Abstract

Near-stoichiometric copper-doped lithium niobate crystals are fabricated by in-diffusion of thin layers of evaporated copper and a subsequent vapor transport equilibration treatment. The crystals are heated in a Li-rich atmosphere to increase the Li content. To determine the photorefractive properties, holographic as well as electrical measurements are performed. Saturation values of the refractive-index changes ΔnS, bulk photovoltaic current densities jphv, photoconductivities σph, and holographic sensitivities S are measured for light intensities up to 104 W/m2. Comparison with experimental data of congruent crystals indicates that the specific photoconductivity is 15 times larger after a vapor transport equilibration treatment. The specific bulk photovoltaic coefficient β* is 2 times larger, refractive-index changes are 7 times smaller, and the holographic sensitivity is up to 4 times larger.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Breer, H. Vogt, I. Nee, and K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2418–2421 (1998).
    [CrossRef]
  2. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, Berlin, 2000), Vol. 76.
  3. P. F. Bordui, R. G. Norwood, C. D. Bird, and G. D. Calvert, “Compositional uniformity in growth and poling of large-diameter lithium niobate crystals,” J. Cryst. Growth 113, 61–68 (1991).
    [CrossRef]
  4. E. Krätzig and R. Orlowski, “Light-induced charge transport in doped LiNbO3 and LiTaO3,” Ferroelectrics 27, 241–244 (1980).
    [CrossRef]
  5. K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
    [CrossRef]
  6. K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, “Photorefractive properties of LiNbO3 crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000).
    [CrossRef]
  7. S. C. Abrahams and P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr., Sect. B 42, 61–68 (1986).
    [CrossRef]
  8. D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration,” IEEE J. Quantum Electron. 26, 135–138 (1990).
    [CrossRef]
  9. P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
    [CrossRef]
  10. D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468–3473 (1992).
    [CrossRef]
  11. J. Hukriede, B. Gather, D. Kip, and E. Krätzig, “Copper diffusion into lithium niobate,” Phys. Status Solidi A 172, R3 (1999).
    [CrossRef]
  12. K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B 64, 273–291 (1997).
    [CrossRef]
  13. L. Kovacs, G. Ruschhaupt, K. Polgar, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70, 2801–2803 (1997).
    [CrossRef]
  14. D. Redfield and W. J. Burke, “Optical absorption edge of LiNbO3,” J. Appl. Phys. 45, 4566–4571 (1974).
    [CrossRef]
  15. K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
    [CrossRef]
  16. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  17. A. Mansingh and A. Dhar, “The AC conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985).
    [CrossRef]
  18. A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
    [CrossRef]
  19. K. Buse, U. van Stevendaal, R. Pankrath, and E. Krätzig, “Light-induced charge transport properties of Sr0.61Ba0.39Nb2O6 crystals,” J. Opt. Soc. Am. B 13, 1461–1467 (1996).
    [CrossRef]
  20. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
    [CrossRef]
  21. K. Onuki, N. Uchida, and T. Saku, “Interferometric method for measuring electro-optic coefficients in crystals,” J. Opt. Soc. Am. 62, 1030–1032 (1972).
    [CrossRef]
  22. K. L. Sweeney and L. E. Halliburton, “Oxygen vacancies in lithium niobate,” Appl. Phys. Lett. 43, 336–338 (1983).
    [CrossRef]
  23. D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000).
    [CrossRef]
  24. F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993).
    [CrossRef]
  25. H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
    [CrossRef]
  26. L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
    [CrossRef] [PubMed]
  27. O. F. Schirmer, O. Thiemann, and M. Wöhlecke, “Defects in LiNbO3—I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–189 (1991).
    [CrossRef]
  28. G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103–108 (1993).
    [CrossRef]

2000 (2)

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, “Photorefractive properties of LiNbO3 crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000).
[CrossRef]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000).
[CrossRef]

1999 (2)

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[CrossRef]

J. Hukriede, B. Gather, D. Kip, and E. Krätzig, “Copper diffusion into lithium niobate,” Phys. Status Solidi A 172, R3 (1999).
[CrossRef]

1998 (3)

S. Breer, H. Vogt, I. Nee, and K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2418–2421 (1998).
[CrossRef]

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
[CrossRef]

1997 (3)

K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B 64, 273–291 (1997).
[CrossRef]

L. Kovacs, G. Ruschhaupt, K. Polgar, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70, 2801–2803 (1997).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

1996 (1)

1993 (2)

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103–108 (1993).
[CrossRef]

F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993).
[CrossRef]

1992 (2)

P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
[CrossRef]

D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468–3473 (1992).
[CrossRef]

1991 (2)

P. F. Bordui, R. G. Norwood, C. D. Bird, and G. D. Calvert, “Compositional uniformity in growth and poling of large-diameter lithium niobate crystals,” J. Cryst. Growth 113, 61–68 (1991).
[CrossRef]

O. F. Schirmer, O. Thiemann, and M. Wöhlecke, “Defects in LiNbO3—I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–189 (1991).
[CrossRef]

1990 (1)

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration,” IEEE J. Quantum Electron. 26, 135–138 (1990).
[CrossRef]

1986 (1)

S. C. Abrahams and P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr., Sect. B 42, 61–68 (1986).
[CrossRef]

1985 (2)

A. Mansingh and A. Dhar, “The AC conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985).
[CrossRef]

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

1983 (1)

K. L. Sweeney and L. E. Halliburton, “Oxygen vacancies in lithium niobate,” Appl. Phys. Lett. 43, 336–338 (1983).
[CrossRef]

1980 (1)

E. Krätzig and R. Orlowski, “Light-induced charge transport in doped LiNbO3 and LiTaO3,” Ferroelectrics 27, 241–244 (1980).
[CrossRef]

1974 (2)

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

D. Redfield and W. J. Burke, “Optical absorption edge of LiNbO3,” J. Appl. Phys. 45, 4566–4571 (1974).
[CrossRef]

1972 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Abrahams, S. C.

S. C. Abrahams and P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr., Sect. B 42, 61–68 (1986).
[CrossRef]

Akella, A.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Berben, D.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000).
[CrossRef]

Betzler, K.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103–108 (1993).
[CrossRef]

Bird, C. D.

P. F. Bordui, R. G. Norwood, C. D. Bird, and G. D. Calvert, “Compositional uniformity in growth and poling of large-diameter lithium niobate crystals,” J. Cryst. Growth 113, 61–68 (1991).
[CrossRef]

Bordui, P. F.

P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
[CrossRef]

D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468–3473 (1992).
[CrossRef]

P. F. Bordui, R. G. Norwood, C. D. Bird, and G. D. Calvert, “Compositional uniformity in growth and poling of large-diameter lithium niobate crystals,” J. Cryst. Growth 113, 61–68 (1991).
[CrossRef]

Breer, S.

S. Breer, H. Vogt, I. Nee, and K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2418–2421 (1998).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

Burke, W. J.

D. Redfield and W. J. Burke, “Optical absorption edge of LiNbO3,” J. Appl. Phys. 45, 4566–4571 (1974).
[CrossRef]

Buse, K.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000).
[CrossRef]

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, “Photorefractive properties of LiNbO3 crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000).
[CrossRef]

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[CrossRef]

S. Breer, H. Vogt, I. Nee, and K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2418–2421 (1998).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B 64, 273–291 (1997).
[CrossRef]

K. Buse, U. van Stevendaal, R. Pankrath, and E. Krätzig, “Light-induced charge transport properties of Sr0.61Ba0.39Nb2O6 crystals,” J. Opt. Soc. Am. B 13, 1461–1467 (1996).
[CrossRef]

Byer, R. L.

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration,” IEEE J. Quantum Electron. 26, 135–138 (1990).
[CrossRef]

Calvert, G. D.

P. F. Bordui, R. G. Norwood, C. D. Bird, and G. D. Calvert, “Compositional uniformity in growth and poling of large-diameter lithium niobate crystals,” J. Cryst. Growth 113, 61–68 (1991).
[CrossRef]

Corradi, G.

L. Kovacs, G. Ruschhaupt, K. Polgar, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70, 2801–2803 (1997).
[CrossRef]

Dhar, A.

A. Mansingh and A. Dhar, “The AC conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985).
[CrossRef]

Fejer, M. M.

D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468–3473 (1992).
[CrossRef]

P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
[CrossRef]

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration,” IEEE J. Quantum Electron. 26, 135–138 (1990).
[CrossRef]

Furukawa, Y.

Gao, M.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

Gather, B.

J. Hukriede, B. Gather, D. Kip, and E. Krätzig, “Copper diffusion into lithium niobate,” Phys. Status Solidi A 172, R3 (1999).
[CrossRef]

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103–108 (1993).
[CrossRef]

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

Glass, A. M.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Grachev, V. G.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103–108 (1993).
[CrossRef]

Guenther, H.

Halliburton, L. E.

K. L. Sweeney and L. E. Halliburton, “Oxygen vacancies in lithium niobate,” Appl. Phys. Lett. 43, 336–338 (1983).
[CrossRef]

Herth, P.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000).
[CrossRef]

Hesselink, L.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Hukriede, J.

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, “Photorefractive properties of LiNbO3 crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000).
[CrossRef]

J. Hukriede, B. Gather, D. Kip, and E. Krätzig, “Copper diffusion into lithium niobate,” Phys. Status Solidi A 172, R3 (1999).
[CrossRef]

Imlau, M.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000).
[CrossRef]

Jermann, F.

F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993).
[CrossRef]

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103–108 (1993).
[CrossRef]

Jundt, D. H.

P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
[CrossRef]

D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468–3473 (1992).
[CrossRef]

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration,” IEEE J. Quantum Electron. 26, 135–138 (1990).
[CrossRef]

Kapphan, S.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

Kip, D.

J. Hukriede, B. Gather, D. Kip, and E. Krätzig, “Copper diffusion into lithium niobate,” Phys. Status Solidi A 172, R3 (1999).
[CrossRef]

Kitamura, K.

Klauer, S.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103–108 (1993).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Kokanyan, E. P.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103–108 (1993).
[CrossRef]

Kovacs, L.

L. Kovacs, G. Ruschhaupt, K. Polgar, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70, 2801–2803 (1997).
[CrossRef]

Krätzig, E.

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, “Photorefractive properties of LiNbO3 crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000).
[CrossRef]

J. Hukriede, B. Gather, D. Kip, and E. Krätzig, “Copper diffusion into lithium niobate,” Phys. Status Solidi A 172, R3 (1999).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

K. Buse, U. van Stevendaal, R. Pankrath, and E. Krätzig, “Light-induced charge transport properties of Sr0.61Ba0.39Nb2O6 crystals,” J. Opt. Soc. Am. B 13, 1461–1467 (1996).
[CrossRef]

E. Krätzig and R. Orlowski, “Light-induced charge transport in doped LiNbO3 and LiTaO3,” Ferroelectrics 27, 241–244 (1980).
[CrossRef]

Lande, D.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Liu, A.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Macfarlane, R.

Malovichko, G. I.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103–108 (1993).
[CrossRef]

Mansingh, A.

A. Mansingh and A. Dhar, “The AC conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985).
[CrossRef]

Marsh, P.

S. C. Abrahams and P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr., Sect. B 42, 61–68 (1986).
[CrossRef]

Nee, I.

S. Breer, H. Vogt, I. Nee, and K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2418–2421 (1998).
[CrossRef]

Negran, T. J.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Neurgaonkar, R.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
[CrossRef]

Norwood, R. G.

D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468–3473 (1992).
[CrossRef]

P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
[CrossRef]

P. F. Bordui, R. G. Norwood, C. D. Bird, and G. D. Calvert, “Compositional uniformity in growth and poling of large-diameter lithium niobate crystals,” J. Cryst. Growth 113, 61–68 (1991).
[CrossRef]

Onuki, K.

Orlov, S.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Orlowski, R.

E. Krätzig and R. Orlowski, “Light-induced charge transport in doped LiNbO3 and LiTaO3,” Ferroelectrics 27, 241–244 (1980).
[CrossRef]

Otten, J.

Pankrath, R.

Peithmann, K.

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, “Photorefractive properties of LiNbO3 crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000).
[CrossRef]

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

Polgar, K.

L. Kovacs, G. Ruschhaupt, K. Polgar, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70, 2801–2803 (1997).
[CrossRef]

Redfield, D.

D. Redfield and W. J. Burke, “Optical absorption edge of LiNbO3,” J. Appl. Phys. 45, 4566–4571 (1974).
[CrossRef]

Ruschhaupt, G.

L. Kovacs, G. Ruschhaupt, K. Polgar, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70, 2801–2803 (1997).
[CrossRef]

Saku, T.

Schirmer, O. F.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103–108 (1993).
[CrossRef]

O. F. Schirmer, O. Thiemann, and M. Wöhlecke, “Defects in LiNbO3—I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–189 (1991).
[CrossRef]

Schlarb, U.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103–108 (1993).
[CrossRef]

Sweeney, K. L.

K. L. Sweeney and L. E. Halliburton, “Oxygen vacancies in lithium niobate,” Appl. Phys. Lett. 43, 336–338 (1983).
[CrossRef]

Thiemann, O.

O. F. Schirmer, O. Thiemann, and M. Wöhlecke, “Defects in LiNbO3—I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–189 (1991).
[CrossRef]

Uchida, N.

van Stevendaal, U.

Vogt, H.

S. Breer, H. Vogt, I. Nee, and K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2418–2421 (1998).
[CrossRef]

von der Linde, D.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

Wevering, S.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000).
[CrossRef]

Wiebrock, A.

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[CrossRef]

Wöhlecke, M.

L. Kovacs, G. Ruschhaupt, K. Polgar, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70, 2801–2803 (1997).
[CrossRef]

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103–108 (1993).
[CrossRef]

O. F. Schirmer, O. Thiemann, and M. Wöhlecke, “Defects in LiNbO3—I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–189 (1991).
[CrossRef]

Woike, T.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000).
[CrossRef]

Acta Crystallogr., Sect. B (1)

S. C. Abrahams and P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr., Sect. B 42, 61–68 (1986).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (2)

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103–108 (1993).
[CrossRef]

Appl. Phys. B (2)

K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B 64, 273–291 (1997).
[CrossRef]

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[CrossRef]

Appl. Phys. Lett. (3)

L. Kovacs, G. Ruschhaupt, K. Polgar, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70, 2801–2803 (1997).
[CrossRef]

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

K. L. Sweeney and L. E. Halliburton, “Oxygen vacancies in lithium niobate,” Appl. Phys. Lett. 43, 336–338 (1983).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Electron. Lett. (1)

S. Breer, H. Vogt, I. Nee, and K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2418–2421 (1998).
[CrossRef]

Ferroelectrics (1)

E. Krätzig and R. Orlowski, “Light-induced charge transport in doped LiNbO3 and LiTaO3,” Ferroelectrics 27, 241–244 (1980).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration,” IEEE J. Quantum Electron. 26, 135–138 (1990).
[CrossRef]

J. Appl. Phys. (4)

P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
[CrossRef]

D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468–3473 (1992).
[CrossRef]

D. Redfield and W. J. Burke, “Optical absorption edge of LiNbO3,” J. Appl. Phys. 45, 4566–4571 (1974).
[CrossRef]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000).
[CrossRef]

J. Cryst. Growth (1)

P. F. Bordui, R. G. Norwood, C. D. Bird, and G. D. Calvert, “Compositional uniformity in growth and poling of large-diameter lithium niobate crystals,” J. Cryst. Growth 113, 61–68 (1991).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

J. Phys. Chem. Solids (1)

O. F. Schirmer, O. Thiemann, and M. Wöhlecke, “Defects in LiNbO3—I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–189 (1991).
[CrossRef]

J. Phys. D (1)

A. Mansingh and A. Dhar, “The AC conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985).
[CrossRef]

Phys. Rev. B (2)

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, “Photorefractive properties of LiNbO3 crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

Phys. Status Solidi A (1)

J. Hukriede, B. Gather, D. Kip, and E. Krätzig, “Copper diffusion into lithium niobate,” Phys. Status Solidi A 172, R3 (1999).
[CrossRef]

Science (1)

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Other (1)

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, Berlin, 2000), Vol. 76.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic drawing of the holographic setup. Two ordinarily polarized recording beams (R1 and R2) of an Ar-ion laser (λ=514 nm) are superimposed. The K vector of the interference pattern is lying parallel to the crystal’s c axis. During hologram recording and erasure, the grating can be probed with red light (λ=633, ordinary polarization) of a He–Ne laser. Off-Bragg erasure is achieved by illuminating the crystal with a different beam (E). C, crystal on rotation table (RT); M, mirror: BS, beam splitter; HW, half-wave plate; PO, polarizer; PD, photodiode.

Fig. 2
Fig. 2

Absorption coefficient α versus wavelength λ for ordinarily polarized light. The reduced crystal Cu200VTEb exhibits a larger absorption at 400 nm, which is proportional to the amount of Cu+. The absorption at ∼1000 nm is proportional to the concentration of Cu2+.

Fig. 3
Fig. 3

Total copper concentration cCu that follows from absorption measurements as a function of the copper concentration determined by the evaporated copper-layer thickness. Crystals with a thickness of the evaporated copper layer larger than 500 nm (squares) have been annealed 50 h longer in the lithium-rich atmosphere than the other samples.

Fig. 4
Fig. 4

Effect of trap concentration cCu2+ on saturation values of refractive-index change ΔnS. Because some crystals exhibit an intensity dependence of ΔnS (see Fig. 5), we have compared always the intensity-independent part ΔnS0. The line is a linear fit to the measured values.

Fig. 5
Fig. 5

Variation of saturation values of refractive-index change ΔnS with intensity of recording light I for λ=514 nm. In crystals with a small concentration of Cu2+ ions, ΔnS is increasing with increasing recording intensity. Crystals containing more than 1025 m-3 Cu2+ do not show any variations of ΔnS with recording intensity. The curves are fits according to ΔnS(I)=ΔnS0+ΔnSmax×I/(const.+I).

Fig. 6
Fig. 6

Light-induced absorption change αli for ordinarily polarized red (λ=633 nm) probe light versus green (λ=514 nm) pump intensity I. The curves are fits according to αli(I)=αlimax×I/(const.+I).

Fig. 7
Fig. 7

Bulk photovoltaic current density jphv versus light intensity for λ=520 nm. The lines are linear fits to the measured data.

Fig. 8
Fig. 8

Variation of the normalized bulk photovoltaic current density jphv/I with the concentration of Cu+ ions. The line is a linear fit to the data.

Fig. 9
Fig. 9

Spectral dependence of specific photovoltaic coefficient β*=(jphv/I)/cCu+ for congruent and VTE-treated crystals. VTE-treated crystals show a 2 times-larger specific photovoltaic coefficient than congruent crystals.

Fig. 10
Fig. 10

Photoconductivity σph versus light intensity I for λ=514 nm. The photoconductivity depends always linearly on the light intensity.

Fig. 11
Fig. 11

Variation of the normalized photoconductivity σph/I with the cCu+/cCu2+ ratio. The normalized photoconductivity is increasing linearly with increasing cCu+/cCu2+ ratio.

Tables (1)

Tables Icon

Table 1 Notation, Thickness, Deposited Thickness of Copper Layer, Total Copper Concentration Calculated from the Thickness of the Deposited layer and from Absorption Measurements, and Concentration of Cu+ of the Used Lithium Niobate Crystalsa

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

cCu+=2.0×1021m-2α477 nmo,
cCu2+=6.8×1022 m-2α1040 nmo.
η=sin2πΔndλ cos Θ,
Δn=ΔnS[1-exp(-t/τr)],forrecording,
Δn=ΔnS exp(-t/τe),forerasure.
I=Iin 1-Rαod 1-exp(-αod)1-R exp(-αod).
αli=1/d ln[It(0)/It(t)].

Metrics