]

Alster, T. S.

T. S. Alster, “Clinical and histologic evaluation of six erbium:YAG lasers for cutaneous resurfacing,” Lasers Surg. Med. 24, 87–94 (1995).
[CrossRef]

Auzel, F.

F. Auzel, D. Meichenin, and H. Poignant, “Laser cross-section and quantum yield of Er3+ at 2.7 μm in a ZrF4-based fluoride glass,” Electron. Lett. 24, 909–910 (1988).
[CrossRef]

Balmer, J. E.

M. Pollnau, Th. Graf, J. E. Balmer, W. Luthy, and H. P. Weber, “Explanation of the cw operation of the Er3+ 3-μm crystal laser,” Phys. Rev. A 49, 3990–3996 (1994).
[CrossRef] [PubMed]

Bogdanov, V. K.

V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Energy exchange processes in Er3+-doped fluorozirconate glasses,” J. Non-Cryst. Solids 256&257, 288–293 (1999).
[CrossRef]

Booth, D. J.

V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Energy exchange processes in Er3+-doped fluorozirconate glasses,” J. Non-Cryst. Solids 256&257, 288–293 (1999).
[CrossRef]

Brady, D. J.

Y. D. West, T. Schweizer, D. J. Brady, and D. W. Hewak, “Gallium lanthanum sulfide fibers for infrared transmission,” Fiber Integr. Opt. 19, 229–250 (2000).
[CrossRef]

Brocklesby, W. S.

Cassanho, A.

Chen, D. W.

Chio, Y. G.

Y. G. Chio and J. Heo, “1.3 μm emission and multiphonon relaxation phenomena in PbO-Bi2O3-Ga2O3 glasses doped with rare-earths,” J. Non-Cryst. Solids 217, 199–207 (1997).
[CrossRef]

Cho, W. Y.

Y. S. Kim, W. Y. Cho, Y. B. Shin, and J. Jeo, “Emission characteristics of Ge-Ga-S glasses doped with Tm3+/Ho3+,” J. Non-Cryst. Solids 203, 176–181 (1996).
[CrossRef]

Y. B. Shin, W. Y. Cho, and J. Heo, “Multiphonon and cross relaxation phenomena in Ge-As(or Ga)-S glasses doped with Tm3+,” J. Non-Cryst. Solids 208, 29–35 (1996).
[CrossRef]

Choi, Y. G.

Y. G. Choi, K. H. Kim, B. J. Lee, Y. B. Shin, Y. S. Kim, and J. Heo, “Emission properties of the Er3+:4I11/24I13/2 transition in Er3+ and Er3+/Tm3+-doped Ge-Ga-As-S glasses,” J. Non-Cryst. Solids 278, 137–144 (2000).
[CrossRef]

Y. G. Choi, K. H. Kim, and J. Heo, “Spectroscopic properties of and energy transfer in PbO-Bi2O3Ga2O3 glass doped with Er2O3,” J. Am. Ceram. Soc. 32, 2762–2768 (1999).

Y. G. Choi and J. Heo, “Influence of OH and Nd3+ concentrations on the lifetimes of Nd3+: 4F3/2 level in PbO-Bi2O3-Ga2O3 glasses,” Phys. Chem. Glasses 39, 311–317 (1998).

Dickinson, M. R.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with continuous wave 3 μm fibre laser: preliminary studies with soft tissue,” Lasers Surg. Med. 26, 491–495 (2000).
[CrossRef]

Ernst, H.

Ertmer, W.

Fan, T. Y.

Fields, R. A.

Fincher, C. L.

Fischer, D.

Flahaut, J.

J. Flahaut, M. Guittard, and A. M. Loireau-Lozac’h, “Rare-earth sulphide and oxysulphide glasses,” Glass Technol. 24, 149–156 (1983).

Florea, V.

V. Lupei, S. Georgesecu, and V. Florea, “On the dynamics of population inversion for 3 μm Er3+ lasers,” IEEE J. Quantum Electron. 29, 426–434 (1993).
[CrossRef]

Frenz, M.

M. Frenz, H. Pratisto, F. Konz, E. Duco Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12-μm and 2.79-μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025–2036 (1996).
[CrossRef]

Georgesecu, S.

V. Lupei, S. Georgesecu, and V. Florea, “On the dynamics of population inversion for 3 μm Er3+ lasers,” IEEE J. Quantum Electron. 29, 426–434 (1993).
[CrossRef]

Gibbs, W. E. K.

V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Energy exchange processes in Er3+-doped fluorozirconate glasses,” J. Non-Cryst. Solids 256&257, 288–293 (1999).
[CrossRef]

Glas, P.

Golding, P. S.

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
[CrossRef]

Graf, Th.

M. Pollnau, Th. Graf, J. E. Balmer, W. Luthy, and H. P. Weber, “Explanation of the cw operation of the Er3+ 3-μm crystal laser,” Phys. Rev. A 49, 3990–3996 (1994).
[CrossRef] [PubMed]

Guimond, Y.

Y. Guimond, J.-L. Adam, A.-M. Jurdyc, H. L. Ma, J. Mugnier, and B. Jacquier, “Optical properties of antimony-stabilised sulphide glasses doped with Dy3+ and Er3+ ions,” J. Non-Cryst. Solids 256&257, 378–382 (1999).
[CrossRef]

Guittard, M.

J. Flahaut, M. Guittard, and A. M. Loireau-Lozac’h, “Rare-earth sulphide and oxysulphide glasses,” Glass Technol. 24, 149–156 (1983).

Hector, J.

Hempstead, M.

C. C. Ye, D. W. Hewak, M. Hempstead, B. N. Samson, and D. N. Payne, “Spectral properties of Er3+-doped gallium lanthanum sulphide glass,” J. Non-Cryst. Solids 208, 56–63 (1996).
[CrossRef]

Heo, J.

Y. G. Choi, K. H. Kim, B. J. Lee, Y. B. Shin, Y. S. Kim, and J. Heo, “Emission properties of the Er3+:4I11/24I13/2 transition in Er3+ and Er3+/Tm3+-doped Ge-Ga-As-S glasses,” J. Non-Cryst. Solids 278, 137–144 (2000).
[CrossRef]

S. H. Park, J. Heo, and H. S. Kim, “Composition depen-dence of the 1.3 μm emission and energy transfer mechanism in Ge-Ga-S glasses doped with Pr3+,” J. Non-Cryst. Solids 259, 31–38 (1999).
[CrossRef]

Y. G. Choi, K. H. Kim, and J. Heo, “Spectroscopic properties of and energy transfer in PbO-Bi2O3Ga2O3 glass doped with Er2O3,” J. Am. Ceram. Soc. 32, 2762–2768 (1999).

Y. G. Choi and J. Heo, “Influence of OH and Nd3+ concentrations on the lifetimes of Nd3+: 4F3/2 level in PbO-Bi2O3-Ga2O3 glasses,” Phys. Chem. Glasses 39, 311–317 (1998).

Y. G. Chio and J. Heo, “1.3 μm emission and multiphonon relaxation phenomena in PbO-Bi2O3-Ga2O3 glasses doped with rare-earths,” J. Non-Cryst. Solids 217, 199–207 (1997).
[CrossRef]

Y. B. Shin, W. Y. Cho, and J. Heo, “Multiphonon and cross relaxation phenomena in Ge-As(or Ga)-S glasses doped with Tm3+,” J. Non-Cryst. Solids 208, 29–35 (1996).
[CrossRef]

J. Heo, “Optical characteristics of rare-earth-doped sulphide glasses,” J. Mater. Sci. Lett. 14, 1014–1016 (1995).
[CrossRef]

Hewak, D. W.

Y. D. West, T. Schweizer, D. J. Brady, and D. W. Hewak, “Gallium lanthanum sulfide fibers for infrared transmission,” Fiber Integr. Opt. 19, 229–250 (2000).
[CrossRef]

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33, 414–416 (1997).
[CrossRef]

H. Takebe, K. Yoshino, T. Murata, K. Morinaga, J. Hector, W. S. Brocklesby, D. W. Hewak, J. Wang, and D. N. Payne, “Spectroscopic properties of Nd3+ and Pr3+ in gallate glasses with low phonon energies,” Appl. Opt. 36, 5839–5843 (1997).
[CrossRef] [PubMed]

C. C. Ye, D. W. Hewak, M. Hempstead, B. N. Samson, and D. N. Payne, “Spectral properties of Er3+-doped gallium lanthanum sulphide glass,” J. Non-Cryst. Solids 208, 56–63 (1996).
[CrossRef]

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jessen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32, 666–667 (1996).
[CrossRef]

Hibst, R.

U. Keller and R. Hibst, “Effects of Er:YAG laser in caries treatment,” Lasers Surg. Med. 20, 32–38 (1997).
[CrossRef]

Huber, G.

Hulliger, J.

Chr. Wyss, W. Luthy, H. P. Weber, P. Rogin, and J. Hulliger, “Emission properties of an optimised 2.8 μm Er3+:YLF laser,” Opt. Commun. 139, 215–218 (1997).
[CrossRef]

Jackson, S. D.

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
[CrossRef]

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with continuous wave 3 μm fibre laser: preliminary studies with soft tissue,” Lasers Surg. Med. 26, 491–495 (2000).
[CrossRef]

S. D. Jackson, T. A. King, and M. Pollnau, “Diode pumped 1.7-W erbium fiber laser,” Opt. Lett. 24, 1133–1134 (1999).
[CrossRef]

Jacques, S.

Jacquier, B.

Y. Guimond, J.-L. Adam, A.-M. Jurdyc, H. L. Ma, J. Mugnier, and B. Jacquier, “Optical properties of antimony-stabilised sulphide glasses doped with Dy3+ and Er3+ ions,” J. Non-Cryst. Solids 256&257, 378–382 (1999).
[CrossRef]

Jagannathan, R.

P. Nachimuthu, M. Vithal, and R. Jagannathan, “Absorption and emission spectral properties of Pr3+, Nd3+ and Eu3+ ions in heavy-metal oxide glasses,” J. Am. Ceram. Soc. 83, 597–604 (2000).
[CrossRef]

Jain, R. K.

Jansen, E. Duco

M. Frenz, H. Pratisto, F. Konz, E. Duco Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12-μm and 2.79-μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025–2036 (1996).
[CrossRef]

Javorniczky, J. S.

V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Energy exchange processes in Er3+-doped fluorozirconate glasses,” J. Non-Cryst. Solids 256&257, 288–293 (1999).
[CrossRef]

Jensen, T.

Jenssen, H. P.

Jeo, J.

Y. S. Kim, W. Y. Cho, Y. B. Shin, and J. Jeo, “Emission characteristics of Ge-Ga-S glasses doped with Tm3+/Ho3+,” J. Non-Cryst. Solids 203, 176–181 (1996).
[CrossRef]

Jessen, T.

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jessen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32, 666–667 (1996).
[CrossRef]

Jha, A.

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62, 6215–6227 (2000).
[CrossRef]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Jurdyc, A.-M.

Y. Guimond, J.-L. Adam, A.-M. Jurdyc, H. L. Ma, J. Mugnier, and B. Jacquier, “Optical properties of antimony-stabilised sulphide glasses doped with Dy3+ and Er3+ ions,” J. Non-Cryst. Solids 256&257, 378–382 (1999).
[CrossRef]

Kanamori, T.

A. Mori, Y. Ohishi, T. Kanamori, and S. Sudo, “Optical amplification with neodymium-doped chalcogenide glass fibre,” Appl. Phys. Lett. 70, 1230–1232 (1997).
[CrossRef]

Keller, U.

U. Keller and R. Hibst, “Effects of Er:YAG laser in caries treatment,” Lasers Surg. Med. 20, 32–38 (1997).
[CrossRef]

Kim, H. S.

S. H. Park, J. Heo, and H. S. Kim, “Composition depen-dence of the 1.3 μm emission and energy transfer mechanism in Ge-Ga-S glasses doped with Pr3+,” J. Non-Cryst. Solids 259, 31–38 (1999).
[CrossRef]

Kim, K. H.

Y. G. Choi, K. H. Kim, B. J. Lee, Y. B. Shin, Y. S. Kim, and J. Heo, “Emission properties of the Er3+:4I11/24I13/2 transition in Er3+ and Er3+/Tm3+-doped Ge-Ga-As-S glasses,” J. Non-Cryst. Solids 278, 137–144 (2000).
[CrossRef]

Y. G. Choi, K. H. Kim, and J. Heo, “Spectroscopic properties of and energy transfer in PbO-Bi2O3Ga2O3 glass doped with Er2O3,” J. Am. Ceram. Soc. 32, 2762–2768 (1999).

Kim, Y. S.

Y. G. Choi, K. H. Kim, B. J. Lee, Y. B. Shin, Y. S. Kim, and J. Heo, “Emission properties of the Er3+:4I11/24I13/2 transition in Er3+ and Er3+/Tm3+-doped Ge-Ga-As-S glasses,” J. Non-Cryst. Solids 278, 137–144 (2000).
[CrossRef]

Y. S. Kim, W. Y. Cho, Y. B. Shin, and J. Jeo, “Emission characteristics of Ge-Ga-S glasses doped with Tm3+/Ho3+,” J. Non-Cryst. Solids 203, 176–181 (1996).
[CrossRef]

King, T. A.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with continuous wave 3 μm fibre laser: preliminary studies with soft tissue,” Lasers Surg. Med. 26, 491–495 (2000).
[CrossRef]

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
[CrossRef]

S. D. Jackson, T. A. King, and M. Pollnau, “Diode pumped 1.7-W erbium fiber laser,” Opt. Lett. 24, 1133–1134 (1999).
[CrossRef]

Knowles, D. S.

D. S. Knowles and H. P. Jenssen, “Upconversion versus Pr-deactivation for efficient 3 μm laser operation,” IEEE J. Quantum Electron. 28, 1197–1208 (1992).
[CrossRef]

Konz, F.

M. Frenz, H. Pratisto, F. Konz, E. Duco Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12-μm and 2.79-μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025–2036 (1996).
[CrossRef]

Kumta, P. N.

P. N. Kumta and S. H. Risbud, “Rare-earth chalcogenides: an emerging class of optical materials,” J. Mater. Sci. 29, 1135–1158 (1994).
[CrossRef]

Lee, B. J.

Y. G. Choi, K. H. Kim, B. J. Lee, Y. B. Shin, Y. S. Kim, and J. Heo, “Emission properties of the Er3+:4I11/24I13/2 transition in Er3+ and Er3+/Tm3+-doped Ge-Ga-As-S glasses,” J. Non-Cryst. Solids 278, 137–144 (2000).
[CrossRef]

Leitner, M.

Loireau-Lozac’h, A. M.

J. Flahaut, M. Guittard, and A. M. Loireau-Lozac’h, “Rare-earth sulphide and oxysulphide glasses,” Glass Technol. 24, 149–156 (1983).

Lubatschowski, H.

Lupei, V.

V. Lupei, S. Georgesecu, and V. Florea, “On the dynamics of population inversion for 3 μm Er3+ lasers,” IEEE J. Quantum Electron. 29, 426–434 (1993).
[CrossRef]

Luthy, W.

Chr. Wyss, W. Luthy, H. P. Weber, P. Rogin, and J. Hulliger, “Emission properties of an optimised 2.8 μm Er3+:YLF laser,” Opt. Commun. 139, 215–218 (1997).
[CrossRef]

M. Pollnau, W. Luthy, H. P. Weber, T. Jensen, G. Huber, A. Cassanho, H. P. Jenssen, and R. A. McFarlane, “Investigation of diode-pumped 2.8-μm laser performance in Er:BaY2F8,” Opt. Lett. 21, 48–50 (1996).
[CrossRef] [PubMed]

M. Pollnau, Th. Graf, J. E. Balmer, W. Luthy, and H. P. Weber, “Explanation of the cw operation of the Er3+ 3-μm crystal laser,” Phys. Rev. A 49, 3990–3996 (1994).
[CrossRef] [PubMed]

Ma, H. L.

Y. Guimond, J.-L. Adam, A.-M. Jurdyc, H. L. Ma, J. Mugnier, and B. Jacquier, “Optical properties of antimony-stabilised sulphide glasses doped with Dy3+ and Er3+ ions,” J. Non-Cryst. Solids 256&257, 378–382 (1999).
[CrossRef]

MacFarlane, D. R.

V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Energy exchange processes in Er3+-doped fluorozirconate glasses,” J. Non-Cryst. Solids 256&257, 288–293 (1999).
[CrossRef]

Machewirth, D. P.

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Pr3+-doped Ge-Ga-S glasses for 1.3 μm optical fiber amplifiers,” J. Non-Cryst. Solids 182, 257–261 (1995).
[CrossRef]

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Spectroscopy of Dy3+ in Ge-Ga-S glass and its suitability for 1.3 μm fiber-optical amplifier applications,” Opt. Lett. 19, 904–906 (1994).
[CrossRef] [PubMed]

McFarlane, R. A.

Meichenin, D.

F. Auzel, D. Meichenin, and H. Poignant, “Laser cross-section and quantum yield of Er3+ at 2.7 μm in a ZrF4-based fluoride glass,” Electron. Lett. 24, 909–910 (1988).
[CrossRef]

Miniscalco, W. J.

R. S. Quimby, W. J. Miniscalco, and B. Thomson, “Excited state absorption in erbium doped glass,” in Fiber Laser Source and Amplifiers III, Proc. SPIE 1581, 72–79 (1991).
[CrossRef]

Moore, R. C.

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33, 414–416 (1997).
[CrossRef]

Mori, A.

A. Mori, Y. Ohishi, T. Kanamori, and S. Sudo, “Optical amplification with neodymium-doped chalcogenide glass fibre,” Appl. Phys. Lett. 70, 1230–1232 (1997).
[CrossRef]

Morinaga, K.

Mugnier, J.

Y. Guimond, J.-L. Adam, A.-M. Jurdyc, H. L. Ma, J. Mugnier, and B. Jacquier, “Optical properties of antimony-stabilised sulphide glasses doped with Dy3+ and Er3+ ions,” J. Non-Cryst. Solids 256&257, 378–382 (1999).
[CrossRef]

Murata, T.

Nachimuthu, P.

P. Nachimuthu, M. Vithal, and R. Jagannathan, “Absorption and emission spectral properties of Pr3+, Nd3+ and Eu3+ ions in heavy-metal oxide glasses,” J. Am. Ceram. Soc. 83, 597–604 (2000).
[CrossRef]

Naftaly, M.

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62, 6215–6227 (2000).
[CrossRef]

Newman, P. J.

V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Energy exchange processes in Er3+-doped fluorozirconate glasses,” J. Non-Cryst. Solids 256&257, 288–293 (1999).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Ohishi, Y.

A. Mori, Y. Ohishi, T. Kanamori, and S. Sudo, “Optical amplification with neodymium-doped chalcogenide glass fibre,” Appl. Phys. Lett. 70, 1230–1232 (1997).
[CrossRef]

Park, S. H.

S. H. Park, J. Heo, and H. S. Kim, “Composition depen-dence of the 1.3 μm emission and energy transfer mechanism in Ge-Ga-S glasses doped with Pr3+,” J. Non-Cryst. Solids 259, 31–38 (1999).
[CrossRef]

Payne, D. N.

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33, 414–416 (1997).
[CrossRef]

H. Takebe, K. Yoshino, T. Murata, K. Morinaga, J. Hector, W. S. Brocklesby, D. W. Hewak, J. Wang, and D. N. Payne, “Spectroscopic properties of Nd3+ and Pr3+ in gallate glasses with low phonon energies,” Appl. Opt. 36, 5839–5843 (1997).
[CrossRef] [PubMed]

C. C. Ye, D. W. Hewak, M. Hempstead, B. N. Samson, and D. N. Payne, “Spectral properties of Er3+-doped gallium lanthanum sulphide glass,” J. Non-Cryst. Solids 208, 56–63 (1996).
[CrossRef]

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jessen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32, 666–667 (1996).
[CrossRef]

Pierce, M. C.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with continuous wave 3 μm fibre laser: preliminary studies with soft tissue,” Lasers Surg. Med. 26, 491–495 (2000).
[CrossRef]

Poignant, H.

F. Auzel, D. Meichenin, and H. Poignant, “Laser cross-section and quantum yield of Er3+ at 2.7 μm in a ZrF4-based fluoride glass,” Electron. Lett. 24, 909–910 (1988).
[CrossRef]

Pollnau, M.

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
[CrossRef]

S. D. Jackson, T. A. King, and M. Pollnau, “Diode pumped 1.7-W erbium fiber laser,” Opt. Lett. 24, 1133–1134 (1999).
[CrossRef]

M. Pollnau, W. Luthy, H. P. Weber, T. Jensen, G. Huber, A. Cassanho, H. P. Jenssen, and R. A. McFarlane, “Investigation of diode-pumped 2.8-μm laser performance in Er:BaY2F8,” Opt. Lett. 21, 48–50 (1996).
[CrossRef] [PubMed]

M. Pollnau, Th. Graf, J. E. Balmer, W. Luthy, and H. P. Weber, “Explanation of the cw operation of the Er3+ 3-μm crystal laser,” Phys. Rev. A 49, 3990–3996 (1994).
[CrossRef] [PubMed]

Pratisto, H.

M. Frenz, H. Pratisto, F. Konz, E. Duco Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12-μm and 2.79-μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025–2036 (1996).
[CrossRef]

Quimby, R. S.

R. S. Quimby, W. J. Miniscalco, and B. Thomson, “Excited state absorption in erbium doped glass,” in Fiber Laser Source and Amplifiers III, Proc. SPIE 1581, 72–79 (1991).
[CrossRef]

Reisfeld, R.

R. Reisfeld, “Chalcogenide glasses doped by rare earths: structure and optical properties,” Ann. Chim. (Paris) 7, 147–160 (1982).

Risbud, S. H.

P. N. Kumta and S. H. Risbud, “Rare-earth chalcogenides: an emerging class of optical materials,” J. Mater. Sci. 29, 1135–1158 (1994).
[CrossRef]

Rogin, P.

Chr. Wyss, W. Luthy, H. P. Weber, P. Rogin, and J. Hulliger, “Emission properties of an optimised 2.8 μm Er3+:YLF laser,” Opt. Commun. 139, 215–218 (1997).
[CrossRef]

Rose, T. S.

Samson, B. N.

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33, 414–416 (1997).
[CrossRef]

C. C. Ye, D. W. Hewak, M. Hempstead, B. N. Samson, and D. N. Payne, “Spectral properties of Er3+-doped gallium lanthanum sulphide glass,” J. Non-Cryst. Solids 208, 56–63 (1996).
[CrossRef]

Sandrock, T.

Sanghera, J. S.

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibres for IR applications: a review,” J. Non-Cryst. Solids 256&257, 6–16 (1999).
[CrossRef]

Schweizer, T.

Y. D. West, T. Schweizer, D. J. Brady, and D. W. Hewak, “Gallium lanthanum sulfide fibers for infrared transmission,” Fiber Integr. Opt. 19, 229–250 (2000).
[CrossRef]

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33, 414–416 (1997).
[CrossRef]

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jessen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32, 666–667 (1996).
[CrossRef]

Shen, S.

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62, 6215–6227 (2000).
[CrossRef]

Shin, Y. B.

Y. G. Choi, K. H. Kim, B. J. Lee, Y. B. Shin, Y. S. Kim, and J. Heo, “Emission properties of the Er3+:4I11/24I13/2 transition in Er3+ and Er3+/Tm3+-doped Ge-Ga-As-S glasses,” J. Non-Cryst. Solids 278, 137–144 (2000).
[CrossRef]

Y. B. Shin, W. Y. Cho, and J. Heo, “Multiphonon and cross relaxation phenomena in Ge-As(or Ga)-S glasses doped with Tm3+,” J. Non-Cryst. Solids 208, 29–35 (1996).
[CrossRef]

Y. S. Kim, W. Y. Cho, Y. B. Shin, and J. Jeo, “Emission characteristics of Ge-Ga-S glasses doped with Tm3+/Ho3+,” J. Non-Cryst. Solids 203, 176–181 (1996).
[CrossRef]

Sigel Jr., G. H.

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Pr3+-doped Ge-Ga-S glasses for 1.3 μm optical fiber amplifiers,” J. Non-Cryst. Solids 182, 257–261 (1995).
[CrossRef]

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Spectroscopy of Dy3+ in Ge-Ga-S glass and its suitability for 1.3 μm fiber-optical amplifier applications,” Opt. Lett. 19, 904–906 (1994).
[CrossRef] [PubMed]

Sloan, P.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with continuous wave 3 μm fibre laser: preliminary studies with soft tissue,” Lasers Surg. Med. 26, 491–495 (2000).
[CrossRef]

Snitzer, E.

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Pr3+-doped Ge-Ga-S glasses for 1.3 μm optical fiber amplifiers,” J. Non-Cryst. Solids 182, 257–261 (1995).
[CrossRef]

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Spectroscopy of Dy3+ in Ge-Ga-S glass and its suitability for 1.3 μm fiber-optical amplifier applications,” Opt. Lett. 19, 904–906 (1994).
[CrossRef] [PubMed]

Srinivasan, B.

Sudo, S.

A. Mori, Y. Ohishi, T. Kanamori, and S. Sudo, “Optical amplification with neodymium-doped chalcogenide glass fibre,” Appl. Phys. Lett. 70, 1230–1232 (1997).
[CrossRef]

Sumida, D. S.

Tafoya, J.

Takebe, H.

Thomson, B.

R. S. Quimby, W. J. Miniscalco, and B. Thomson, “Excited state absorption in erbium doped glass,” in Fiber Laser Source and Amplifiers III, Proc. SPIE 1581, 72–79 (1991).
[CrossRef]

Vernon, F. L.

Vithal, M.

P. Nachimuthu, M. Vithal, and R. Jagannathan, “Absorption and emission spectral properties of Pr3+, Nd3+ and Eu3+ ions in heavy-metal oxide glasses,” J. Am. Ceram. Soc. 83, 597–604 (2000).
[CrossRef]

Wang, J.

Weber, H. P.

Chr. Wyss, W. Luthy, H. P. Weber, P. Rogin, and J. Hulliger, “Emission properties of an optimised 2.8 μm Er3+:YLF laser,” Opt. Commun. 139, 215–218 (1997).
[CrossRef]

M. Frenz, H. Pratisto, F. Konz, E. Duco Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12-μm and 2.79-μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025–2036 (1996).
[CrossRef]

M. Pollnau, W. Luthy, H. P. Weber, T. Jensen, G. Huber, A. Cassanho, H. P. Jenssen, and R. A. McFarlane, “Investigation of diode-pumped 2.8-μm laser performance in Er:BaY2F8,” Opt. Lett. 21, 48–50 (1996).
[CrossRef] [PubMed]

M. Pollnau, Th. Graf, J. E. Balmer, W. Luthy, and H. P. Weber, “Explanation of the cw operation of the Er3+ 3-μm crystal laser,” Phys. Rev. A 49, 3990–3996 (1994).
[CrossRef] [PubMed]

Weber, M. J.

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–273 (1967).
[CrossRef]

Wei, K.

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Pr3+-doped Ge-Ga-S glasses for 1.3 μm optical fiber amplifiers,” J. Non-Cryst. Solids 182, 257–261 (1995).
[CrossRef]

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Spectroscopy of Dy3+ in Ge-Ga-S glass and its suitability for 1.3 μm fiber-optical amplifier applications,” Opt. Lett. 19, 904–906 (1994).
[CrossRef] [PubMed]

Welch, A. J.

M. Frenz, H. Pratisto, F. Konz, E. Duco Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12-μm and 2.79-μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025–2036 (1996).
[CrossRef]

Welling, H.

Wenzel, J.

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Pr3+-doped Ge-Ga-S glasses for 1.3 μm optical fiber amplifiers,” J. Non-Cryst. Solids 182, 257–261 (1995).
[CrossRef]

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Spectroscopy of Dy3+ in Ge-Ga-S glass and its suitability for 1.3 μm fiber-optical amplifier applications,” Opt. Lett. 19, 904–906 (1994).
[CrossRef] [PubMed]

West, Y. D.

Y. D. West, T. Schweizer, D. J. Brady, and D. W. Hewak, “Gallium lanthanum sulfide fibers for infrared transmission,” Fiber Integr. Opt. 19, 229–250 (2000).
[CrossRef]

Will, G. F.

Wrage, M.

Wyss, Chr.

Chr. Wyss, W. Luthy, H. P. Weber, P. Rogin, and J. Hulliger, “Emission properties of an optimised 2.8 μm Er3+:YLF laser,” Opt. Commun. 139, 215–218 (1997).
[CrossRef]

Ye, C. C.

C. C. Ye, D. W. Hewak, M. Hempstead, B. N. Samson, and D. N. Payne, “Spectral properties of Er3+-doped gallium lanthanum sulphide glass,” J. Non-Cryst. Solids 208, 56–63 (1996).
[CrossRef]

Yoshino, K.

Ziolek, C.

Ann. Chim. (Paris) (1)

R. Reisfeld, “Chalcogenide glasses doped by rare earths: structure and optical properties,” Ann. Chim. (Paris) 7, 147–160 (1982).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

A. Mori, Y. Ohishi, T. Kanamori, and S. Sudo, “Optical amplification with neodymium-doped chalcogenide glass fibre,” Appl. Phys. Lett. 70, 1230–1232 (1997).
[CrossRef]

Electron. Lett. (3)

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jessen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32, 666–667 (1996).
[CrossRef]

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33, 414–416 (1997).
[CrossRef]

F. Auzel, D. Meichenin, and H. Poignant, “Laser cross-section and quantum yield of Er3+ at 2.7 μm in a ZrF4-based fluoride glass,” Electron. Lett. 24, 909–910 (1988).
[CrossRef]

Fiber Integr. Opt. (1)

Y. D. West, T. Schweizer, D. J. Brady, and D. W. Hewak, “Gallium lanthanum sulfide fibers for infrared transmission,” Fiber Integr. Opt. 19, 229–250 (2000).
[CrossRef]

Glass Technol. (1)

J. Flahaut, M. Guittard, and A. M. Loireau-Lozac’h, “Rare-earth sulphide and oxysulphide glasses,” Glass Technol. 24, 149–156 (1983).

IEEE J. Quantum Electron. (3)

V. Lupei, S. Georgesecu, and V. Florea, “On the dynamics of population inversion for 3 μm Er3+ lasers,” IEEE J. Quantum Electron. 29, 426–434 (1993).
[CrossRef]

D. S. Knowles and H. P. Jenssen, “Upconversion versus Pr-deactivation for efficient 3 μm laser operation,” IEEE J. Quantum Electron. 28, 1197–1208 (1992).
[CrossRef]

M. Frenz, H. Pratisto, F. Konz, E. Duco Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12-μm and 2.79-μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025–2036 (1996).
[CrossRef]

J. Am. Ceram. Soc. (2)

Y. G. Choi, K. H. Kim, and J. Heo, “Spectroscopic properties of and energy transfer in PbO-Bi2O3Ga2O3 glass doped with Er2O3,” J. Am. Ceram. Soc. 32, 2762–2768 (1999).

P. Nachimuthu, M. Vithal, and R. Jagannathan, “Absorption and emission spectral properties of Pr3+, Nd3+ and Eu3+ ions in heavy-metal oxide glasses,” J. Am. Ceram. Soc. 83, 597–604 (2000).
[CrossRef]

J. Chem. Phys. (1)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

J. Mater. Sci. (1)

P. N. Kumta and S. H. Risbud, “Rare-earth chalcogenides: an emerging class of optical materials,” J. Mater. Sci. 29, 1135–1158 (1994).
[CrossRef]

J. Mater. Sci. Lett. (1)

J. Heo, “Optical characteristics of rare-earth-doped sulphide glasses,” J. Mater. Sci. Lett. 14, 1014–1016 (1995).
[CrossRef]

J. Non-Cryst. Solids (10)

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibres for IR applications: a review,” J. Non-Cryst. Solids 256&257, 6–16 (1999).
[CrossRef]

S. H. Park, J. Heo, and H. S. Kim, “Composition depen-dence of the 1.3 μm emission and energy transfer mechanism in Ge-Ga-S glasses doped with Pr3+,” J. Non-Cryst. Solids 259, 31–38 (1999).
[CrossRef]

V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Energy exchange processes in Er3+-doped fluorozirconate glasses,” J. Non-Cryst. Solids 256&257, 288–293 (1999).
[CrossRef]

C. C. Ye, D. W. Hewak, M. Hempstead, B. N. Samson, and D. N. Payne, “Spectral properties of Er3+-doped gallium lanthanum sulphide glass,” J. Non-Cryst. Solids 208, 56–63 (1996).
[CrossRef]

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Pr3+-doped Ge-Ga-S glasses for 1.3 μm optical fiber amplifiers,” J. Non-Cryst. Solids 182, 257–261 (1995).
[CrossRef]

Y. B. Shin, W. Y. Cho, and J. Heo, “Multiphonon and cross relaxation phenomena in Ge-As(or Ga)-S glasses doped with Tm3+,” J. Non-Cryst. Solids 208, 29–35 (1996).
[CrossRef]

Y. S. Kim, W. Y. Cho, Y. B. Shin, and J. Jeo, “Emission characteristics of Ge-Ga-S glasses doped with Tm3+/Ho3+,” J. Non-Cryst. Solids 203, 176–181 (1996).
[CrossRef]

Y. G. Chio and J. Heo, “1.3 μm emission and multiphonon relaxation phenomena in PbO-Bi2O3-Ga2O3 glasses doped with rare-earths,” J. Non-Cryst. Solids 217, 199–207 (1997).
[CrossRef]

Y. G. Choi, K. H. Kim, B. J. Lee, Y. B. Shin, Y. S. Kim, and J. Heo, “Emission properties of the Er3+:4I11/24I13/2 transition in Er3+ and Er3+/Tm3+-doped Ge-Ga-As-S glasses,” J. Non-Cryst. Solids 278, 137–144 (2000).
[CrossRef]

Y. Guimond, J.-L. Adam, A.-M. Jurdyc, H. L. Ma, J. Mugnier, and B. Jacquier, “Optical properties of antimony-stabilised sulphide glasses doped with Dy3+ and Er3+ ions,” J. Non-Cryst. Solids 256&257, 378–382 (1999).
[CrossRef]

Lasers Surg. Med. (3)

U. Keller and R. Hibst, “Effects of Er:YAG laser in caries treatment,” Lasers Surg. Med. 20, 32–38 (1997).
[CrossRef]

T. S. Alster, “Clinical and histologic evaluation of six erbium:YAG lasers for cutaneous resurfacing,” Lasers Surg. Med. 24, 87–94 (1995).
[CrossRef]

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with continuous wave 3 μm fibre laser: preliminary studies with soft tissue,” Lasers Surg. Med. 26, 491–495 (2000).
[CrossRef]

Opt. Commun. (1)

Chr. Wyss, W. Luthy, H. P. Weber, P. Rogin, and J. Hulliger, “Emission properties of an optimised 2.8 μm Er3+:YLF laser,” Opt. Commun. 139, 215–218 (1997).
[CrossRef]

Opt. Express (1)

Opt. Lett. (7)

Phys. Chem. Glasses (1)

Y. G. Choi and J. Heo, “Influence of OH and Nd3+ concentrations on the lifetimes of Nd3+: 4F3/2 level in PbO-Bi2O3-Ga2O3 glasses,” Phys. Chem. Glasses 39, 311–317 (1998).

Phys. Rev. (2)

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–273 (1967).
[CrossRef]

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Phys. Rev. A (1)

M. Pollnau, Th. Graf, J. E. Balmer, W. Luthy, and H. P. Weber, “Explanation of the cw operation of the Er3+ 3-μm crystal laser,” Phys. Rev. A 49, 3990–3996 (1994).
[CrossRef] [PubMed]

Phys. Rev. B (2)

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
[CrossRef]

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62, 6215–6227 (2000).
[CrossRef]

Proc. SPIE (1)

R. S. Quimby, W. J. Miniscalco, and B. Thomson, “Excited state absorption in erbium doped glass,” in Fiber Laser Source and Amplifiers III, Proc. SPIE 1581, 72–79 (1991).
[CrossRef]

Other (4)

K. Wei, “Synthesis and characterization of rare earth doped chalcogenide glasses,” Ph.D. dissertation (Rutgers, The State University of New Jersey, New Brunswick, New Jersey, 1994), p. 116.

K. Wei, “Synthesis and characterization of rare earth doped chalcogenide glasses,” Ph.D. dissertation (Rutgers, The State University of New Jersey, New Brunswick, New Jersey, 1994), p. 87.

T. Jensen, “Upconversion Prozesse und Wirkungsquerschnitte in Er3+-dotierten 3 μm Fluorid- und Granat-Lasern, gepumpt mit cw und quasi-cw Dioden-Arrays” Ph.D. dissertation (Institute of Laser-Physics, University of Hamburg, Germany, 1996).

P. France, Fluoride Glass Optical Fibres (Blackie, London, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Partial energy-level diagram of Er3+ and Pr3+ indicating the pump wavelengths of the  4I9/2 and  4I11/2 levels, the 2.7-µm laser transition, the ETU processes from the upper and lower laser levels, and energy-transfer process from Er3+ to Pr3+.

Fig. 2
Fig. 2

Experimental arrangement for the measurement of the luminescent decay from the  4I13/2 and  4I11/2 energy levels of Er3+.

Fig. 3
Fig. 3

Measured ground-state absorption spectrum of Er3+-doped GeGaS glass for (a) the range 500 to 1650 nm and (b) for the two important pump bands relevant to the 2.7-µm laser transition.

Fig. 4
Fig. 4

Measured emission spectrum of the  4I11/2 4I13/2 transition in Er3+-doped GeGaS glass.

Fig. 5
Fig. 5

Measured values for τ(Er:4I13/2) and τ(Er:4I11/2) in Er3+-doped GeGaS glass for a range of Er3+-doping concentrations.

Fig. 6
Fig. 6

Measured values for τ(Er:4I13/2) and τ(Er:4I13/2) with Pr3+-codoping in Er3+-doped GeGaS glass.

Fig. 7
Fig. 7

Calculated macroscopic energy-transfer parameter WEr-Pr relevant to energy transfer from the Er3+:4I13/2 level to the Pr3+:3F4 and Pr3+:3F3 levels (ET2) in Er3+ Pr3+-codoped GeGaS glass.

Fig. 8
Fig. 8

Calculated macroscopic parameter WETU for ETU from the  4I13/2 and  4I11/2 levels of Er3+-doped GeGaS glass for a range of Er3+-doping concentrations.

Fig. 9
Fig. 9

Measured absorption spectrum of Er3+-doped GeGaS glass in the range 2.5 µm to 11 µm. The Er3+ concentration is 0.5 mol.%. The inset shows the corresponding absorption spectrum in the vicinity of the fundamental stretching mode of OH.

Fig. 10
Fig. 10

Measured values of the OH absorption peak in (a) the single Er3+-doped samples and (b) the Er3+, Pr3+-codoped samples. Er3+ concentration is 0.875 mol.%.

Tables (5)

Tables Icon

Table 1 Oscillator Strenghts in Er3+-Doped Sulfide Glasses

Tables Icon

Table 2 Judd–Ofelt Intensity Parameters in Er3+-Doped Sulfide Glasses

Tables Icon

Table 3 Calculated and Measured Luminescent Lifetimes in Er3+-Doped GeGaS Glass

Tables Icon

Table 4 Measured Luminescent Lifetimes of the  4I13/2 and  4I11/2 Levels in Er3+-Doped Sulfide Glasses

Tables Icon

Table 5 Position and Width of the Fundamental OH Absorption Peak in a Number of Er3+-Doped Glasses

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Wmp=Wo exp(-αΔE),
I(t)=I0 exp-tτ0-γt1/2,
REr-Pr=WEr-Pr N(Er:4I13/2)N(Pr3+),
dNdT=-Nτ-2WETU N2,

Metrics