Abstract

We report optically pumped lasing action at the attractive wavelength of 650 nm in the common organic dye 1-amino-2-methylanthraquinone (Disperse Orange 11). The dye was incorporated into poly(methyl methacrylate) rods, and amplified spontaneous emission was studied under second-harmonic Nd:YAG laser excitation in a transverse pumping configuration. Gain and conversion efficiency were found to be comparable with those for other laser dyes. Dye photodegradation was found to be superior and reversible.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, and R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
    [CrossRef]
  2. F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, I. Garcia-Moreno, and R. Sastre, “Laser action from a Rhodamine 640-doped copolymer of 2-hydroxyethyl methacrylate and methyl methacrylate,” Opt. Commun. 114, 442–446 (1995).
    [CrossRef]
  3. M. D. Rahn, T. A. King, A. A. Gorman, and I. Hamblett, “Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen-free liquid and solid dye lasers,” Appl. Opt. 36, 5862–5871 (1997).
    [CrossRef] [PubMed]
  4. A. Costela, I. Garcia-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, and R. Sastre, “Solid-state dye laser based on Coumarin 540A-doped polymeric matrices,” Opt. Commun. 130, 44–50 (1996).
    [CrossRef]
  5. S. Popov, “Dye photodestruction in a solid-state dye laser with a polymeric gain medium,” Appl. Opt. 37, 6449–6455 (1998).
    [CrossRef]
  6. K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, and A. M. Prokhorov, “Dyes in modified polymers: problems of photostability and conversion efficiency at high intensities,” J. Opt. Soc. Am. B 9, 143–151 (1992).
    [CrossRef]
  7. A. V. Deshpande and E. B. Namdas, “Correlation between lasing and photophysical performance of dyes in polymethylmethacrylate,” J. Lumin. 91, 25–31 (2000).
    [CrossRef]
  8. R. Duchowicz, L. B. Scaffardi, A. Costela, I. Garcia-Moreno, R. Sastre, and A. U. Acuña, “Photothermal characterization and stability analysis of polymeric dye lasers,” Appl. Opt. 39, 4959–4963 (2000).
  9. G. Somasundaram and A. Ramalingam, “Gain studies of Rhodamine 6G dye-doped polymer laser,” J. Photochem. Photobiol. A 125, 93–98 (1999).
    [CrossRef]
  10. G. Somasundaram and A. Ramalingam, “Gain studies of Courmarin 1 dye-doped polymer laser,” J. Lumin. 90, 1–5 (2000).
    [CrossRef]
  11. G. Somasundaram and A. Ramalingam, “Gain studies of Courmarin 490 dye-doped polymer laser,” Chem. Phys. Lett. 324, 25–30 (2000).
    [CrossRef]
  12. K. H. Drexhage, “Structure and properties of laser dyes,” in Topics in Applied Physics, Dye Lasers, F. P. Schäfer, ed. (Springer-Verlag, Berlin, 1990) pp. 171, 176.
  13. K. Yee, T. Tou, and S. Ng, “Hot-press molded poly(methyl methacrylate) matrix for solid-state dye lasers,” Appl. Opt. 37, 6381–6385 (1998).
    [CrossRef]
  14. A. Costela, I. Garcia-Moreno, H. Tian, J. Su, K. Chen, F. Amat-Guerri, M. Carrascoso, J. Barroso, and R. Sastre, “Internal photostabilization of polymeric solid-state dye lasers based on trichromophoric Rhodamine 6G molecules,” Chem. Phys. Lett. 277, 392–398 (1997).
    [CrossRef]
  15. C. V. Shank, A. Dienes, and W. T. Silfvast, “Single pass gain of Exciplex 4-MU and Rhodamine 6G dye laser amplifiers,” Appl. Phys. Lett. 17, 307–309 (1970).
    [CrossRef]

2000 (4)

G. Somasundaram and A. Ramalingam, “Gain studies of Courmarin 1 dye-doped polymer laser,” J. Lumin. 90, 1–5 (2000).
[CrossRef]

G. Somasundaram and A. Ramalingam, “Gain studies of Courmarin 490 dye-doped polymer laser,” Chem. Phys. Lett. 324, 25–30 (2000).
[CrossRef]

A. V. Deshpande and E. B. Namdas, “Correlation between lasing and photophysical performance of dyes in polymethylmethacrylate,” J. Lumin. 91, 25–31 (2000).
[CrossRef]

R. Duchowicz, L. B. Scaffardi, A. Costela, I. Garcia-Moreno, R. Sastre, and A. U. Acuña, “Photothermal characterization and stability analysis of polymeric dye lasers,” Appl. Opt. 39, 4959–4963 (2000).

1999 (1)

G. Somasundaram and A. Ramalingam, “Gain studies of Rhodamine 6G dye-doped polymer laser,” J. Photochem. Photobiol. A 125, 93–98 (1999).
[CrossRef]

1998 (2)

1997 (2)

M. D. Rahn, T. A. King, A. A. Gorman, and I. Hamblett, “Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen-free liquid and solid dye lasers,” Appl. Opt. 36, 5862–5871 (1997).
[CrossRef] [PubMed]

A. Costela, I. Garcia-Moreno, H. Tian, J. Su, K. Chen, F. Amat-Guerri, M. Carrascoso, J. Barroso, and R. Sastre, “Internal photostabilization of polymeric solid-state dye lasers based on trichromophoric Rhodamine 6G molecules,” Chem. Phys. Lett. 277, 392–398 (1997).
[CrossRef]

1996 (1)

A. Costela, I. Garcia-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, and R. Sastre, “Solid-state dye laser based on Coumarin 540A-doped polymeric matrices,” Opt. Commun. 130, 44–50 (1996).
[CrossRef]

1995 (2)

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, and R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, I. Garcia-Moreno, and R. Sastre, “Laser action from a Rhodamine 640-doped copolymer of 2-hydroxyethyl methacrylate and methyl methacrylate,” Opt. Commun. 114, 442–446 (1995).
[CrossRef]

1992 (1)

1970 (1)

C. V. Shank, A. Dienes, and W. T. Silfvast, “Single pass gain of Exciplex 4-MU and Rhodamine 6G dye laser amplifiers,” Appl. Phys. Lett. 17, 307–309 (1970).
[CrossRef]

Acuña, A. U.

Amat-Guerri, F.

A. Costela, I. Garcia-Moreno, H. Tian, J. Su, K. Chen, F. Amat-Guerri, M. Carrascoso, J. Barroso, and R. Sastre, “Internal photostabilization of polymeric solid-state dye lasers based on trichromophoric Rhodamine 6G molecules,” Chem. Phys. Lett. 277, 392–398 (1997).
[CrossRef]

A. Costela, I. Garcia-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, and R. Sastre, “Solid-state dye laser based on Coumarin 540A-doped polymeric matrices,” Opt. Commun. 130, 44–50 (1996).
[CrossRef]

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, and R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, I. Garcia-Moreno, and R. Sastre, “Laser action from a Rhodamine 640-doped copolymer of 2-hydroxyethyl methacrylate and methyl methacrylate,” Opt. Commun. 114, 442–446 (1995).
[CrossRef]

Barroso, J.

A. Costela, I. Garcia-Moreno, H. Tian, J. Su, K. Chen, F. Amat-Guerri, M. Carrascoso, J. Barroso, and R. Sastre, “Internal photostabilization of polymeric solid-state dye lasers based on trichromophoric Rhodamine 6G molecules,” Chem. Phys. Lett. 277, 392–398 (1997).
[CrossRef]

A. Costela, I. Garcia-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, and R. Sastre, “Solid-state dye laser based on Coumarin 540A-doped polymeric matrices,” Opt. Commun. 130, 44–50 (1996).
[CrossRef]

Carrascoso, M.

A. Costela, I. Garcia-Moreno, H. Tian, J. Su, K. Chen, F. Amat-Guerri, M. Carrascoso, J. Barroso, and R. Sastre, “Internal photostabilization of polymeric solid-state dye lasers based on trichromophoric Rhodamine 6G molecules,” Chem. Phys. Lett. 277, 392–398 (1997).
[CrossRef]

Chen, K.

A. Costela, I. Garcia-Moreno, H. Tian, J. Su, K. Chen, F. Amat-Guerri, M. Carrascoso, J. Barroso, and R. Sastre, “Internal photostabilization of polymeric solid-state dye lasers based on trichromophoric Rhodamine 6G molecules,” Chem. Phys. Lett. 277, 392–398 (1997).
[CrossRef]

Costela, A.

R. Duchowicz, L. B. Scaffardi, A. Costela, I. Garcia-Moreno, R. Sastre, and A. U. Acuña, “Photothermal characterization and stability analysis of polymeric dye lasers,” Appl. Opt. 39, 4959–4963 (2000).

A. Costela, I. Garcia-Moreno, H. Tian, J. Su, K. Chen, F. Amat-Guerri, M. Carrascoso, J. Barroso, and R. Sastre, “Internal photostabilization of polymeric solid-state dye lasers based on trichromophoric Rhodamine 6G molecules,” Chem. Phys. Lett. 277, 392–398 (1997).
[CrossRef]

A. Costela, I. Garcia-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, and R. Sastre, “Solid-state dye laser based on Coumarin 540A-doped polymeric matrices,” Opt. Commun. 130, 44–50 (1996).
[CrossRef]

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, and R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, I. Garcia-Moreno, and R. Sastre, “Laser action from a Rhodamine 640-doped copolymer of 2-hydroxyethyl methacrylate and methyl methacrylate,” Opt. Commun. 114, 442–446 (1995).
[CrossRef]

Deshpande, A. V.

A. V. Deshpande and E. B. Namdas, “Correlation between lasing and photophysical performance of dyes in polymethylmethacrylate,” J. Lumin. 91, 25–31 (2000).
[CrossRef]

Dienes, A.

C. V. Shank, A. Dienes, and W. T. Silfvast, “Single pass gain of Exciplex 4-MU and Rhodamine 6G dye laser amplifiers,” Appl. Phys. Lett. 17, 307–309 (1970).
[CrossRef]

Duchowicz, R.

R. Duchowicz, L. B. Scaffardi, A. Costela, I. Garcia-Moreno, R. Sastre, and A. U. Acuña, “Photothermal characterization and stability analysis of polymeric dye lasers,” Appl. Opt. 39, 4959–4963 (2000).

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, and R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

Dyumaev, K. M.

Figuera, J. M.

A. Costela, I. Garcia-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, and R. Sastre, “Solid-state dye laser based on Coumarin 540A-doped polymeric matrices,” Opt. Commun. 130, 44–50 (1996).
[CrossRef]

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, and R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, I. Garcia-Moreno, and R. Sastre, “Laser action from a Rhodamine 640-doped copolymer of 2-hydroxyethyl methacrylate and methyl methacrylate,” Opt. Commun. 114, 442–446 (1995).
[CrossRef]

Florido, F.

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, I. Garcia-Moreno, and R. Sastre, “Laser action from a Rhodamine 640-doped copolymer of 2-hydroxyethyl methacrylate and methyl methacrylate,” Opt. Commun. 114, 442–446 (1995).
[CrossRef]

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, and R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

Garcia-Moreno, I.

R. Duchowicz, L. B. Scaffardi, A. Costela, I. Garcia-Moreno, R. Sastre, and A. U. Acuña, “Photothermal characterization and stability analysis of polymeric dye lasers,” Appl. Opt. 39, 4959–4963 (2000).

A. Costela, I. Garcia-Moreno, H. Tian, J. Su, K. Chen, F. Amat-Guerri, M. Carrascoso, J. Barroso, and R. Sastre, “Internal photostabilization of polymeric solid-state dye lasers based on trichromophoric Rhodamine 6G molecules,” Chem. Phys. Lett. 277, 392–398 (1997).
[CrossRef]

A. Costela, I. Garcia-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, and R. Sastre, “Solid-state dye laser based on Coumarin 540A-doped polymeric matrices,” Opt. Commun. 130, 44–50 (1996).
[CrossRef]

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, and R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, I. Garcia-Moreno, and R. Sastre, “Laser action from a Rhodamine 640-doped copolymer of 2-hydroxyethyl methacrylate and methyl methacrylate,” Opt. Commun. 114, 442–446 (1995).
[CrossRef]

Gorman, A. A.

Hamblett, I.

King, T. A.

Manenkov, A. A.

Maslyukov, A. P.

Matyushin, G. A.

Namdas, E. B.

A. V. Deshpande and E. B. Namdas, “Correlation between lasing and photophysical performance of dyes in polymethylmethacrylate,” J. Lumin. 91, 25–31 (2000).
[CrossRef]

Nechitailo, V. S.

Ng, S.

Popov, S.

Prokhorov, A. M.

Rahn, M. D.

Ramalingam, A.

G. Somasundaram and A. Ramalingam, “Gain studies of Courmarin 1 dye-doped polymer laser,” J. Lumin. 90, 1–5 (2000).
[CrossRef]

G. Somasundaram and A. Ramalingam, “Gain studies of Courmarin 490 dye-doped polymer laser,” Chem. Phys. Lett. 324, 25–30 (2000).
[CrossRef]

G. Somasundaram and A. Ramalingam, “Gain studies of Rhodamine 6G dye-doped polymer laser,” J. Photochem. Photobiol. A 125, 93–98 (1999).
[CrossRef]

Sastre, R.

R. Duchowicz, L. B. Scaffardi, A. Costela, I. Garcia-Moreno, R. Sastre, and A. U. Acuña, “Photothermal characterization and stability analysis of polymeric dye lasers,” Appl. Opt. 39, 4959–4963 (2000).

A. Costela, I. Garcia-Moreno, H. Tian, J. Su, K. Chen, F. Amat-Guerri, M. Carrascoso, J. Barroso, and R. Sastre, “Internal photostabilization of polymeric solid-state dye lasers based on trichromophoric Rhodamine 6G molecules,” Chem. Phys. Lett. 277, 392–398 (1997).
[CrossRef]

A. Costela, I. Garcia-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, and R. Sastre, “Solid-state dye laser based on Coumarin 540A-doped polymeric matrices,” Opt. Commun. 130, 44–50 (1996).
[CrossRef]

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, and R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, I. Garcia-Moreno, and R. Sastre, “Laser action from a Rhodamine 640-doped copolymer of 2-hydroxyethyl methacrylate and methyl methacrylate,” Opt. Commun. 114, 442–446 (1995).
[CrossRef]

Scaffardi, L. B.

Shank, C. V.

C. V. Shank, A. Dienes, and W. T. Silfvast, “Single pass gain of Exciplex 4-MU and Rhodamine 6G dye laser amplifiers,” Appl. Phys. Lett. 17, 307–309 (1970).
[CrossRef]

Silfvast, W. T.

C. V. Shank, A. Dienes, and W. T. Silfvast, “Single pass gain of Exciplex 4-MU and Rhodamine 6G dye laser amplifiers,” Appl. Phys. Lett. 17, 307–309 (1970).
[CrossRef]

Somasundaram, G.

G. Somasundaram and A. Ramalingam, “Gain studies of Courmarin 490 dye-doped polymer laser,” Chem. Phys. Lett. 324, 25–30 (2000).
[CrossRef]

G. Somasundaram and A. Ramalingam, “Gain studies of Courmarin 1 dye-doped polymer laser,” J. Lumin. 90, 1–5 (2000).
[CrossRef]

G. Somasundaram and A. Ramalingam, “Gain studies of Rhodamine 6G dye-doped polymer laser,” J. Photochem. Photobiol. A 125, 93–98 (1999).
[CrossRef]

Su, J.

A. Costela, I. Garcia-Moreno, H. Tian, J. Su, K. Chen, F. Amat-Guerri, M. Carrascoso, J. Barroso, and R. Sastre, “Internal photostabilization of polymeric solid-state dye lasers based on trichromophoric Rhodamine 6G molecules,” Chem. Phys. Lett. 277, 392–398 (1997).
[CrossRef]

Tian, H.

A. Costela, I. Garcia-Moreno, H. Tian, J. Su, K. Chen, F. Amat-Guerri, M. Carrascoso, J. Barroso, and R. Sastre, “Internal photostabilization of polymeric solid-state dye lasers based on trichromophoric Rhodamine 6G molecules,” Chem. Phys. Lett. 277, 392–398 (1997).
[CrossRef]

Tou, T.

Yee, K.

Appl. Opt. (4)

Appl. Phys. B (1)

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, and R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

Appl. Phys. Lett. (1)

C. V. Shank, A. Dienes, and W. T. Silfvast, “Single pass gain of Exciplex 4-MU and Rhodamine 6G dye laser amplifiers,” Appl. Phys. Lett. 17, 307–309 (1970).
[CrossRef]

Chem. Phys. Lett. (2)

G. Somasundaram and A. Ramalingam, “Gain studies of Courmarin 490 dye-doped polymer laser,” Chem. Phys. Lett. 324, 25–30 (2000).
[CrossRef]

A. Costela, I. Garcia-Moreno, H. Tian, J. Su, K. Chen, F. Amat-Guerri, M. Carrascoso, J. Barroso, and R. Sastre, “Internal photostabilization of polymeric solid-state dye lasers based on trichromophoric Rhodamine 6G molecules,” Chem. Phys. Lett. 277, 392–398 (1997).
[CrossRef]

J. Lumin. (2)

A. V. Deshpande and E. B. Namdas, “Correlation between lasing and photophysical performance of dyes in polymethylmethacrylate,” J. Lumin. 91, 25–31 (2000).
[CrossRef]

G. Somasundaram and A. Ramalingam, “Gain studies of Courmarin 1 dye-doped polymer laser,” J. Lumin. 90, 1–5 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol. A (1)

G. Somasundaram and A. Ramalingam, “Gain studies of Rhodamine 6G dye-doped polymer laser,” J. Photochem. Photobiol. A 125, 93–98 (1999).
[CrossRef]

Opt. Commun. (2)

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, I. Garcia-Moreno, and R. Sastre, “Laser action from a Rhodamine 640-doped copolymer of 2-hydroxyethyl methacrylate and methyl methacrylate,” Opt. Commun. 114, 442–446 (1995).
[CrossRef]

A. Costela, I. Garcia-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, and R. Sastre, “Solid-state dye laser based on Coumarin 540A-doped polymeric matrices,” Opt. Commun. 130, 44–50 (1996).
[CrossRef]

Other (1)

K. H. Drexhage, “Structure and properties of laser dyes,” in Topics in Applied Physics, Dye Lasers, F. P. Schäfer, ed. (Springer-Verlag, Berlin, 1990) pp. 171, 176.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Absorption spectrum of DO11-doped PMMA, (b) Fluorescence spectrum of DO11-doped PMMA when pumped with 532 nm. Inset, molecular diagram of DO11.

Fig. 2
Fig. 2

Transition of DO11 fluorescence to complete ASE dominance centered at 649 nm with increasing 532-nm pump power. Inset, corresponding fluorescence and ASE intensity versus 532-nm pump power through ASE threshold.

Fig. 3
Fig. 3

DO11-doped PMMA conversion efficiencies for 3, 6, 9-g/l dye concentrations displayed as ASE power versus 532-nm pump power.

Fig. 4
Fig. 4

Calculated gain versus 532-nm pump peak power for DO11-doped PMMA.

Fig. 5
Fig. 5

Photodegradation of DO11-doped PMMA ASE intensity as a function of time. (a) First degradation run, sample area not previously degraded; (b) third degradation run, twice previously degraded and recovered sample area. Excitation source is continuously on 10-Hz, 0.2-mJ/pulse, 35-ps, 532-nm pump radiation.

Fig. 6
Fig. 6

Two successive photodegradation and recovery cycles of a single DO11-doped PMMA sample area. (a) First degradation, (b) corresponding first recovery, (c) second degradation, (d) second recovery. Excitation source is 10-Hz, 0.2-mJ/pulse, 35-ps, 532-nm pump radiation continuously on for degradation runs and intermittent for recovery runs.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

G=(2/L)ln(IL/IL/2-1),
I=P1exp(-t/τ1)+P2[1-exp(-t/τ2)]+I0,

Metrics