Abstract

Near-stoichiometric copper-doped lithium niobate crystals are fabricated by in-diffusion of thin layers of evaporated copper and a subsequent vapor transport equilibration treatment. The crystals are heated in a Li-rich atmosphere to increase the Li content. To determine the photorefractive properties, holographic as well as electrical measurements are performed. Saturation values of the refractive-index changes ΔnS, bulk photovoltaic current densities jphv, photoconductivities σph, and holographic sensitivities S are measured for light intensities up to 104 W/m2. Comparison with experimental data of congruent crystals indicates that the specific photoconductivity is 15 times larger after a vapor transport equilibration treatment. The specific bulk photovoltaic coefficient β* is 2 times larger, refractive-index changes are 7 times smaller, and the holographic sensitivity is up to 4 times larger.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Breer, H. Vogt, I. Nee, and K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2418–2421 (1998).
    [Crossref]
  2. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, Berlin, 2000), Vol. 76.
  3. P. F. Bordui, R. G. Norwood, C. D. Bird, and G. D. Calvert, “Compositional uniformity in growth and poling of large-diameter lithium niobate crystals,” J. Cryst. Growth 113, 61–68 (1991).
    [Crossref]
  4. E. Krätzig and R. Orlowski, “Light-induced charge transport in doped LiNbO3 and LiTaO3,” Ferroelectrics 27, 241–244 (1980).
    [Crossref]
  5. K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
    [Crossref]
  6. K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, “Photorefractive properties of LiNbO3 crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000).
    [Crossref]
  7. S. C. Abrahams and P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr., Sect. B 42, 61–68 (1986).
    [Crossref]
  8. D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration,” IEEE J. Quantum Electron. 26, 135–138 (1990).
    [Crossref]
  9. P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
    [Crossref]
  10. D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468–3473 (1992).
    [Crossref]
  11. J. Hukriede, B. Gather, D. Kip, and E. Krätzig, “Copper diffusion into lithium niobate,” Phys. Status Solidi A 172, R3 (1999).
    [Crossref]
  12. K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B 64, 273–291 (1997).
    [Crossref]
  13. L. Kovacs, G. Ruschhaupt, K. Polgar, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70, 2801–2803 (1997).
    [Crossref]
  14. D. Redfield and W. J. Burke, “Optical absorption edge of LiNbO3,” J. Appl. Phys. 45, 4566–4571 (1974).
    [Crossref]
  15. K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
    [Crossref]
  16. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [Crossref]
  17. A. Mansingh and A. Dhar, “The AC conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985).
    [Crossref]
  18. A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
    [Crossref]
  19. K. Buse, U. van Stevendaal, R. Pankrath, and E. Krätzig, “Light-induced charge transport properties of Sr0.61Ba0.39Nb2O6 crystals,” J. Opt. Soc. Am. B 13, 1461–1467 (1996).
    [Crossref]
  20. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
    [Crossref]
  21. K. Onuki, N. Uchida, and T. Saku, “Interferometric method for measuring electro-optic coefficients in crystals,” J. Opt. Soc. Am. 62, 1030–1032 (1972).
    [Crossref]
  22. K. L. Sweeney and L. E. Halliburton, “Oxygen vacancies in lithium niobate,” Appl. Phys. Lett. 43, 336–338 (1983).
    [Crossref]
  23. D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000).
    [Crossref]
  24. F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993).
    [Crossref]
  25. H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
    [Crossref]
  26. L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
    [Crossref] [PubMed]
  27. O. F. Schirmer, O. Thiemann, and M. Wöhlecke, “Defects in LiNbO3—I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–189 (1991).
    [Crossref]
  28. G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103–108 (1993).
    [Crossref]

2000 (2)

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, “Photorefractive properties of LiNbO3 crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000).
[Crossref]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000).
[Crossref]

1999 (2)

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[Crossref]

J. Hukriede, B. Gather, D. Kip, and E. Krätzig, “Copper diffusion into lithium niobate,” Phys. Status Solidi A 172, R3 (1999).
[Crossref]

1998 (3)

S. Breer, H. Vogt, I. Nee, and K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2418–2421 (1998).
[Crossref]

H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
[Crossref]

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[Crossref] [PubMed]

1997 (3)

K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B 64, 273–291 (1997).
[Crossref]

L. Kovacs, G. Ruschhaupt, K. Polgar, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70, 2801–2803 (1997).
[Crossref]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[Crossref]

1996 (1)

1993 (2)

F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993).
[Crossref]

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103–108 (1993).
[Crossref]

1992 (2)

P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
[Crossref]

D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468–3473 (1992).
[Crossref]

1991 (2)

P. F. Bordui, R. G. Norwood, C. D. Bird, and G. D. Calvert, “Compositional uniformity in growth and poling of large-diameter lithium niobate crystals,” J. Cryst. Growth 113, 61–68 (1991).
[Crossref]

O. F. Schirmer, O. Thiemann, and M. Wöhlecke, “Defects in LiNbO3—I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–189 (1991).
[Crossref]

1990 (1)

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration,” IEEE J. Quantum Electron. 26, 135–138 (1990).
[Crossref]

1986 (1)

S. C. Abrahams and P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr., Sect. B 42, 61–68 (1986).
[Crossref]

1985 (2)

A. Mansingh and A. Dhar, “The AC conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985).
[Crossref]

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

1983 (1)

K. L. Sweeney and L. E. Halliburton, “Oxygen vacancies in lithium niobate,” Appl. Phys. Lett. 43, 336–338 (1983).
[Crossref]

1980 (1)

E. Krätzig and R. Orlowski, “Light-induced charge transport in doped LiNbO3 and LiTaO3,” Ferroelectrics 27, 241–244 (1980).
[Crossref]

1974 (2)

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[Crossref]

D. Redfield and W. J. Burke, “Optical absorption edge of LiNbO3,” J. Appl. Phys. 45, 4566–4571 (1974).
[Crossref]

1972 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

Abrahams, S. C.

S. C. Abrahams and P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr., Sect. B 42, 61–68 (1986).
[Crossref]

Akella, A.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[Crossref] [PubMed]

Berben, D.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000).
[Crossref]

Betzler, K.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103–108 (1993).
[Crossref]

Bird, C. D.

P. F. Bordui, R. G. Norwood, C. D. Bird, and G. D. Calvert, “Compositional uniformity in growth and poling of large-diameter lithium niobate crystals,” J. Cryst. Growth 113, 61–68 (1991).
[Crossref]

Bordui, P. F.

P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
[Crossref]

D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468–3473 (1992).
[Crossref]

P. F. Bordui, R. G. Norwood, C. D. Bird, and G. D. Calvert, “Compositional uniformity in growth and poling of large-diameter lithium niobate crystals,” J. Cryst. Growth 113, 61–68 (1991).
[Crossref]

Breer, S.

S. Breer, H. Vogt, I. Nee, and K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2418–2421 (1998).
[Crossref]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[Crossref]

Burke, W. J.

D. Redfield and W. J. Burke, “Optical absorption edge of LiNbO3,” J. Appl. Phys. 45, 4566–4571 (1974).
[Crossref]

Buse, K.

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, “Photorefractive properties of LiNbO3 crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000).
[Crossref]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000).
[Crossref]

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[Crossref]

S. Breer, H. Vogt, I. Nee, and K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2418–2421 (1998).
[Crossref]

K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B 64, 273–291 (1997).
[Crossref]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[Crossref]

K. Buse, U. van Stevendaal, R. Pankrath, and E. Krätzig, “Light-induced charge transport properties of Sr0.61Ba0.39Nb2O6 crystals,” J. Opt. Soc. Am. B 13, 1461–1467 (1996).
[Crossref]

Byer, R. L.

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration,” IEEE J. Quantum Electron. 26, 135–138 (1990).
[Crossref]

Calvert, G. D.

P. F. Bordui, R. G. Norwood, C. D. Bird, and G. D. Calvert, “Compositional uniformity in growth and poling of large-diameter lithium niobate crystals,” J. Cryst. Growth 113, 61–68 (1991).
[Crossref]

Corradi, G.

L. Kovacs, G. Ruschhaupt, K. Polgar, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70, 2801–2803 (1997).
[Crossref]

Dhar, A.

A. Mansingh and A. Dhar, “The AC conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985).
[Crossref]

Fejer, M. M.

P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
[Crossref]

D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468–3473 (1992).
[Crossref]

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration,” IEEE J. Quantum Electron. 26, 135–138 (1990).
[Crossref]

Furukawa, Y.

Gao, M.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[Crossref]

Gather, B.

J. Hukriede, B. Gather, D. Kip, and E. Krätzig, “Copper diffusion into lithium niobate,” Phys. Status Solidi A 172, R3 (1999).
[Crossref]

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103–108 (1993).
[Crossref]

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

Glass, A. M.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[Crossref]

Grachev, V. G.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103–108 (1993).
[Crossref]

Guenther, H.

Halliburton, L. E.

K. L. Sweeney and L. E. Halliburton, “Oxygen vacancies in lithium niobate,” Appl. Phys. Lett. 43, 336–338 (1983).
[Crossref]

Herth, P.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000).
[Crossref]

Hesselink, L.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[Crossref] [PubMed]

Hukriede, J.

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, “Photorefractive properties of LiNbO3 crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000).
[Crossref]

J. Hukriede, B. Gather, D. Kip, and E. Krätzig, “Copper diffusion into lithium niobate,” Phys. Status Solidi A 172, R3 (1999).
[Crossref]

Imlau, M.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000).
[Crossref]

Jermann, F.

F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993).
[Crossref]

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103–108 (1993).
[Crossref]

Jundt, D. H.

P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
[Crossref]

D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468–3473 (1992).
[Crossref]

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration,” IEEE J. Quantum Electron. 26, 135–138 (1990).
[Crossref]

Kapphan, S.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[Crossref]

Kip, D.

J. Hukriede, B. Gather, D. Kip, and E. Krätzig, “Copper diffusion into lithium niobate,” Phys. Status Solidi A 172, R3 (1999).
[Crossref]

Kitamura, K.

Klauer, S.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103–108 (1993).
[Crossref]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

Kokanyan, E. P.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103–108 (1993).
[Crossref]

Kovacs, L.

L. Kovacs, G. Ruschhaupt, K. Polgar, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70, 2801–2803 (1997).
[Crossref]

Krätzig, E.

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, “Photorefractive properties of LiNbO3 crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000).
[Crossref]

J. Hukriede, B. Gather, D. Kip, and E. Krätzig, “Copper diffusion into lithium niobate,” Phys. Status Solidi A 172, R3 (1999).
[Crossref]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[Crossref]

K. Buse, U. van Stevendaal, R. Pankrath, and E. Krätzig, “Light-induced charge transport properties of Sr0.61Ba0.39Nb2O6 crystals,” J. Opt. Soc. Am. B 13, 1461–1467 (1996).
[Crossref]

E. Krätzig and R. Orlowski, “Light-induced charge transport in doped LiNbO3 and LiTaO3,” Ferroelectrics 27, 241–244 (1980).
[Crossref]

Lande, D.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[Crossref] [PubMed]

Liu, A.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[Crossref] [PubMed]

Macfarlane, R.

Malovichko, G. I.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103–108 (1993).
[Crossref]

Mansingh, A.

A. Mansingh and A. Dhar, “The AC conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985).
[Crossref]

Marsh, P.

S. C. Abrahams and P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr., Sect. B 42, 61–68 (1986).
[Crossref]

Nee, I.

S. Breer, H. Vogt, I. Nee, and K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2418–2421 (1998).
[Crossref]

Negran, T. J.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[Crossref]

Neurgaonkar, R.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[Crossref] [PubMed]

H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
[Crossref]

Norwood, R. G.

D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468–3473 (1992).
[Crossref]

P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
[Crossref]

P. F. Bordui, R. G. Norwood, C. D. Bird, and G. D. Calvert, “Compositional uniformity in growth and poling of large-diameter lithium niobate crystals,” J. Cryst. Growth 113, 61–68 (1991).
[Crossref]

Onuki, K.

Orlov, S.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[Crossref] [PubMed]

Orlowski, R.

E. Krätzig and R. Orlowski, “Light-induced charge transport in doped LiNbO3 and LiTaO3,” Ferroelectrics 27, 241–244 (1980).
[Crossref]

Otten, J.

Pankrath, R.

Peithmann, K.

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, “Photorefractive properties of LiNbO3 crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000).
[Crossref]

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[Crossref]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[Crossref]

Polgar, K.

L. Kovacs, G. Ruschhaupt, K. Polgar, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70, 2801–2803 (1997).
[Crossref]

Redfield, D.

D. Redfield and W. J. Burke, “Optical absorption edge of LiNbO3,” J. Appl. Phys. 45, 4566–4571 (1974).
[Crossref]

Ruschhaupt, G.

L. Kovacs, G. Ruschhaupt, K. Polgar, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70, 2801–2803 (1997).
[Crossref]

Saku, T.

Schirmer, O. F.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103–108 (1993).
[Crossref]

O. F. Schirmer, O. Thiemann, and M. Wöhlecke, “Defects in LiNbO3—I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–189 (1991).
[Crossref]

Schlarb, U.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103–108 (1993).
[Crossref]

Sweeney, K. L.

K. L. Sweeney and L. E. Halliburton, “Oxygen vacancies in lithium niobate,” Appl. Phys. Lett. 43, 336–338 (1983).
[Crossref]

Thiemann, O.

O. F. Schirmer, O. Thiemann, and M. Wöhlecke, “Defects in LiNbO3—I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–189 (1991).
[Crossref]

Uchida, N.

van Stevendaal, U.

Vogt, H.

S. Breer, H. Vogt, I. Nee, and K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2418–2421 (1998).
[Crossref]

von der Linde, D.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[Crossref]

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

Wevering, S.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000).
[Crossref]

Wiebrock, A.

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[Crossref]

Wöhlecke, M.

L. Kovacs, G. Ruschhaupt, K. Polgar, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70, 2801–2803 (1997).
[Crossref]

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103–108 (1993).
[Crossref]

O. F. Schirmer, O. Thiemann, and M. Wöhlecke, “Defects in LiNbO3—I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–189 (1991).
[Crossref]

Woike, T.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000).
[Crossref]

Acta Crystallogr., Sect. B (1)

S. C. Abrahams and P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr., Sect. B 42, 61–68 (1986).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (2)

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103–108 (1993).
[Crossref]

Appl. Phys. B (2)

K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B 64, 273–291 (1997).
[Crossref]

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[Crossref]

Appl. Phys. Lett. (3)

L. Kovacs, G. Ruschhaupt, K. Polgar, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70, 2801–2803 (1997).
[Crossref]

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[Crossref]

K. L. Sweeney and L. E. Halliburton, “Oxygen vacancies in lithium niobate,” Appl. Phys. Lett. 43, 336–338 (1983).
[Crossref]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

Electron. Lett. (1)

S. Breer, H. Vogt, I. Nee, and K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2418–2421 (1998).
[Crossref]

Ferroelectrics (1)

E. Krätzig and R. Orlowski, “Light-induced charge transport in doped LiNbO3 and LiTaO3,” Ferroelectrics 27, 241–244 (1980).
[Crossref]

IEEE J. Quantum Electron. (1)

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration,” IEEE J. Quantum Electron. 26, 135–138 (1990).
[Crossref]

J. Appl. Phys. (4)

P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
[Crossref]

D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468–3473 (1992).
[Crossref]

D. Redfield and W. J. Burke, “Optical absorption edge of LiNbO3,” J. Appl. Phys. 45, 4566–4571 (1974).
[Crossref]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000).
[Crossref]

J. Cryst. Growth (1)

P. F. Bordui, R. G. Norwood, C. D. Bird, and G. D. Calvert, “Compositional uniformity in growth and poling of large-diameter lithium niobate crystals,” J. Cryst. Growth 113, 61–68 (1991).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

J. Phys. Chem. Solids (1)

O. F. Schirmer, O. Thiemann, and M. Wöhlecke, “Defects in LiNbO3—I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–189 (1991).
[Crossref]

J. Phys. D (1)

A. Mansingh and A. Dhar, “The AC conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985).
[Crossref]

Phys. Rev. B (2)

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, “Photorefractive properties of LiNbO3 crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000).
[Crossref]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[Crossref]

Phys. Status Solidi A (1)

J. Hukriede, B. Gather, D. Kip, and E. Krätzig, “Copper diffusion into lithium niobate,” Phys. Status Solidi A 172, R3 (1999).
[Crossref]

Science (1)

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[Crossref] [PubMed]

Other (1)

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, Berlin, 2000), Vol. 76.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic drawing of the holographic setup. Two ordinarily polarized recording beams (R1 and R2) of an Ar-ion laser (λ=514 nm) are superimposed. The K vector of the interference pattern is lying parallel to the crystal’s c axis. During hologram recording and erasure, the grating can be probed with red light (λ=633, ordinary polarization) of a He–Ne laser. Off-Bragg erasure is achieved by illuminating the crystal with a different beam (E). C, crystal on rotation table (RT); M, mirror: BS, beam splitter; HW, half-wave plate; PO, polarizer; PD, photodiode.

Fig. 2
Fig. 2

Absorption coefficient α versus wavelength λ for ordinarily polarized light. The reduced crystal Cu200VTEb exhibits a larger absorption at 400 nm, which is proportional to the amount of Cu+. The absorption at ∼1000 nm is proportional to the concentration of Cu2+.

Fig. 3
Fig. 3

Total copper concentration cCu that follows from absorption measurements as a function of the copper concentration determined by the evaporated copper-layer thickness. Crystals with a thickness of the evaporated copper layer larger than 500 nm (squares) have been annealed 50 h longer in the lithium-rich atmosphere than the other samples.

Fig. 4
Fig. 4

Effect of trap concentration cCu2+ on saturation values of refractive-index change ΔnS. Because some crystals exhibit an intensity dependence of ΔnS (see Fig. 5), we have compared always the intensity-independent part ΔnS0. The line is a linear fit to the measured values.

Fig. 5
Fig. 5

Variation of saturation values of refractive-index change ΔnS with intensity of recording light I for λ=514 nm. In crystals with a small concentration of Cu2+ ions, ΔnS is increasing with increasing recording intensity. Crystals containing more than 1025 m-3 Cu2+ do not show any variations of ΔnS with recording intensity. The curves are fits according to ΔnS(I)=ΔnS0+ΔnSmax×I/(const.+I).

Fig. 6
Fig. 6

Light-induced absorption change αli for ordinarily polarized red (λ=633 nm) probe light versus green (λ=514 nm) pump intensity I. The curves are fits according to αli(I)=αlimax×I/(const.+I).

Fig. 7
Fig. 7

Bulk photovoltaic current density jphv versus light intensity for λ=520 nm. The lines are linear fits to the measured data.

Fig. 8
Fig. 8

Variation of the normalized bulk photovoltaic current density jphv/I with the concentration of Cu+ ions. The line is a linear fit to the data.

Fig. 9
Fig. 9

Spectral dependence of specific photovoltaic coefficient β*=(jphv/I)/cCu+ for congruent and VTE-treated crystals. VTE-treated crystals show a 2 times-larger specific photovoltaic coefficient than congruent crystals.

Fig. 10
Fig. 10

Photoconductivity σph versus light intensity I for λ=514 nm. The photoconductivity depends always linearly on the light intensity.

Fig. 11
Fig. 11

Variation of the normalized photoconductivity σph/I with the cCu+/cCu2+ ratio. The normalized photoconductivity is increasing linearly with increasing cCu+/cCu2+ ratio.

Tables (1)

Tables Icon

Table 1 Notation, Thickness, Deposited Thickness of Copper Layer, Total Copper Concentration Calculated from the Thickness of the Deposited layer and from Absorption Measurements, and Concentration of Cu+ of the Used Lithium Niobate Crystalsa

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

cCu+=2.0×1021m-2α477 nmo,
cCu2+=6.8×1022 m-2α1040 nmo.
η=sin2πΔndλ cos Θ,
Δn=ΔnS[1-exp(-t/τr)],forrecording,
Δn=ΔnS exp(-t/τe),forerasure.
I=Iin 1-Rαod 1-exp(-αod)1-R exp(-αod).
αli=1/d ln[It(0)/It(t)].

Metrics