Abstract

A method for generating femtosecond-duration x-ray pulses with a free-electron laser is presented. This method uses an energy-chirped electron beam propagating through an undulator to produce a frequency-chirped x-ray pulse by self-amplified spontaneous emission. A short temporal pulse is created by use of a monochromator to select a narrow radiation bandwidth. A second undulator is used to amplify the short-duration radiation. The radiation characteristics produced by a chirped-beam two-stage free-electron laser are calculated, and the performance of the chirped-beam two-stage option for the Linac Coherent Light Source is considered.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Murphy and C. Pellegrini, “Generation of high-intensity coherent radiation in the soft-x-ray and vacuum-ultraviolet region,” J. Opt. Soc. Am. B 2, 259–264 (1985).
    [CrossRef]
  2. J. Arthur et al., “Linac Coherent Light Source (LCLS) conceptual design report,” Stanford Linear Accelerator Center Report SLAC-R-593 (Stanford University, Stanford, Calif., 2002).
  3. R. Bonifacio, L. De Salvo, T. Pierini, N. Piovella, and C. Pellegrini, “Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise,” Phys. Rev. Lett. 73, 70–73 (1994).
    [CrossRef] [PubMed]
  4. C. Pellegrini, “High power femtosecond pulses from an X-ray SASE-FEL,” Nucl. Instrum. Methods Phys. Res. A 445, 124–127 (2000).
    [CrossRef]
  5. J. Feldhaus, E. L. Saldin, J. R. Schneider, E. A. Schneidmiller, and M. V. Yurkov, “Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL,” Opt. Commun. 140, 341–352 (1997).
    [CrossRef]
  6. E. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Optimization of a seeding option for the VUV free electron laser at DESY,” Nucl. Instrum. Methods Phys. Res. A 445, 178–182 (2000).
    [CrossRef]
  7. E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Statistical properties of radiation from VUV and X-ray free electron laser,” Opt. Commun. 148, 383–403 (1998).
    [CrossRef]
  8. J. Goodman, Statistical Optics (Wiley, New York, 1985).
  9. S. Reiche, “GENESIS 1.3: a fully 3D time-dependent FEL simulation code,” Nucl. Instrum. Methods Phys. Res. A 429, 243–248 (1999).
    [CrossRef]
  10. For a review, see J. B. Murphy and C. Pellegrini, “Introduction to the physics of free-electron lasers,” in Laser Handbook, W. B. Colson, C. Pellegrini, and A. Renieri, eds. (North-Holland, Amsterdam, 1990), Vol. 6.
  11. K.-J. Kim, “An analysis of self-amplified spontaneous emission,” Nucl. Instrum. Methods Phys. Res. A 250, 396–403 (1986).
    [CrossRef]
  12. K.-J. Kim and S. J. Hahn, “Finite pulse effects in self-amplified-spontaneous-emission,” Nucl. Instrum. Methods Phys. Res. A 358, 93–95 (1995).
    [CrossRef]
  13. Z. Huang and K.-J. Kim, “Effects of bunch density gradient in high-gain free-electron lasers,” Nucl. Instrum. Methods Phys. Res. A 445, 105–109 (2000).
    [CrossRef]
  14. S. Krinsky, “Transient analysis of free-electron lasers with discrete radiators,” Phys. Rev. E 59, 1171–1183 (1999).
    [CrossRef]

2000 (3)

C. Pellegrini, “High power femtosecond pulses from an X-ray SASE-FEL,” Nucl. Instrum. Methods Phys. Res. A 445, 124–127 (2000).
[CrossRef]

E. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Optimization of a seeding option for the VUV free electron laser at DESY,” Nucl. Instrum. Methods Phys. Res. A 445, 178–182 (2000).
[CrossRef]

Z. Huang and K.-J. Kim, “Effects of bunch density gradient in high-gain free-electron lasers,” Nucl. Instrum. Methods Phys. Res. A 445, 105–109 (2000).
[CrossRef]

1999 (2)

S. Krinsky, “Transient analysis of free-electron lasers with discrete radiators,” Phys. Rev. E 59, 1171–1183 (1999).
[CrossRef]

S. Reiche, “GENESIS 1.3: a fully 3D time-dependent FEL simulation code,” Nucl. Instrum. Methods Phys. Res. A 429, 243–248 (1999).
[CrossRef]

1998 (1)

E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Statistical properties of radiation from VUV and X-ray free electron laser,” Opt. Commun. 148, 383–403 (1998).
[CrossRef]

1997 (1)

J. Feldhaus, E. L. Saldin, J. R. Schneider, E. A. Schneidmiller, and M. V. Yurkov, “Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL,” Opt. Commun. 140, 341–352 (1997).
[CrossRef]

1995 (1)

K.-J. Kim and S. J. Hahn, “Finite pulse effects in self-amplified-spontaneous-emission,” Nucl. Instrum. Methods Phys. Res. A 358, 93–95 (1995).
[CrossRef]

1994 (1)

R. Bonifacio, L. De Salvo, T. Pierini, N. Piovella, and C. Pellegrini, “Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise,” Phys. Rev. Lett. 73, 70–73 (1994).
[CrossRef] [PubMed]

1986 (1)

K.-J. Kim, “An analysis of self-amplified spontaneous emission,” Nucl. Instrum. Methods Phys. Res. A 250, 396–403 (1986).
[CrossRef]

1985 (1)

Bonifacio, R.

R. Bonifacio, L. De Salvo, T. Pierini, N. Piovella, and C. Pellegrini, “Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise,” Phys. Rev. Lett. 73, 70–73 (1994).
[CrossRef] [PubMed]

De Salvo, L.

R. Bonifacio, L. De Salvo, T. Pierini, N. Piovella, and C. Pellegrini, “Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise,” Phys. Rev. Lett. 73, 70–73 (1994).
[CrossRef] [PubMed]

Feldhaus, J.

J. Feldhaus, E. L. Saldin, J. R. Schneider, E. A. Schneidmiller, and M. V. Yurkov, “Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL,” Opt. Commun. 140, 341–352 (1997).
[CrossRef]

Hahn, S. J.

K.-J. Kim and S. J. Hahn, “Finite pulse effects in self-amplified-spontaneous-emission,” Nucl. Instrum. Methods Phys. Res. A 358, 93–95 (1995).
[CrossRef]

Huang, Z.

Z. Huang and K.-J. Kim, “Effects of bunch density gradient in high-gain free-electron lasers,” Nucl. Instrum. Methods Phys. Res. A 445, 105–109 (2000).
[CrossRef]

Kim, K.-J.

Z. Huang and K.-J. Kim, “Effects of bunch density gradient in high-gain free-electron lasers,” Nucl. Instrum. Methods Phys. Res. A 445, 105–109 (2000).
[CrossRef]

K.-J. Kim and S. J. Hahn, “Finite pulse effects in self-amplified-spontaneous-emission,” Nucl. Instrum. Methods Phys. Res. A 358, 93–95 (1995).
[CrossRef]

K.-J. Kim, “An analysis of self-amplified spontaneous emission,” Nucl. Instrum. Methods Phys. Res. A 250, 396–403 (1986).
[CrossRef]

Krinsky, S.

S. Krinsky, “Transient analysis of free-electron lasers with discrete radiators,” Phys. Rev. E 59, 1171–1183 (1999).
[CrossRef]

Murphy, J. B.

Pellegrini, C.

C. Pellegrini, “High power femtosecond pulses from an X-ray SASE-FEL,” Nucl. Instrum. Methods Phys. Res. A 445, 124–127 (2000).
[CrossRef]

R. Bonifacio, L. De Salvo, T. Pierini, N. Piovella, and C. Pellegrini, “Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise,” Phys. Rev. Lett. 73, 70–73 (1994).
[CrossRef] [PubMed]

J. B. Murphy and C. Pellegrini, “Generation of high-intensity coherent radiation in the soft-x-ray and vacuum-ultraviolet region,” J. Opt. Soc. Am. B 2, 259–264 (1985).
[CrossRef]

Pierini, T.

R. Bonifacio, L. De Salvo, T. Pierini, N. Piovella, and C. Pellegrini, “Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise,” Phys. Rev. Lett. 73, 70–73 (1994).
[CrossRef] [PubMed]

Piovella, N.

R. Bonifacio, L. De Salvo, T. Pierini, N. Piovella, and C. Pellegrini, “Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise,” Phys. Rev. Lett. 73, 70–73 (1994).
[CrossRef] [PubMed]

Reiche, S.

S. Reiche, “GENESIS 1.3: a fully 3D time-dependent FEL simulation code,” Nucl. Instrum. Methods Phys. Res. A 429, 243–248 (1999).
[CrossRef]

Saldin, E.

E. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Optimization of a seeding option for the VUV free electron laser at DESY,” Nucl. Instrum. Methods Phys. Res. A 445, 178–182 (2000).
[CrossRef]

Saldin, E. L.

E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Statistical properties of radiation from VUV and X-ray free electron laser,” Opt. Commun. 148, 383–403 (1998).
[CrossRef]

J. Feldhaus, E. L. Saldin, J. R. Schneider, E. A. Schneidmiller, and M. V. Yurkov, “Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL,” Opt. Commun. 140, 341–352 (1997).
[CrossRef]

Schneider, J. R.

J. Feldhaus, E. L. Saldin, J. R. Schneider, E. A. Schneidmiller, and M. V. Yurkov, “Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL,” Opt. Commun. 140, 341–352 (1997).
[CrossRef]

Schneidmiller, E. A.

E. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Optimization of a seeding option for the VUV free electron laser at DESY,” Nucl. Instrum. Methods Phys. Res. A 445, 178–182 (2000).
[CrossRef]

E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Statistical properties of radiation from VUV and X-ray free electron laser,” Opt. Commun. 148, 383–403 (1998).
[CrossRef]

J. Feldhaus, E. L. Saldin, J. R. Schneider, E. A. Schneidmiller, and M. V. Yurkov, “Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL,” Opt. Commun. 140, 341–352 (1997).
[CrossRef]

Yurkov, M. V.

E. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Optimization of a seeding option for the VUV free electron laser at DESY,” Nucl. Instrum. Methods Phys. Res. A 445, 178–182 (2000).
[CrossRef]

E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Statistical properties of radiation from VUV and X-ray free electron laser,” Opt. Commun. 148, 383–403 (1998).
[CrossRef]

J. Feldhaus, E. L. Saldin, J. R. Schneider, E. A. Schneidmiller, and M. V. Yurkov, “Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL,” Opt. Commun. 140, 341–352 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nucl. Instrum. Methods Phys. Res. A (6)

K.-J. Kim, “An analysis of self-amplified spontaneous emission,” Nucl. Instrum. Methods Phys. Res. A 250, 396–403 (1986).
[CrossRef]

K.-J. Kim and S. J. Hahn, “Finite pulse effects in self-amplified-spontaneous-emission,” Nucl. Instrum. Methods Phys. Res. A 358, 93–95 (1995).
[CrossRef]

Z. Huang and K.-J. Kim, “Effects of bunch density gradient in high-gain free-electron lasers,” Nucl. Instrum. Methods Phys. Res. A 445, 105–109 (2000).
[CrossRef]

C. Pellegrini, “High power femtosecond pulses from an X-ray SASE-FEL,” Nucl. Instrum. Methods Phys. Res. A 445, 124–127 (2000).
[CrossRef]

E. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Optimization of a seeding option for the VUV free electron laser at DESY,” Nucl. Instrum. Methods Phys. Res. A 445, 178–182 (2000).
[CrossRef]

S. Reiche, “GENESIS 1.3: a fully 3D time-dependent FEL simulation code,” Nucl. Instrum. Methods Phys. Res. A 429, 243–248 (1999).
[CrossRef]

Opt. Commun. (2)

E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Statistical properties of radiation from VUV and X-ray free electron laser,” Opt. Commun. 148, 383–403 (1998).
[CrossRef]

J. Feldhaus, E. L. Saldin, J. R. Schneider, E. A. Schneidmiller, and M. V. Yurkov, “Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL,” Opt. Commun. 140, 341–352 (1997).
[CrossRef]

Phys. Rev. E (1)

S. Krinsky, “Transient analysis of free-electron lasers with discrete radiators,” Phys. Rev. E 59, 1171–1183 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

R. Bonifacio, L. De Salvo, T. Pierini, N. Piovella, and C. Pellegrini, “Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise,” Phys. Rev. Lett. 73, 70–73 (1994).
[CrossRef] [PubMed]

Other (3)

J. Arthur et al., “Linac Coherent Light Source (LCLS) conceptual design report,” Stanford Linear Accelerator Center Report SLAC-R-593 (Stanford University, Stanford, Calif., 2002).

J. Goodman, Statistical Optics (Wiley, New York, 1985).

For a review, see J. B. Murphy and C. Pellegrini, “Introduction to the physics of free-electron lasers,” in Laser Handbook, W. B. Colson, C. Pellegrini, and A. Renieri, eds. (North-Holland, Amsterdam, 1990), Vol. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of chirped-beam two-stage FEL for short-duration x-ray generation.

Fig. 2
Fig. 2

Temporal structure of SASE radiation pulse after first undulator (SASE-FEL).

Fig. 3
Fig. 3

Schematic of four-reflection crystal monochromator.

Fig. 4
Fig. 4

Temporal structure of radiation pulse shown in Fig. 2 after transmission through a Ge (111) crystal monochromator.

Fig. 5
Fig. 5

Mean peak radiation power along length of chirped-beam two-stage FEL.

Fig. 6
Fig. 6

Radiation power fluctuations along length of second undulator (FEL amplifier).

Tables (3)

Tables Icon

Table 1 Linac Coherent Light Source Free-Electron Laser Parameters

Tables Icon

Table 2 First Undulator (L1=43.2 m) Input Electron-Beam and Output-Radiation Parameters

Tables Icon

Table 3 Second Undulator (L2=51.8 m) Input Electron and Photon-Beam Parameters and Output-Radiation Parameters

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

λ=λu2γ2(1+Kave2),
δγγ=α lLb,
στ=12σωλ4πρc(Nuρ)1/2,
Lgλu4πρ3 1+19 αλρ2Lb2.
σzLb2α σmω,
σPP2πcστLp1/2.
σγγρP1Psat1/2,
ΔL=2d tan θB,
θ˙=2kuη,
η˙=-κBa exp(iθ),
z+ku θa=kM exp(-iθ)dηf,
f(θ, η, z)=knσ jδ(θ-θj)δ(η-ηj),
z+θ˙ θ+η˙ ηf=0.
z+θ˙ θf1=κBa exp(iθ) f0η,
f1=κB exp(iθ) f0η 0zdz exp[iθ˙(z-z)]a(θ, z),
a(θ, z)=dθH(θ-θ)Lds2πi a0(θ)+κMku dη exp(-iθ) Δf0s+2iη×exps(kuz-θ+θ)-(2ρ)3iθθdθdη f0(θ, η)(s+2iη)2,
a*a=dθa0(θ)GCA2+κM2kku2nσ dθχ(θ)|GSASE|2+κM2ku2 dθχ(θ)exp(iθ)GSASE2,
G(θ, θ, z)=H(θ-θ)Lds2πi exp[s(kuz-θ+θ)]×exp-(2ρ)3iθθdθdη f0(θ, η)(s+2iη)2×1forCAdη V(η, θ)s+2iηforSASE.
G(θ, θ, z)=--i-idq2πi exp[iq(θ-θ)]×Lds2πi exp(skuz)D×1forCAdη V(η, θ)s+2iηforSASE,
D=s+iq-i(2ρ)3(θ-θ) θθdθdη f0(θ, η)(s+2iη)2.
D=s+iq-i(2ρ)3s2.
Res2ρ=32 1-19 q2ρ2.
D=s+iq-i(2ρ)3(s+2iαˆθ)(s+2iαˆθ).
αLb λρρ.
Lg(α)-Lg(0)Lg(0)19 αλLbρ22,

Metrics