Abstract

Quantum-well excitons dressed by a terahertz field have multiple optical resonances. An optical beam tuned to any of the resonant frequencies excites the dressed-exciton state; therefore the optical beam experiences attenuation upon its transmission. For two coherent optical beams tuned to two different resonant frequencies, however, one can judiciously choose the amplitudes and phases in such a way that the beams do not produce any excitation, and thus they experience no attenuation, even though each of beams would be strongly attenuated in the absence of the other. This two-color scheme also suggests coherent control of dressed excitons by a pair of phase-locked pulses with different carrier frequencies and nonoverlapping spectra.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Černe, J. Kono, T. Inoshita, M. Sherwin, M. Sundaram, and A. C. Gossard, “Near-infrared sideband generation induced by intense far-infrared radiation in GaAs quantum wells,” Appl. Phys. Lett. 70, 3543–3545 (1997).
    [CrossRef]
  2. K. B. Nordstrom, K. Johnsen, S. J. Allen, A. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki, “Ex-citonic dynamical Franz–Keldysh effect,” Phys. Rev. Lett. 81, 4457–4460 (1998).
    [CrossRef]
  3. C. Phillips, M. Y. Su, M. S. Sherwin, J. Ko, and L. Coldren, “Generation of first-order terahertz optical sidebands in asymmetric coupled quantum wells,” Appl. Phys. Lett. 75, 2728–2730 (1999).
    [CrossRef]
  4. A. V. Maslov and D. S. Citrin, “Optical absorption of THz-field-driven and dc-biased quantum wells,” Phys. Rev. B 64, 155309 (2001).
    [CrossRef]
  5. D. R. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 6, 1122–1135 (2000).
    [CrossRef]
  6. S. Hughes and D. S. Citrin, “Circularly polarized dynamic Franz–Keldysh effect,” Phys. Rev. B 60, 13272–13275 (1999).
    [CrossRef]
  7. K. Johnsen and A.-P. Jauho, “Quasi-energy spectroscopy of excitons,” Phys. Rev. Lett. 83, 1207–1210 (1999).
    [CrossRef]
  8. A. P. Heberle, J. J. Baumberg, and K. Köhler, “Ultrafast coherent control and destruction of excitons in quantum wells,” Phys. Rev. Lett. 75, 2598–2601 (1995).
    [CrossRef] [PubMed]
  9. D. S. Citrin, “Radiative lifetimes of excitons in quantum wells: localization and phase-coherence effects,” Phys. Rev. B 47, 3832–3841 (1993).
    [CrossRef]

2001 (1)

A. V. Maslov and D. S. Citrin, “Optical absorption of THz-field-driven and dc-biased quantum wells,” Phys. Rev. B 64, 155309 (2001).
[CrossRef]

2000 (1)

D. R. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 6, 1122–1135 (2000).
[CrossRef]

1999 (3)

S. Hughes and D. S. Citrin, “Circularly polarized dynamic Franz–Keldysh effect,” Phys. Rev. B 60, 13272–13275 (1999).
[CrossRef]

K. Johnsen and A.-P. Jauho, “Quasi-energy spectroscopy of excitons,” Phys. Rev. Lett. 83, 1207–1210 (1999).
[CrossRef]

C. Phillips, M. Y. Su, M. S. Sherwin, J. Ko, and L. Coldren, “Generation of first-order terahertz optical sidebands in asymmetric coupled quantum wells,” Appl. Phys. Lett. 75, 2728–2730 (1999).
[CrossRef]

1998 (1)

K. B. Nordstrom, K. Johnsen, S. J. Allen, A. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki, “Ex-citonic dynamical Franz–Keldysh effect,” Phys. Rev. Lett. 81, 4457–4460 (1998).
[CrossRef]

1997 (1)

J. Černe, J. Kono, T. Inoshita, M. Sherwin, M. Sundaram, and A. C. Gossard, “Near-infrared sideband generation induced by intense far-infrared radiation in GaAs quantum wells,” Appl. Phys. Lett. 70, 3543–3545 (1997).
[CrossRef]

1995 (1)

A. P. Heberle, J. J. Baumberg, and K. Köhler, “Ultrafast coherent control and destruction of excitons in quantum wells,” Phys. Rev. Lett. 75, 2598–2601 (1995).
[CrossRef] [PubMed]

1993 (1)

D. S. Citrin, “Radiative lifetimes of excitons in quantum wells: localization and phase-coherence effects,” Phys. Rev. B 47, 3832–3841 (1993).
[CrossRef]

Akiyama, H.

K. B. Nordstrom, K. Johnsen, S. J. Allen, A. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki, “Ex-citonic dynamical Franz–Keldysh effect,” Phys. Rev. Lett. 81, 4457–4460 (1998).
[CrossRef]

Allen, S. J.

K. B. Nordstrom, K. Johnsen, S. J. Allen, A. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki, “Ex-citonic dynamical Franz–Keldysh effect,” Phys. Rev. Lett. 81, 4457–4460 (1998).
[CrossRef]

Baumberg, J. J.

A. P. Heberle, J. J. Baumberg, and K. Köhler, “Ultrafast coherent control and destruction of excitons in quantum wells,” Phys. Rev. Lett. 75, 2598–2601 (1995).
[CrossRef] [PubMed]

Birnir, B.

K. B. Nordstrom, K. Johnsen, S. J. Allen, A. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki, “Ex-citonic dynamical Franz–Keldysh effect,” Phys. Rev. Lett. 81, 4457–4460 (1998).
[CrossRef]

Cerne, J.

J. Černe, J. Kono, T. Inoshita, M. Sherwin, M. Sundaram, and A. C. Gossard, “Near-infrared sideband generation induced by intense far-infrared radiation in GaAs quantum wells,” Appl. Phys. Lett. 70, 3543–3545 (1997).
[CrossRef]

Citrin, D. S.

A. V. Maslov and D. S. Citrin, “Optical absorption of THz-field-driven and dc-biased quantum wells,” Phys. Rev. B 64, 155309 (2001).
[CrossRef]

S. Hughes and D. S. Citrin, “Circularly polarized dynamic Franz–Keldysh effect,” Phys. Rev. B 60, 13272–13275 (1999).
[CrossRef]

D. S. Citrin, “Radiative lifetimes of excitons in quantum wells: localization and phase-coherence effects,” Phys. Rev. B 47, 3832–3841 (1993).
[CrossRef]

Coldren, L.

C. Phillips, M. Y. Su, M. S. Sherwin, J. Ko, and L. Coldren, “Generation of first-order terahertz optical sidebands in asymmetric coupled quantum wells,” Appl. Phys. Lett. 75, 2728–2730 (1999).
[CrossRef]

Gossard, A. C.

J. Černe, J. Kono, T. Inoshita, M. Sherwin, M. Sundaram, and A. C. Gossard, “Near-infrared sideband generation induced by intense far-infrared radiation in GaAs quantum wells,” Appl. Phys. Lett. 70, 3543–3545 (1997).
[CrossRef]

Grischkowsky, D. R.

D. R. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 6, 1122–1135 (2000).
[CrossRef]

Heberle, A. P.

A. P. Heberle, J. J. Baumberg, and K. Köhler, “Ultrafast coherent control and destruction of excitons in quantum wells,” Phys. Rev. Lett. 75, 2598–2601 (1995).
[CrossRef] [PubMed]

Hughes, S.

S. Hughes and D. S. Citrin, “Circularly polarized dynamic Franz–Keldysh effect,” Phys. Rev. B 60, 13272–13275 (1999).
[CrossRef]

Inoshita, T.

J. Černe, J. Kono, T. Inoshita, M. Sherwin, M. Sundaram, and A. C. Gossard, “Near-infrared sideband generation induced by intense far-infrared radiation in GaAs quantum wells,” Appl. Phys. Lett. 70, 3543–3545 (1997).
[CrossRef]

Jauho, A.

K. B. Nordstrom, K. Johnsen, S. J. Allen, A. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki, “Ex-citonic dynamical Franz–Keldysh effect,” Phys. Rev. Lett. 81, 4457–4460 (1998).
[CrossRef]

Jauho, A.-P.

K. Johnsen and A.-P. Jauho, “Quasi-energy spectroscopy of excitons,” Phys. Rev. Lett. 83, 1207–1210 (1999).
[CrossRef]

Johnsen, K.

K. Johnsen and A.-P. Jauho, “Quasi-energy spectroscopy of excitons,” Phys. Rev. Lett. 83, 1207–1210 (1999).
[CrossRef]

K. B. Nordstrom, K. Johnsen, S. J. Allen, A. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki, “Ex-citonic dynamical Franz–Keldysh effect,” Phys. Rev. Lett. 81, 4457–4460 (1998).
[CrossRef]

Ko, J.

C. Phillips, M. Y. Su, M. S. Sherwin, J. Ko, and L. Coldren, “Generation of first-order terahertz optical sidebands in asymmetric coupled quantum wells,” Appl. Phys. Lett. 75, 2728–2730 (1999).
[CrossRef]

Köhler, K.

A. P. Heberle, J. J. Baumberg, and K. Köhler, “Ultrafast coherent control and destruction of excitons in quantum wells,” Phys. Rev. Lett. 75, 2598–2601 (1995).
[CrossRef] [PubMed]

Kono, J.

K. B. Nordstrom, K. Johnsen, S. J. Allen, A. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki, “Ex-citonic dynamical Franz–Keldysh effect,” Phys. Rev. Lett. 81, 4457–4460 (1998).
[CrossRef]

J. Černe, J. Kono, T. Inoshita, M. Sherwin, M. Sundaram, and A. C. Gossard, “Near-infrared sideband generation induced by intense far-infrared radiation in GaAs quantum wells,” Appl. Phys. Lett. 70, 3543–3545 (1997).
[CrossRef]

Maslov, A. V.

A. V. Maslov and D. S. Citrin, “Optical absorption of THz-field-driven and dc-biased quantum wells,” Phys. Rev. B 64, 155309 (2001).
[CrossRef]

Noda, T.

K. B. Nordstrom, K. Johnsen, S. J. Allen, A. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki, “Ex-citonic dynamical Franz–Keldysh effect,” Phys. Rev. Lett. 81, 4457–4460 (1998).
[CrossRef]

Nordstrom, K. B.

K. B. Nordstrom, K. Johnsen, S. J. Allen, A. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki, “Ex-citonic dynamical Franz–Keldysh effect,” Phys. Rev. Lett. 81, 4457–4460 (1998).
[CrossRef]

Phillips, C.

C. Phillips, M. Y. Su, M. S. Sherwin, J. Ko, and L. Coldren, “Generation of first-order terahertz optical sidebands in asymmetric coupled quantum wells,” Appl. Phys. Lett. 75, 2728–2730 (1999).
[CrossRef]

Sakaki, H.

K. B. Nordstrom, K. Johnsen, S. J. Allen, A. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki, “Ex-citonic dynamical Franz–Keldysh effect,” Phys. Rev. Lett. 81, 4457–4460 (1998).
[CrossRef]

Sherwin, M.

J. Černe, J. Kono, T. Inoshita, M. Sherwin, M. Sundaram, and A. C. Gossard, “Near-infrared sideband generation induced by intense far-infrared radiation in GaAs quantum wells,” Appl. Phys. Lett. 70, 3543–3545 (1997).
[CrossRef]

Sherwin, M. S.

C. Phillips, M. Y. Su, M. S. Sherwin, J. Ko, and L. Coldren, “Generation of first-order terahertz optical sidebands in asymmetric coupled quantum wells,” Appl. Phys. Lett. 75, 2728–2730 (1999).
[CrossRef]

Su, M. Y.

C. Phillips, M. Y. Su, M. S. Sherwin, J. Ko, and L. Coldren, “Generation of first-order terahertz optical sidebands in asymmetric coupled quantum wells,” Appl. Phys. Lett. 75, 2728–2730 (1999).
[CrossRef]

Sundaram, M.

J. Černe, J. Kono, T. Inoshita, M. Sherwin, M. Sundaram, and A. C. Gossard, “Near-infrared sideband generation induced by intense far-infrared radiation in GaAs quantum wells,” Appl. Phys. Lett. 70, 3543–3545 (1997).
[CrossRef]

Appl. Phys. Lett. (2)

J. Černe, J. Kono, T. Inoshita, M. Sherwin, M. Sundaram, and A. C. Gossard, “Near-infrared sideband generation induced by intense far-infrared radiation in GaAs quantum wells,” Appl. Phys. Lett. 70, 3543–3545 (1997).
[CrossRef]

C. Phillips, M. Y. Su, M. S. Sherwin, J. Ko, and L. Coldren, “Generation of first-order terahertz optical sidebands in asymmetric coupled quantum wells,” Appl. Phys. Lett. 75, 2728–2730 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. R. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 6, 1122–1135 (2000).
[CrossRef]

Phys. Rev. B (3)

S. Hughes and D. S. Citrin, “Circularly polarized dynamic Franz–Keldysh effect,” Phys. Rev. B 60, 13272–13275 (1999).
[CrossRef]

A. V. Maslov and D. S. Citrin, “Optical absorption of THz-field-driven and dc-biased quantum wells,” Phys. Rev. B 64, 155309 (2001).
[CrossRef]

D. S. Citrin, “Radiative lifetimes of excitons in quantum wells: localization and phase-coherence effects,” Phys. Rev. B 47, 3832–3841 (1993).
[CrossRef]

Phys. Rev. Lett. (3)

K. B. Nordstrom, K. Johnsen, S. J. Allen, A. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki, “Ex-citonic dynamical Franz–Keldysh effect,” Phys. Rev. Lett. 81, 4457–4460 (1998).
[CrossRef]

K. Johnsen and A.-P. Jauho, “Quasi-energy spectroscopy of excitons,” Phys. Rev. Lett. 83, 1207–1210 (1999).
[CrossRef]

A. P. Heberle, J. J. Baumberg, and K. Köhler, “Ultrafast coherent control and destruction of excitons in quantum wells,” Phys. Rev. Lett. 75, 2598–2601 (1995).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Schematic of a QW biased by a dc field Fdc and an optical field incident on the QW. (b) Typical curve for the energy of the hole state Eh as a function of Fdc. A nonresonant THz field Fac cos(Ωt) applied in addition to Fdc causes adiabatic modulation of the energy of the hole state φh(z). The modulation of the energy of the electron state φe(z) is much smaller due to smaller displacement of the electron under the bias Fdc as schematically shown in (a).

Fig. 2
Fig. 2

Optical absorption of a QW biased by a 50-kV/cm dc field in the absence of the THz field (dashed curve) and in the presence of a 10-kV/cm THz field with Ω=3 meV (solid curve). The energy is given with respect to the bandgap energy of an unbiased QW. The inset shows the absorption of the two-color optical field as a function of the phase ϕ between the two spectral components tuned to the peaks indicated by the arrows (the data points show the calculated absorption, and the curve is a smooth fit).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

|Ψ=|0+C(t)|exc,
Ψ(re, rh, t)=(1/S)F(ρ)φe(ze)φh(zh)×exp-iωexct-i -t dtW(t),
Ψ(re, rh, t)=F(ρ)Sφe(ze)φh(zh)han exp(-iωnt),
i dC(t)dt=-E(t)ndn exp(iωnt)-ΓscC(t),
Er(t)=2iπωexccbP(t),Er(t)+E0(t)=Et(t),
P(t)=(1/S)C(t)ndn exp(-iωnt).
dCdt=iE0(t)ndn exp(iωnt)-(Γrad+Γsc)C,
-+dtE0(t)ndn exp(iωnt)=0.
C(t)=-(i/)dt[dn1En1f(t)+dn2En2f(t-τ)],

Metrics