Abstract

We demonstrate potassium bismuth gallate glasses as suitable hosts for rare-earth-ion erbium (Er3+) operating in the 1.55-µm-wavelength region. The absorption and luminescence spectra along with the luminescence decay time were measured. The emission peak of the  4I13/24I15/2 transition is at the 1.53-µm wavelength, and the spectral bandwidth is 85 nm, which is one of the broadest. The lifetime of the  4I13/2 level is ∼2.42 ms, and the quantum efficiency is ∼100%. The emission cross section is estimated to be 12.4×10-21 cm2, which is one of the highest among different oxide glasses. The gain coefficient is also calculated, and our results show that potassium bismuth gallate glasses are excellent host materials for broadband-amplifier and high-power-laser applications.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ono, K. Nakagawa, M. Yamada, and S. Sudo, “Er3+-doped fluorophosphate glass fibre amplifier for WDM systems,” Electron. Lett. 32, 1586–1587 (1996).
    [CrossRef]
  2. M. Yamada, T. Kanamori, Y. Terunuma, K. Oikawa, M. Shimizu, S. Sudo, and K. Sagawa, “Fluoride-based erbium-doped fiber amplifier with inherently flat gain spectrum,” IEEE Photonics Technol. Lett. 8, 882–884 (1996).
    [CrossRef]
  3. Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-μm broadband amplification,” Opt. Lett. 28, 274–276 (1998).
    [CrossRef]
  4. H. Ono, M. Yamada, T. Kanamori, S. Sudo, and T. Ohishi, “1.58 μm band fluoride-based Er3+-doped fibre amplifier for WDM transmission systems,” Electron. Lett. 33, 1471–1472 (1997).
    [CrossRef]
  5. P. Blixt, J. Nilsson, T. Carlnas, and B. Jaskorzynska, “Concentration-dependent upconversion in Er3+-doped fiber amplifiers: experiments and modeling,” IEEE Photonics Technol. Lett. 3, 996–998 (1991).
    [CrossRef]
  6. H. L. An, E. Y. B. Pun, H. D. Liu, and X. Z. Lin, “Effects of ion clusters on the performance of a heavily doped erbium-doped fiber laser,” Opt. Lett. 23, 1197–1199 (1998).
    [CrossRef]
  7. S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, “Broad-band 1.5 μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier,” J. Lumin. 87–89, 670–672 (1990).
  8. J. C. Lapp, “Alkali bismuth gallate glasses,” Am. Ceram. Soc. Bull. 71, 1543–1549 (1992).
  9. M. Saad and M. Poulain, “Glass-forming ability criterion,” Mater. Sci. Forum 19–20, 11–18 (1987).
    [CrossRef]
  10. S. Q. Man, E. Y. B. Pun, and P. S. Chung, “Praseodymium-doped alkali bismuth gallate glasses,” J. Opt. Soc. Am. B 17, 23–27 (2000).
    [CrossRef]
  11. S. Q. Man, E. Y. B. Pun, and P. S. Chung, “Upconversion luminescence of Er3+ in alkali bismuth gallate glasses,” Appl. Phys. Lett. 77, 483–485 (2000).
    [CrossRef]
  12. Y. G. Choi and J. Heo, “1.3μm emission and multiphonon relaxation phenomena in PbO-Bi2O3-Ga2O3 glasses doped with rare-earths,” J. Non-Cryst. Solids 217, 199–207 (1997).
    [CrossRef]
  13. A. R. Judd, “Optical absorption intensities of rare earth ions,” Phys. Rev. 127, 750–761 (1962).
    [CrossRef]
  14. G. S. Ofelt, “Intensities of crystal spectra of rare earth ions,” J. Chem. Phys. 37, 511–520 (1962).
    [CrossRef]
  15. M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
    [CrossRef]
  16. M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–276 (1967).
    [CrossRef]
  17. J. McDougall, D. B. Hollios, and M. J. P. Payne, “Spectroscopic properties of Er3+ in fluorozirconate, germanate, tellurite, and phosphate glasses,” Phys. Chem. Glasses 37, 73–75 (1996).
  18. A. K. Jørgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less-Common Met. 93, 107–112 (1983).
    [CrossRef]
  19. R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/24I11/2 induced emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. 12, 103–111 (1976).
    [CrossRef]
  20. J. N. Sandoe, P. H. Sarkies, and S. Parke, “Variation of Er3+ cross section for stimulated emission with glass composition,” J. Phys. D 5, 1788–1799 (1972).
    [CrossRef]
  21. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Application (Wiley, New York, 1994).
  22. W. J. Miniscalco and R. S. Quimby, “General procedure for the analysis of Er3+ cross section,” Opt. Lett. 16, 258–260 (1991).
    [CrossRef] [PubMed]
  23. T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27, 1785–1786 (1991).
    [CrossRef]

2000 (2)

S. Q. Man, E. Y. B. Pun, and P. S. Chung, “Praseodymium-doped alkali bismuth gallate glasses,” J. Opt. Soc. Am. B 17, 23–27 (2000).
[CrossRef]

S. Q. Man, E. Y. B. Pun, and P. S. Chung, “Upconversion luminescence of Er3+ in alkali bismuth gallate glasses,” Appl. Phys. Lett. 77, 483–485 (2000).
[CrossRef]

1998 (2)

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-μm broadband amplification,” Opt. Lett. 28, 274–276 (1998).
[CrossRef]

H. L. An, E. Y. B. Pun, H. D. Liu, and X. Z. Lin, “Effects of ion clusters on the performance of a heavily doped erbium-doped fiber laser,” Opt. Lett. 23, 1197–1199 (1998).
[CrossRef]

1997 (2)

H. Ono, M. Yamada, T. Kanamori, S. Sudo, and T. Ohishi, “1.58 μm band fluoride-based Er3+-doped fibre amplifier for WDM transmission systems,” Electron. Lett. 33, 1471–1472 (1997).
[CrossRef]

Y. G. Choi and J. Heo, “1.3μm emission and multiphonon relaxation phenomena in PbO-Bi2O3-Ga2O3 glasses doped with rare-earths,” J. Non-Cryst. Solids 217, 199–207 (1997).
[CrossRef]

1996 (3)

J. McDougall, D. B. Hollios, and M. J. P. Payne, “Spectroscopic properties of Er3+ in fluorozirconate, germanate, tellurite, and phosphate glasses,” Phys. Chem. Glasses 37, 73–75 (1996).

H. Ono, K. Nakagawa, M. Yamada, and S. Sudo, “Er3+-doped fluorophosphate glass fibre amplifier for WDM systems,” Electron. Lett. 32, 1586–1587 (1996).
[CrossRef]

M. Yamada, T. Kanamori, Y. Terunuma, K. Oikawa, M. Shimizu, S. Sudo, and K. Sagawa, “Fluoride-based erbium-doped fiber amplifier with inherently flat gain spectrum,” IEEE Photonics Technol. Lett. 8, 882–884 (1996).
[CrossRef]

1992 (1)

J. C. Lapp, “Alkali bismuth gallate glasses,” Am. Ceram. Soc. Bull. 71, 1543–1549 (1992).

1991 (3)

P. Blixt, J. Nilsson, T. Carlnas, and B. Jaskorzynska, “Concentration-dependent upconversion in Er3+-doped fiber amplifiers: experiments and modeling,” IEEE Photonics Technol. Lett. 3, 996–998 (1991).
[CrossRef]

W. J. Miniscalco and R. S. Quimby, “General procedure for the analysis of Er3+ cross section,” Opt. Lett. 16, 258–260 (1991).
[CrossRef] [PubMed]

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27, 1785–1786 (1991).
[CrossRef]

1990 (1)

S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, “Broad-band 1.5 μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier,” J. Lumin. 87–89, 670–672 (1990).

1987 (1)

M. Saad and M. Poulain, “Glass-forming ability criterion,” Mater. Sci. Forum 19–20, 11–18 (1987).
[CrossRef]

1983 (1)

A. K. Jørgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less-Common Met. 93, 107–112 (1983).
[CrossRef]

1981 (1)

M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
[CrossRef]

1976 (1)

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/24I11/2 induced emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. 12, 103–111 (1976).
[CrossRef]

1972 (1)

J. N. Sandoe, P. H. Sarkies, and S. Parke, “Variation of Er3+ cross section for stimulated emission with glass composition,” J. Phys. D 5, 1788–1799 (1972).
[CrossRef]

1967 (1)

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–276 (1967).
[CrossRef]

1962 (2)

A. R. Judd, “Optical absorption intensities of rare earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

An, H. L.

Blackburn, D. H.

M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
[CrossRef]

Blixt, P.

P. Blixt, J. Nilsson, T. Carlnas, and B. Jaskorzynska, “Concentration-dependent upconversion in Er3+-doped fiber amplifiers: experiments and modeling,” IEEE Photonics Technol. Lett. 3, 996–998 (1991).
[CrossRef]

Brierley, M. C.

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27, 1785–1786 (1991).
[CrossRef]

Carlnas, T.

P. Blixt, J. Nilsson, T. Carlnas, and B. Jaskorzynska, “Concentration-dependent upconversion in Er3+-doped fiber amplifiers: experiments and modeling,” IEEE Photonics Technol. Lett. 3, 996–998 (1991).
[CrossRef]

Choi, Y. G.

Y. G. Choi and J. Heo, “1.3μm emission and multiphonon relaxation phenomena in PbO-Bi2O3-Ga2O3 glasses doped with rare-earths,” J. Non-Cryst. Solids 217, 199–207 (1997).
[CrossRef]

Chung, P. S.

S. Q. Man, E. Y. B. Pun, and P. S. Chung, “Praseodymium-doped alkali bismuth gallate glasses,” J. Opt. Soc. Am. B 17, 23–27 (2000).
[CrossRef]

S. Q. Man, E. Y. B. Pun, and P. S. Chung, “Upconversion luminescence of Er3+ in alkali bismuth gallate glasses,” Appl. Phys. Lett. 77, 483–485 (2000).
[CrossRef]

Hanada, T.

S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, “Broad-band 1.5 μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier,” J. Lumin. 87–89, 670–672 (1990).

Heo, J.

Y. G. Choi and J. Heo, “1.3μm emission and multiphonon relaxation phenomena in PbO-Bi2O3-Ga2O3 glasses doped with rare-earths,” J. Non-Cryst. Solids 217, 199–207 (1997).
[CrossRef]

Hollios, D. B.

J. McDougall, D. B. Hollios, and M. J. P. Payne, “Spectroscopic properties of Er3+ in fluorozirconate, germanate, tellurite, and phosphate glasses,” Phys. Chem. Glasses 37, 73–75 (1996).

Ito, S.

S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, “Broad-band 1.5 μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier,” J. Lumin. 87–89, 670–672 (1990).

Jacobs, R. R.

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/24I11/2 induced emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. 12, 103–111 (1976).
[CrossRef]

Jaskorzynska, B.

P. Blixt, J. Nilsson, T. Carlnas, and B. Jaskorzynska, “Concentration-dependent upconversion in Er3+-doped fiber amplifiers: experiments and modeling,” IEEE Photonics Technol. Lett. 3, 996–998 (1991).
[CrossRef]

Jørgensen, A. K.

A. K. Jørgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less-Common Met. 93, 107–112 (1983).
[CrossRef]

Judd, A. R.

A. R. Judd, “Optical absorption intensities of rare earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Kanamori, T.

H. Ono, M. Yamada, T. Kanamori, S. Sudo, and T. Ohishi, “1.58 μm band fluoride-based Er3+-doped fibre amplifier for WDM transmission systems,” Electron. Lett. 33, 1471–1472 (1997).
[CrossRef]

M. Yamada, T. Kanamori, Y. Terunuma, K. Oikawa, M. Shimizu, S. Sudo, and K. Sagawa, “Fluoride-based erbium-doped fiber amplifier with inherently flat gain spectrum,” IEEE Photonics Technol. Lett. 8, 882–884 (1996).
[CrossRef]

Lapp, J. C.

J. C. Lapp, “Alkali bismuth gallate glasses,” Am. Ceram. Soc. Bull. 71, 1543–1549 (1992).

Lin, X. Z.

Liu, H. D.

Man, S. Q.

S. Q. Man, E. Y. B. Pun, and P. S. Chung, “Praseodymium-doped alkali bismuth gallate glasses,” J. Opt. Soc. Am. B 17, 23–27 (2000).
[CrossRef]

S. Q. Man, E. Y. B. Pun, and P. S. Chung, “Upconversion luminescence of Er3+ in alkali bismuth gallate glasses,” Appl. Phys. Lett. 77, 483–485 (2000).
[CrossRef]

McDougall, J.

J. McDougall, D. B. Hollios, and M. J. P. Payne, “Spectroscopic properties of Er3+ in fluorozirconate, germanate, tellurite, and phosphate glasses,” Phys. Chem. Glasses 37, 73–75 (1996).

Millar, C. A.

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27, 1785–1786 (1991).
[CrossRef]

Miniscalco, W. J.

Mori, A.

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-μm broadband amplification,” Opt. Lett. 28, 274–276 (1998).
[CrossRef]

Myers, J. D.

M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
[CrossRef]

Nakagawa, K.

H. Ono, K. Nakagawa, M. Yamada, and S. Sudo, “Er3+-doped fluorophosphate glass fibre amplifier for WDM systems,” Electron. Lett. 32, 1586–1587 (1996).
[CrossRef]

Nilsson, J.

P. Blixt, J. Nilsson, T. Carlnas, and B. Jaskorzynska, “Concentration-dependent upconversion in Er3+-doped fiber amplifiers: experiments and modeling,” IEEE Photonics Technol. Lett. 3, 996–998 (1991).
[CrossRef]

Nishida, Y.

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-μm broadband amplification,” Opt. Lett. 28, 274–276 (1998).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Ohishi, T.

H. Ono, M. Yamada, T. Kanamori, S. Sudo, and T. Ohishi, “1.58 μm band fluoride-based Er3+-doped fibre amplifier for WDM transmission systems,” Electron. Lett. 33, 1471–1472 (1997).
[CrossRef]

Ohishi, Y.

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-μm broadband amplification,” Opt. Lett. 28, 274–276 (1998).
[CrossRef]

Oikawa, K.

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-μm broadband amplification,” Opt. Lett. 28, 274–276 (1998).
[CrossRef]

M. Yamada, T. Kanamori, Y. Terunuma, K. Oikawa, M. Shimizu, S. Sudo, and K. Sagawa, “Fluoride-based erbium-doped fiber amplifier with inherently flat gain spectrum,” IEEE Photonics Technol. Lett. 8, 882–884 (1996).
[CrossRef]

Ono, H.

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-μm broadband amplification,” Opt. Lett. 28, 274–276 (1998).
[CrossRef]

H. Ono, M. Yamada, T. Kanamori, S. Sudo, and T. Ohishi, “1.58 μm band fluoride-based Er3+-doped fibre amplifier for WDM transmission systems,” Electron. Lett. 33, 1471–1472 (1997).
[CrossRef]

H. Ono, K. Nakagawa, M. Yamada, and S. Sudo, “Er3+-doped fluorophosphate glass fibre amplifier for WDM systems,” Electron. Lett. 32, 1586–1587 (1996).
[CrossRef]

Parke, S.

J. N. Sandoe, P. H. Sarkies, and S. Parke, “Variation of Er3+ cross section for stimulated emission with glass composition,” J. Phys. D 5, 1788–1799 (1972).
[CrossRef]

Payne, M. J. P.

J. McDougall, D. B. Hollios, and M. J. P. Payne, “Spectroscopic properties of Er3+ in fluorozirconate, germanate, tellurite, and phosphate glasses,” Phys. Chem. Glasses 37, 73–75 (1996).

Poulain, M.

M. Saad and M. Poulain, “Glass-forming ability criterion,” Mater. Sci. Forum 19–20, 11–18 (1987).
[CrossRef]

Pun, E. Y. B.

Quimby, R. S.

Reisfeld, R.

A. K. Jørgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less-Common Met. 93, 107–112 (1983).
[CrossRef]

Saad, M.

M. Saad and M. Poulain, “Glass-forming ability criterion,” Mater. Sci. Forum 19–20, 11–18 (1987).
[CrossRef]

Sagawa, K.

M. Yamada, T. Kanamori, Y. Terunuma, K. Oikawa, M. Shimizu, S. Sudo, and K. Sagawa, “Fluoride-based erbium-doped fiber amplifier with inherently flat gain spectrum,” IEEE Photonics Technol. Lett. 8, 882–884 (1996).
[CrossRef]

Sandoe, J. N.

J. N. Sandoe, P. H. Sarkies, and S. Parke, “Variation of Er3+ cross section for stimulated emission with glass composition,” J. Phys. D 5, 1788–1799 (1972).
[CrossRef]

Sarkies, P. H.

J. N. Sandoe, P. H. Sarkies, and S. Parke, “Variation of Er3+ cross section for stimulated emission with glass composition,” J. Phys. D 5, 1788–1799 (1972).
[CrossRef]

Shimizu, M.

M. Yamada, T. Kanamori, Y. Terunuma, K. Oikawa, M. Shimizu, S. Sudo, and K. Sagawa, “Fluoride-based erbium-doped fiber amplifier with inherently flat gain spectrum,” IEEE Photonics Technol. Lett. 8, 882–884 (1996).
[CrossRef]

Sudo, S.

H. Ono, M. Yamada, T. Kanamori, S. Sudo, and T. Ohishi, “1.58 μm band fluoride-based Er3+-doped fibre amplifier for WDM transmission systems,” Electron. Lett. 33, 1471–1472 (1997).
[CrossRef]

M. Yamada, T. Kanamori, Y. Terunuma, K. Oikawa, M. Shimizu, S. Sudo, and K. Sagawa, “Fluoride-based erbium-doped fiber amplifier with inherently flat gain spectrum,” IEEE Photonics Technol. Lett. 8, 882–884 (1996).
[CrossRef]

H. Ono, K. Nakagawa, M. Yamada, and S. Sudo, “Er3+-doped fluorophosphate glass fibre amplifier for WDM systems,” Electron. Lett. 32, 1586–1587 (1996).
[CrossRef]

Sugimoto, N.

S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, “Broad-band 1.5 μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier,” J. Lumin. 87–89, 670–672 (1990).

Szebesta, D.

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27, 1785–1786 (1991).
[CrossRef]

Tanabe, S.

S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, “Broad-band 1.5 μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier,” J. Lumin. 87–89, 670–672 (1990).

Terunuma, Y.

M. Yamada, T. Kanamori, Y. Terunuma, K. Oikawa, M. Shimizu, S. Sudo, and K. Sagawa, “Fluoride-based erbium-doped fiber amplifier with inherently flat gain spectrum,” IEEE Photonics Technol. Lett. 8, 882–884 (1996).
[CrossRef]

Weber, M. J.

M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
[CrossRef]

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/24I11/2 induced emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. 12, 103–111 (1976).
[CrossRef]

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–276 (1967).
[CrossRef]

Whitley, T. J.

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27, 1785–1786 (1991).
[CrossRef]

Wyatt, R.

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27, 1785–1786 (1991).
[CrossRef]

Yamada, M.

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-μm broadband amplification,” Opt. Lett. 28, 274–276 (1998).
[CrossRef]

H. Ono, M. Yamada, T. Kanamori, S. Sudo, and T. Ohishi, “1.58 μm band fluoride-based Er3+-doped fibre amplifier for WDM transmission systems,” Electron. Lett. 33, 1471–1472 (1997).
[CrossRef]

M. Yamada, T. Kanamori, Y. Terunuma, K. Oikawa, M. Shimizu, S. Sudo, and K. Sagawa, “Fluoride-based erbium-doped fiber amplifier with inherently flat gain spectrum,” IEEE Photonics Technol. Lett. 8, 882–884 (1996).
[CrossRef]

H. Ono, K. Nakagawa, M. Yamada, and S. Sudo, “Er3+-doped fluorophosphate glass fibre amplifier for WDM systems,” Electron. Lett. 32, 1586–1587 (1996).
[CrossRef]

Am. Ceram. Soc. Bull. (1)

J. C. Lapp, “Alkali bismuth gallate glasses,” Am. Ceram. Soc. Bull. 71, 1543–1549 (1992).

Appl. Phys. Lett. (1)

S. Q. Man, E. Y. B. Pun, and P. S. Chung, “Upconversion luminescence of Er3+ in alkali bismuth gallate glasses,” Appl. Phys. Lett. 77, 483–485 (2000).
[CrossRef]

Electron. Lett. (3)

H. Ono, K. Nakagawa, M. Yamada, and S. Sudo, “Er3+-doped fluorophosphate glass fibre amplifier for WDM systems,” Electron. Lett. 32, 1586–1587 (1996).
[CrossRef]

H. Ono, M. Yamada, T. Kanamori, S. Sudo, and T. Ohishi, “1.58 μm band fluoride-based Er3+-doped fibre amplifier for WDM transmission systems,” Electron. Lett. 33, 1471–1472 (1997).
[CrossRef]

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27, 1785–1786 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/24I11/2 induced emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. 12, 103–111 (1976).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

P. Blixt, J. Nilsson, T. Carlnas, and B. Jaskorzynska, “Concentration-dependent upconversion in Er3+-doped fiber amplifiers: experiments and modeling,” IEEE Photonics Technol. Lett. 3, 996–998 (1991).
[CrossRef]

M. Yamada, T. Kanamori, Y. Terunuma, K. Oikawa, M. Shimizu, S. Sudo, and K. Sagawa, “Fluoride-based erbium-doped fiber amplifier with inherently flat gain spectrum,” IEEE Photonics Technol. Lett. 8, 882–884 (1996).
[CrossRef]

J. Appl. Phys. (1)

M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
[CrossRef]

J. Chem. Phys. (1)

G. S. Ofelt, “Intensities of crystal spectra of rare earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

J. Less-Common Met. (1)

A. K. Jørgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less-Common Met. 93, 107–112 (1983).
[CrossRef]

J. Lumin. (1)

S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, “Broad-band 1.5 μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier,” J. Lumin. 87–89, 670–672 (1990).

J. Non-Cryst. Solids (1)

Y. G. Choi and J. Heo, “1.3μm emission and multiphonon relaxation phenomena in PbO-Bi2O3-Ga2O3 glasses doped with rare-earths,” J. Non-Cryst. Solids 217, 199–207 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

J. N. Sandoe, P. H. Sarkies, and S. Parke, “Variation of Er3+ cross section for stimulated emission with glass composition,” J. Phys. D 5, 1788–1799 (1972).
[CrossRef]

Mater. Sci. Forum (1)

M. Saad and M. Poulain, “Glass-forming ability criterion,” Mater. Sci. Forum 19–20, 11–18 (1987).
[CrossRef]

Opt. Lett. (3)

Phys. Chem. Glasses (1)

J. McDougall, D. B. Hollios, and M. J. P. Payne, “Spectroscopic properties of Er3+ in fluorozirconate, germanate, tellurite, and phosphate glasses,” Phys. Chem. Glasses 37, 73–75 (1996).

Phys. Rev. (2)

A. R. Judd, “Optical absorption intensities of rare earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–276 (1967).
[CrossRef]

Other (1)

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Application (Wiley, New York, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Absorption spectrum of Er3+-doped KBG glasses.

Fig. 2
Fig. 2

Fluorescence spectra of Er3+-doped KBG and tellurite glasses.

Fig. 3
Fig. 3

Absorption cross section and measured emission cross section of Er3+ in KBG glasses.

Fig. 4
Fig. 4

Calculated net gain coefficient of the  4I13/24I15/2 transition in Er3+-doped KBG glasses as a function of wavelength.

Tables (4)

Tables Icon

Table 1 Measured and Calculated Oscillator Strengths, Electric Dipole Line Strengths, and Judd–Ofelt Intensity Parameters of Er3+ in KBG Glasses

Tables Icon

Table 2 Comparison of Judd–Ofelt Parameters of Different Er3+-Doped Glasses

Tables Icon

Table 3 Calculated Spontaneous-Emission Probabilities, Fluorescence Branching Ratios, and Radiative Lifetimes of Er3+ in KBG Glasses

Tables Icon

Table 4 Comparison of the Peak Values of the Emission Cross Sections of Different Glasses

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Sed(J; J)=t=2,4,6ΩtαSL, JU(t)αSL, J2,
fexp=2303mc2NAπe2 ε(ν)dν=4.318×10-9ε(ν)dν,
fmd=nf.
f(J, J)=8π2mc(n2+2)23hλ¯(2J+1)9nSed(J; J),
rms=(fmeas-fcal)2no.oftransition-no.ofparameters1/2.
A[(S, L)J:(S, L)J]
=64π4e2n3h(2J+1)λ¯3 (n2+2)29×t=2,4,6Ωt(S, L)JU(t)(S, L)J2,
β[(S, L)J:(S, L)J]
=A[(S, L)J:(S, L)J]S,L,JA[(S, L)J:(S, L)J],
τrad=S,L,JA[(S, L)J:(S, L)J]-1=Atotal-1.
σe=Aedλ28πn2 Ie(ν)Ie(ν)dν,
Aed(JJ)=8πcn2 2J+12J+1 ν˜2σa(ν˜)dν˜.
G(λ)=N[Pσe(λ)-(1-P)σa(λ)],
σa(ν)=σe(ν)exp[(hν-ε)/kT],

Metrics