Abstract

A method for generating femtosecond-duration x-ray pulses with a free-electron laser is presented. This method uses an energy-chirped electron beam propagating through an undulator to produce a frequency-chirped x-ray pulse by self-amplified spontaneous emission. A short temporal pulse is created by use of a monochromator to select a narrow radiation bandwidth. A second undulator is used to amplify the short-duration radiation. The radiation characteristics produced by a chirped-beam two-stage free-electron laser are calculated, and the performance of the chirped-beam two-stage option for the Linac Coherent Light Source is considered.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Murphy and C. Pellegrini, “Generation of high-intensity coherent radiation in the soft-x-ray and vacuum-ultraviolet region,” J. Opt. Soc. Am. B 2, 259–264 (1985).
    [Crossref]
  2. J. Arthur and et al., “Linac Coherent Light Source (LCLS) conceptual design report,” (Stanford University, Stanford, Calif., 2002).
  3. R. Bonifacio, L. De Salvo, T. Pierini, N. Piovella, and C. Pellegrini, “Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise,” Phys. Rev. Lett. 73, 70–73 (1994).
    [Crossref] [PubMed]
  4. C. Pellegrini, “High power femtosecond pulses from an X-ray SASE-FEL,” Nucl. Instrum. Methods Phys. Res. A 445, 124–127 (2000).
    [Crossref]
  5. J. Feldhaus, E. L. Saldin, J. R. Schneider, E. A. Schneidmiller, and M. V. Yurkov, “Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL,” Opt. Commun. 140, 341–352 (1997).
    [Crossref]
  6. E. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Optimization of a seeding option for the VUV free electron laser at DESY,” Nucl. Instrum. Methods Phys. Res. A 445, 178–182 (2000).
    [Crossref]
  7. E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Statistical properties of radiation from VUV and X-ray free electron laser,” Opt. Commun. 148, 383–403 (1998).
    [Crossref]
  8. J. Goodman, Statistical Optics (Wiley, New York, 1985).
  9. S. Reiche, “GENESIS 1.3: a fully 3D time-dependent FEL simulation code,” Nucl. Instrum. Methods Phys. Res. A 429, 243–248 (1999).
    [Crossref]
  10. For a review, see J. B. Murphy and C. Pellegrini, “Introduction to the physics of free-electron lasers,” in Laser Handbook, W. B. Colson, C. Pellegrini, and A. Renieri, eds. (North-Holland, Amsterdam, 1990), Vol. 6.
  11. K.-J. Kim, “An analysis of self-amplified spontaneous emission,” Nucl. Instrum. Methods Phys. Res. A 250, 396–403 (1986).
    [Crossref]
  12. K.-J. Kim and S. J. Hahn, “Finite pulse effects in self-amplified-spontaneous-emission,” Nucl. Instrum. Methods Phys. Res. A 358, 93–95 (1995).
    [Crossref]
  13. Z. Huang and K.-J. Kim, “Effects of bunch density gradient in high-gain free-electron lasers,” Nucl. Instrum. Methods Phys. Res. A 445, 105–109 (2000).
    [Crossref]
  14. S. Krinsky, “Transient analysis of free-electron lasers with discrete radiators,” Phys. Rev. E 59, 1171–1183 (1999).
    [Crossref]

2000 (3)

C. Pellegrini, “High power femtosecond pulses from an X-ray SASE-FEL,” Nucl. Instrum. Methods Phys. Res. A 445, 124–127 (2000).
[Crossref]

E. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Optimization of a seeding option for the VUV free electron laser at DESY,” Nucl. Instrum. Methods Phys. Res. A 445, 178–182 (2000).
[Crossref]

Z. Huang and K.-J. Kim, “Effects of bunch density gradient in high-gain free-electron lasers,” Nucl. Instrum. Methods Phys. Res. A 445, 105–109 (2000).
[Crossref]

1999 (2)

S. Krinsky, “Transient analysis of free-electron lasers with discrete radiators,” Phys. Rev. E 59, 1171–1183 (1999).
[Crossref]

S. Reiche, “GENESIS 1.3: a fully 3D time-dependent FEL simulation code,” Nucl. Instrum. Methods Phys. Res. A 429, 243–248 (1999).
[Crossref]

1998 (1)

E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Statistical properties of radiation from VUV and X-ray free electron laser,” Opt. Commun. 148, 383–403 (1998).
[Crossref]

1997 (1)

J. Feldhaus, E. L. Saldin, J. R. Schneider, E. A. Schneidmiller, and M. V. Yurkov, “Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL,” Opt. Commun. 140, 341–352 (1997).
[Crossref]

1995 (1)

K.-J. Kim and S. J. Hahn, “Finite pulse effects in self-amplified-spontaneous-emission,” Nucl. Instrum. Methods Phys. Res. A 358, 93–95 (1995).
[Crossref]

1994 (1)

R. Bonifacio, L. De Salvo, T. Pierini, N. Piovella, and C. Pellegrini, “Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise,” Phys. Rev. Lett. 73, 70–73 (1994).
[Crossref] [PubMed]

1986 (1)

K.-J. Kim, “An analysis of self-amplified spontaneous emission,” Nucl. Instrum. Methods Phys. Res. A 250, 396–403 (1986).
[Crossref]

1985 (1)

Arthur, J.

J. Arthur and et al., “Linac Coherent Light Source (LCLS) conceptual design report,” (Stanford University, Stanford, Calif., 2002).

Bonifacio, R.

R. Bonifacio, L. De Salvo, T. Pierini, N. Piovella, and C. Pellegrini, “Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise,” Phys. Rev. Lett. 73, 70–73 (1994).
[Crossref] [PubMed]

De Salvo, L.

R. Bonifacio, L. De Salvo, T. Pierini, N. Piovella, and C. Pellegrini, “Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise,” Phys. Rev. Lett. 73, 70–73 (1994).
[Crossref] [PubMed]

Feldhaus, J.

J. Feldhaus, E. L. Saldin, J. R. Schneider, E. A. Schneidmiller, and M. V. Yurkov, “Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL,” Opt. Commun. 140, 341–352 (1997).
[Crossref]

Goodman, J.

J. Goodman, Statistical Optics (Wiley, New York, 1985).

Hahn, S. J.

K.-J. Kim and S. J. Hahn, “Finite pulse effects in self-amplified-spontaneous-emission,” Nucl. Instrum. Methods Phys. Res. A 358, 93–95 (1995).
[Crossref]

Huang, Z.

Z. Huang and K.-J. Kim, “Effects of bunch density gradient in high-gain free-electron lasers,” Nucl. Instrum. Methods Phys. Res. A 445, 105–109 (2000).
[Crossref]

Kim, K.-J.

Z. Huang and K.-J. Kim, “Effects of bunch density gradient in high-gain free-electron lasers,” Nucl. Instrum. Methods Phys. Res. A 445, 105–109 (2000).
[Crossref]

K.-J. Kim and S. J. Hahn, “Finite pulse effects in self-amplified-spontaneous-emission,” Nucl. Instrum. Methods Phys. Res. A 358, 93–95 (1995).
[Crossref]

K.-J. Kim, “An analysis of self-amplified spontaneous emission,” Nucl. Instrum. Methods Phys. Res. A 250, 396–403 (1986).
[Crossref]

Krinsky, S.

S. Krinsky, “Transient analysis of free-electron lasers with discrete radiators,” Phys. Rev. E 59, 1171–1183 (1999).
[Crossref]

Murphy, J. B.

J. B. Murphy and C. Pellegrini, “Generation of high-intensity coherent radiation in the soft-x-ray and vacuum-ultraviolet region,” J. Opt. Soc. Am. B 2, 259–264 (1985).
[Crossref]

For a review, see J. B. Murphy and C. Pellegrini, “Introduction to the physics of free-electron lasers,” in Laser Handbook, W. B. Colson, C. Pellegrini, and A. Renieri, eds. (North-Holland, Amsterdam, 1990), Vol. 6.

Pellegrini, C.

C. Pellegrini, “High power femtosecond pulses from an X-ray SASE-FEL,” Nucl. Instrum. Methods Phys. Res. A 445, 124–127 (2000).
[Crossref]

R. Bonifacio, L. De Salvo, T. Pierini, N. Piovella, and C. Pellegrini, “Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise,” Phys. Rev. Lett. 73, 70–73 (1994).
[Crossref] [PubMed]

J. B. Murphy and C. Pellegrini, “Generation of high-intensity coherent radiation in the soft-x-ray and vacuum-ultraviolet region,” J. Opt. Soc. Am. B 2, 259–264 (1985).
[Crossref]

For a review, see J. B. Murphy and C. Pellegrini, “Introduction to the physics of free-electron lasers,” in Laser Handbook, W. B. Colson, C. Pellegrini, and A. Renieri, eds. (North-Holland, Amsterdam, 1990), Vol. 6.

Pierini, T.

R. Bonifacio, L. De Salvo, T. Pierini, N. Piovella, and C. Pellegrini, “Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise,” Phys. Rev. Lett. 73, 70–73 (1994).
[Crossref] [PubMed]

Piovella, N.

R. Bonifacio, L. De Salvo, T. Pierini, N. Piovella, and C. Pellegrini, “Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise,” Phys. Rev. Lett. 73, 70–73 (1994).
[Crossref] [PubMed]

Reiche, S.

S. Reiche, “GENESIS 1.3: a fully 3D time-dependent FEL simulation code,” Nucl. Instrum. Methods Phys. Res. A 429, 243–248 (1999).
[Crossref]

Saldin, E.

E. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Optimization of a seeding option for the VUV free electron laser at DESY,” Nucl. Instrum. Methods Phys. Res. A 445, 178–182 (2000).
[Crossref]

Saldin, E. L.

E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Statistical properties of radiation from VUV and X-ray free electron laser,” Opt. Commun. 148, 383–403 (1998).
[Crossref]

J. Feldhaus, E. L. Saldin, J. R. Schneider, E. A. Schneidmiller, and M. V. Yurkov, “Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL,” Opt. Commun. 140, 341–352 (1997).
[Crossref]

Schneider, J. R.

J. Feldhaus, E. L. Saldin, J. R. Schneider, E. A. Schneidmiller, and M. V. Yurkov, “Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL,” Opt. Commun. 140, 341–352 (1997).
[Crossref]

Schneidmiller, E. A.

E. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Optimization of a seeding option for the VUV free electron laser at DESY,” Nucl. Instrum. Methods Phys. Res. A 445, 178–182 (2000).
[Crossref]

E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Statistical properties of radiation from VUV and X-ray free electron laser,” Opt. Commun. 148, 383–403 (1998).
[Crossref]

J. Feldhaus, E. L. Saldin, J. R. Schneider, E. A. Schneidmiller, and M. V. Yurkov, “Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL,” Opt. Commun. 140, 341–352 (1997).
[Crossref]

Yurkov, M. V.

E. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Optimization of a seeding option for the VUV free electron laser at DESY,” Nucl. Instrum. Methods Phys. Res. A 445, 178–182 (2000).
[Crossref]

E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Statistical properties of radiation from VUV and X-ray free electron laser,” Opt. Commun. 148, 383–403 (1998).
[Crossref]

J. Feldhaus, E. L. Saldin, J. R. Schneider, E. A. Schneidmiller, and M. V. Yurkov, “Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL,” Opt. Commun. 140, 341–352 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

Nucl. Instrum. Methods Phys. Res. A (6)

C. Pellegrini, “High power femtosecond pulses from an X-ray SASE-FEL,” Nucl. Instrum. Methods Phys. Res. A 445, 124–127 (2000).
[Crossref]

E. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Optimization of a seeding option for the VUV free electron laser at DESY,” Nucl. Instrum. Methods Phys. Res. A 445, 178–182 (2000).
[Crossref]

S. Reiche, “GENESIS 1.3: a fully 3D time-dependent FEL simulation code,” Nucl. Instrum. Methods Phys. Res. A 429, 243–248 (1999).
[Crossref]

K.-J. Kim, “An analysis of self-amplified spontaneous emission,” Nucl. Instrum. Methods Phys. Res. A 250, 396–403 (1986).
[Crossref]

K.-J. Kim and S. J. Hahn, “Finite pulse effects in self-amplified-spontaneous-emission,” Nucl. Instrum. Methods Phys. Res. A 358, 93–95 (1995).
[Crossref]

Z. Huang and K.-J. Kim, “Effects of bunch density gradient in high-gain free-electron lasers,” Nucl. Instrum. Methods Phys. Res. A 445, 105–109 (2000).
[Crossref]

Opt. Commun. (2)

E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Statistical properties of radiation from VUV and X-ray free electron laser,” Opt. Commun. 148, 383–403 (1998).
[Crossref]

J. Feldhaus, E. L. Saldin, J. R. Schneider, E. A. Schneidmiller, and M. V. Yurkov, “Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL,” Opt. Commun. 140, 341–352 (1997).
[Crossref]

Phys. Rev. E (1)

S. Krinsky, “Transient analysis of free-electron lasers with discrete radiators,” Phys. Rev. E 59, 1171–1183 (1999).
[Crossref]

Phys. Rev. Lett. (1)

R. Bonifacio, L. De Salvo, T. Pierini, N. Piovella, and C. Pellegrini, “Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise,” Phys. Rev. Lett. 73, 70–73 (1994).
[Crossref] [PubMed]

Other (3)

J. Arthur and et al., “Linac Coherent Light Source (LCLS) conceptual design report,” (Stanford University, Stanford, Calif., 2002).

J. Goodman, Statistical Optics (Wiley, New York, 1985).

For a review, see J. B. Murphy and C. Pellegrini, “Introduction to the physics of free-electron lasers,” in Laser Handbook, W. B. Colson, C. Pellegrini, and A. Renieri, eds. (North-Holland, Amsterdam, 1990), Vol. 6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of chirped-beam two-stage FEL for short-duration x-ray generation.

Fig. 2
Fig. 2

Temporal structure of SASE radiation pulse after first undulator (SASE-FEL).

Fig. 3
Fig. 3

Schematic of four-reflection crystal monochromator.

Fig. 4
Fig. 4

Temporal structure of radiation pulse shown in Fig. 2 after transmission through a Ge (111) crystal monochromator.

Fig. 5
Fig. 5

Mean peak radiation power along length of chirped-beam two-stage FEL.

Fig. 6
Fig. 6

Radiation power fluctuations along length of second undulator (FEL amplifier).

Tables (3)

Tables Icon

Table 1 Linac Coherent Light Source Free-Electron Laser Parameters

Tables Icon

Table 2 First Undulator (L1=43.2 m) Input Electron-Beam and Output-Radiation Parameters

Tables Icon

Table 3 Second Undulator (L2=51.8 m) Input Electron and Photon-Beam Parameters and Output-Radiation Parameters

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

λ=λu2γ2(1+Kave2),
δγγ=α lLb,
στ=12σωλ4πρc(Nuρ)1/2,
Lgλu4πρ3 1+19 αλρ2Lb2.
σzLb2α σmω,
σPP2πcστLp1/2.
σγγρP1Psat1/2,
ΔL=2d tan θB,
θ˙=2kuη,
η˙=-κBa exp(iθ),
z+ku θa=kM exp(-iθ)dηf,
f(θ, η, z)=knσ jδ(θ-θj)δ(η-ηj),
z+θ˙ θ+η˙ ηf=0.
z+θ˙ θf1=κBa exp(iθ) f0η,
f1=κB exp(iθ) f0η 0zdz exp[iθ˙(z-z)]a(θ, z),
a(θ, z)=dθH(θ-θ)Lds2πi a0(θ)+κMku dη exp(-iθ) Δf0s+2iη×exps(kuz-θ+θ)-(2ρ)3iθθdθdη f0(θ, η)(s+2iη)2,
a*a=dθa0(θ)GCA2+κM2kku2nσ dθχ(θ)|GSASE|2+κM2ku2 dθχ(θ)exp(iθ)GSASE2,
G(θ, θ, z)=H(θ-θ)Lds2πi exp[s(kuz-θ+θ)]×exp-(2ρ)3iθθdθdη f0(θ, η)(s+2iη)2×1forCAdη V(η, θ)s+2iηforSASE.
G(θ, θ, z)=--i-idq2πi exp[iq(θ-θ)]×Lds2πi exp(skuz)D×1forCAdη V(η, θ)s+2iηforSASE,
D=s+iq-i(2ρ)3(θ-θ) θθdθdη f0(θ, η)(s+2iη)2.
D=s+iq-i(2ρ)3s2.
Res2ρ=32 1-19 q2ρ2.
D=s+iq-i(2ρ)3(s+2iαˆθ)(s+2iαˆθ).
αLb λρρ.
Lg(α)-Lg(0)Lg(0)19 αλLbρ22,

Metrics