Abstract

We present quality factors of single-defect photonic-crystal resonant cavities with asymmetric cladding layers. The resonators studied here are dielectric slabs patterned with two-dimensional photonic crystals on a sapphire substrate. Three-dimensional finite-element and finite-difference time-domain routines were used to analyze the electromagnetic properties of these cavities. We observe that high quality factors (∼800) can be obtained in these cavities for reasonable structures with thick enough dielectric slabs. This work was motivated by the need to place photonic-crystal resonators on a substrate to improve heat dissipation in photonic-crystal lasers.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Painter, A. Husain, A. Scherer, P. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a photonic crystal laser array,” IEEE Photonics Technol. Lett. 12, 1126–1128 (2000).
    [CrossRef]
  2. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
    [CrossRef] [PubMed]
  3. O. Painter, A. Husain, A. Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, “Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,” J. Lightwave Technol. 17, 2082–2088 (1999).
    [CrossRef]
  4. J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, and Y. H. Lee, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982–2984 (2000).
    [CrossRef]
  5. P. T. Lee, J. P. Cao, S. J. Choi, J. D. O’Brien, and P. D. Dapkus, “Room temperature operation of VCSEL-pumped photonic crystal lasers,” submitted to IEEE Photonics Technol. Lett. (2001).
  6. C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
    [CrossRef]
  7. J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photonics Technol. Lett. 12, 1295–1297 (2000).
    [CrossRef]
  8. S. G. Johnson, S. Fan, R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodzeijski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
    [CrossRef]
  9. P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc. Optoelectron. 145, 384–390 (1998).
    [CrossRef]
  10. O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–284 (1999).
    [CrossRef]
  11. H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
    [CrossRef]
  12. S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic bandgap,” Appl. Phys. Lett. 78, 3388–3390 (2001).
    [CrossRef]
  13. Z. Bi, Ying Shen, Keli Wu, and J. Litva, “Fast finite-difference time domain analysis of resonators using digital filtering and spectrum estimation techniques,” IEEE Trans. Microwave Theory Tech. 40, 869–872 (1992).
    [CrossRef]
  14. C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
    [CrossRef]
  15. E. Miyai and K. Sakoda, “Quality factor for localized defect modes in a photonic crystal slab upon a low-index dielectric substrate,” Opt. Lett. 26, 740–742 (2001).
    [CrossRef]
  16. A. Mathur and P. D. Dapkus, “Fabrication, characterization and analysis of low threshold current density 1.55 mm strained quantum-well lasers,” IEEE J. Quantum Electron. 32, 222–226 (1996).
    [CrossRef]

2001

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
[CrossRef]

S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic bandgap,” Appl. Phys. Lett. 78, 3388–3390 (2001).
[CrossRef]

E. Miyai and K. Sakoda, “Quality factor for localized defect modes in a photonic crystal slab upon a low-index dielectric substrate,” Opt. Lett. 26, 740–742 (2001).
[CrossRef]

2000

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photonics Technol. Lett. 12, 1295–1297 (2000).
[CrossRef]

O. Painter, A. Husain, A. Scherer, P. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a photonic crystal laser array,” IEEE Photonics Technol. Lett. 12, 1126–1128 (2000).
[CrossRef]

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, and Y. H. Lee, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982–2984 (2000).
[CrossRef]

1999

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–284 (1999).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

O. Painter, A. Husain, A. Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, “Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,” J. Lightwave Technol. 17, 2082–2088 (1999).
[CrossRef]

S. G. Johnson, S. Fan, R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodzeijski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

1998

P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc. Optoelectron. 145, 384–390 (1998).
[CrossRef]

1996

A. Mathur and P. D. Dapkus, “Fabrication, characterization and analysis of low threshold current density 1.55 mm strained quantum-well lasers,” IEEE J. Quantum Electron. 32, 222–226 (1996).
[CrossRef]

1995

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
[CrossRef]

1992

Z. Bi, Ying Shen, Keli Wu, and J. Litva, “Fast finite-difference time domain analysis of resonators using digital filtering and spectrum estimation techniques,” IEEE Trans. Microwave Theory Tech. 40, 869–872 (1992).
[CrossRef]

Aspar, B.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
[CrossRef]

Benisty, H.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

Beraud, A.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

Bi, Z.

Z. Bi, Ying Shen, Keli Wu, and J. Litva, “Fast finite-difference time domain analysis of resonators using digital filtering and spectrum estimation techniques,” IEEE Trans. Microwave Theory Tech. 40, 869–872 (1992).
[CrossRef]

Cassagne, D.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

Chan, C. T.

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
[CrossRef]

Dapkus, P. D.

O. Painter, A. Husain, A. Scherer, P. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a photonic crystal laser array,” IEEE Photonics Technol. Lett. 12, 1126–1128 (2000).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

O. Painter, A. Husain, A. Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, “Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,” J. Lightwave Technol. 17, 2082–2088 (1999).
[CrossRef]

A. Mathur and P. D. Dapkus, “Fabrication, characterization and analysis of low threshold current density 1.55 mm strained quantum-well lasers,” IEEE J. Quantum Electron. 32, 222–226 (1996).
[CrossRef]

Fan, S.

S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic bandgap,” Appl. Phys. Lett. 78, 3388–3390 (2001).
[CrossRef]

S. G. Johnson, S. Fan, R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodzeijski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc. Optoelectron. 145, 384–390 (1998).
[CrossRef]

Gendry, M.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
[CrossRef]

Han, I. Y.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, and Y. H. Lee, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982–2984 (2000).
[CrossRef]

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photonics Technol. Lett. 12, 1295–1297 (2000).
[CrossRef]

Ho, K. M.

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
[CrossRef]

Hollinger, G.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
[CrossRef]

Husain, A.

O. Painter, A. Husain, A. Scherer, P. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a photonic crystal laser array,” IEEE Photonics Technol. Lett. 12, 1126–1128 (2000).
[CrossRef]

O. Painter, A. Husain, A. Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, “Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,” J. Lightwave Technol. 17, 2082–2088 (1999).
[CrossRef]

Hwang, J. K.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, and Y. H. Lee, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982–2984 (2000).
[CrossRef]

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photonics Technol. Lett. 12, 1295–1297 (2000).
[CrossRef]

Jalaguier, E.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
[CrossRef]

Jang, D. H.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photonics Technol. Lett. 12, 1295–1297 (2000).
[CrossRef]

Joannopoulos, J. D.

S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic bandgap,” Appl. Phys. Lett. 78, 3388–3390 (2001).
[CrossRef]

S. G. Johnson, S. Fan, R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodzeijski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc. Optoelectron. 145, 384–390 (1998).
[CrossRef]

Johnson, S. G.

S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic bandgap,” Appl. Phys. Lett. 78, 3388–3390 (2001).
[CrossRef]

S. G. Johnson, S. Fan, R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodzeijski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc. Optoelectron. 145, 384–390 (1998).
[CrossRef]

Jouanin, C.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

Kim, I.

O. Painter, A. Husain, A. Scherer, P. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a photonic crystal laser array,” IEEE Photonics Technol. Lett. 12, 1126–1128 (2000).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

O. Painter, A. Husain, A. Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, “Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,” J. Lightwave Technol. 17, 2082–2088 (1999).
[CrossRef]

Kolodzeijski, L. A.

S. G. Johnson, S. Fan, R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodzeijski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Krauss, T. F.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

Labilloy, D.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

Lee, P.

O. Painter, A. Husain, A. Scherer, P. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a photonic crystal laser array,” IEEE Photonics Technol. Lett. 12, 1126–1128 (2000).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Lee, Y. H.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, and Y. H. Lee, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982–2984 (2000).
[CrossRef]

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photonics Technol. Lett. 12, 1295–1297 (2000).
[CrossRef]

Letartre, X.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
[CrossRef]

Litva, J.

Z. Bi, Ying Shen, Keli Wu, and J. Litva, “Fast finite-difference time domain analysis of resonators using digital filtering and spectrum estimation techniques,” IEEE Trans. Microwave Theory Tech. 40, 869–872 (1992).
[CrossRef]

Mathur, A.

A. Mathur and P. D. Dapkus, “Fabrication, characterization and analysis of low threshold current density 1.55 mm strained quantum-well lasers,” IEEE J. Quantum Electron. 32, 222–226 (1996).
[CrossRef]

Mekis, A.

S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic bandgap,” Appl. Phys. Lett. 78, 3388–3390 (2001).
[CrossRef]

Miyai, E.

Monat, C.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
[CrossRef]

O’Brien, J. D.

O. Painter, A. Husain, A. Scherer, P. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a photonic crystal laser array,” IEEE Photonics Technol. Lett. 12, 1126–1128 (2000).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

O. Painter, A. Husain, A. Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, “Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,” J. Lightwave Technol. 17, 2082–2088 (1999).
[CrossRef]

Painter, O.

O. Painter, A. Husain, A. Scherer, P. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a photonic crystal laser array,” IEEE Photonics Technol. Lett. 12, 1126–1128 (2000).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

O. Painter, A. Husain, A. Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, “Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,” J. Lightwave Technol. 17, 2082–2088 (1999).
[CrossRef]

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–284 (1999).
[CrossRef]

Park, H. K.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photonics Technol. Lett. 12, 1295–1297 (2000).
[CrossRef]

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, and Y. H. Lee, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982–2984 (2000).
[CrossRef]

Pocas, S.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
[CrossRef]

Regreny, P.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
[CrossRef]

Rojo-Romeo, P.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
[CrossRef]

Ryu, H. Y.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, and Y. H. Lee, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982–2984 (2000).
[CrossRef]

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photonics Technol. Lett. 12, 1295–1297 (2000).
[CrossRef]

Sakoda, K.

Scherer, A.

O. Painter, A. Husain, A. Scherer, P. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a photonic crystal laser array,” IEEE Photonics Technol. Lett. 12, 1126–1128 (2000).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

O. Painter, A. Husain, A. Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, “Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,” J. Lightwave Technol. 17, 2082–2088 (1999).
[CrossRef]

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–284 (1999).
[CrossRef]

Seassal, C.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
[CrossRef]

Shen, Ying

Z. Bi, Ying Shen, Keli Wu, and J. Litva, “Fast finite-difference time domain analysis of resonators using digital filtering and spectrum estimation techniques,” IEEE Trans. Microwave Theory Tech. 40, 869–872 (1992).
[CrossRef]

Smith, C. J. M.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

Song, D. S.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photonics Technol. Lett. 12, 1295–1297 (2000).
[CrossRef]

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, and Y. H. Lee, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982–2984 (2000).
[CrossRef]

Song, H. W.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, and Y. H. Lee, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982–2984 (2000).
[CrossRef]

Viktorovitch, P.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
[CrossRef]

Villeneuve, P. R.

P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc. Optoelectron. 145, 384–390 (1998).
[CrossRef]

Villeneuve, R.

S. G. Johnson, S. Fan, R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodzeijski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Vuckovic, J.

Weisbuch, C.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

Wu, Keli

Z. Bi, Ying Shen, Keli Wu, and J. Litva, “Fast finite-difference time domain analysis of resonators using digital filtering and spectrum estimation techniques,” IEEE Trans. Microwave Theory Tech. 40, 869–872 (1992).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Yu, Q. L.

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
[CrossRef]

Appl. Phys. Lett.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, and Y. H. Lee, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982–2984 (2000).
[CrossRef]

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic bandgap,” Appl. Phys. Lett. 78, 3388–3390 (2001).
[CrossRef]

Electron. Lett.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001).
[CrossRef]

IEE Proc. Optoelectron.

P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc. Optoelectron. 145, 384–390 (1998).
[CrossRef]

IEEE J. Quantum Electron.

A. Mathur and P. D. Dapkus, “Fabrication, characterization and analysis of low threshold current density 1.55 mm strained quantum-well lasers,” IEEE J. Quantum Electron. 32, 222–226 (1996).
[CrossRef]

IEEE Photonics Technol. Lett.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photonics Technol. Lett. 12, 1295–1297 (2000).
[CrossRef]

O. Painter, A. Husain, A. Scherer, P. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a photonic crystal laser array,” IEEE Photonics Technol. Lett. 12, 1126–1128 (2000).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

Z. Bi, Ying Shen, Keli Wu, and J. Litva, “Fast finite-difference time domain analysis of resonators using digital filtering and spectrum estimation techniques,” IEEE Trans. Microwave Theory Tech. 40, 869–872 (1992).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. B

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
[CrossRef]

S. G. Johnson, S. Fan, R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodzeijski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Science

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Other

P. T. Lee, J. P. Cao, S. J. Choi, J. D. O’Brien, and P. D. Dapkus, “Room temperature operation of VCSEL-pumped photonic crystal lasers,” submitted to IEEE Photonics Technol. Lett. (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Illustration of resonant cavity geometry modeled in this work.

Fig. 2
Fig. 2

Finite-element calculations of the dispersion relations of the photonic-crystal membrane for (a) Symmetric air cladding, (b) asymmetric air–sapphire cladding.

Fig. 3
Fig. 3

FDTD calculation of electric field intensity inside the air–sapphire-clad photonic-crystal resonant cavity.

Fig. 4
Fig. 4

FDTD calculation of Qbottom, Qside, and Qtotal as a function of the membrane thickness for (a) three-layer slab on sapphire, (b) single-layer slab on sapphire.

Fig. 5
Fig. 5

FDTD calculation of Qtop, Qvertical and Qbottom as a function of r/a with the membrane thickness fixed at 1.6 a.

Fig. 6
Fig. 6

FDTD calculation of Q values as a function of the number of photonic-crystal periods for a single-mode slab.

Fig. 7
Fig. 7

FDTD calculation of threshold modal gain as a function of d/a for the three-layer and single-layer slab cases.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Q=ωtph=2πneffλ 1Γgth,

Metrics