Abstract

We present quality factors of single-defect photonic-crystal resonant cavities with asymmetric cladding layers. The resonators studied here are dielectric slabs patterned with two-dimensional photonic crystals on a sapphire substrate. Three-dimensional finite-element and finite-difference time-domain routines were used to analyze the electromagnetic properties of these cavities. We observe that high quality factors (∼800) can be obtained in these cavities for reasonable structures with thick enough dielectric slabs. This work was motivated by the need to place photonic-crystal resonators on a substrate to improve heat dissipation in photonic-crystal lasers.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Painter, A. Husain, A. Scherer, P. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a photonic crystal laser array,” IEEE Photonics Technol. Lett. 12, 1126–1128 (2000).
    [Crossref]
  2. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
    [Crossref] [PubMed]
  3. O. Painter, A. Husain, A. Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, “Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,” J. Lightwave Technol. 17, 2082–2088 (1999).
    [Crossref]
  4. J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, and Y. H. Lee, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 µm,” Appl. Phys. Lett. 76, 2982–2984 (2000).
    [Crossref]
  5. P. T. Lee, J. P. Cao, S. J. Choi, J. D. O’Brien, and P. D. Dapkus, “Room temperature operation of VCSEL-pumped photonic crystal lasers,” submitted to IEEE Photonics Technol. Lett. (2001).
  6. C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 µm,” Electron. Lett. 37, 764–765 (2001).
    [Crossref]
  7. J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 µm,” IEEE Photonics Technol. Lett. 12, 1295–1297 (2000).
    [Crossref]
  8. S. G. Johnson, S. Fan, R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodzeijski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
    [Crossref]
  9. P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc. Optoelectron. 145, 384–390 (1998).
    [Crossref]
  10. O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–284 (1999).
    [Crossref]
  11. H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
    [Crossref]
  12. S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic bandgap,” Appl. Phys. Lett. 78, 3388–3390 (2001).
    [Crossref]
  13. Z. Bi, Ying Shen, Keli Wu, and J. Litva, “Fast finite-difference time domain analysis of resonators using digital filtering and spectrum estimation techniques,” IEEE Trans. Microwave Theory Tech. 40, 869–872 (1992).
    [Crossref]
  14. C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
    [Crossref]
  15. E. Miyai and K. Sakoda, “Quality factor for localized defect modes in a photonic crystal slab upon a low-index dielectric substrate,” Opt. Lett. 26, 740–742 (2001).
    [Crossref]
  16. A. Mathur and P. D. Dapkus, “Fabrication, characterization and analysis of low threshold current density 1.55 mm strained quantum-well lasers,” IEEE J. Quantum Electron. 32, 222–226 (1996).
    [Crossref]

2001 (3)

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 µm,” Electron. Lett. 37, 764–765 (2001).
[Crossref]

S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic bandgap,” Appl. Phys. Lett. 78, 3388–3390 (2001).
[Crossref]

E. Miyai and K. Sakoda, “Quality factor for localized defect modes in a photonic crystal slab upon a low-index dielectric substrate,” Opt. Lett. 26, 740–742 (2001).
[Crossref]

2000 (4)

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[Crossref]

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 µm,” IEEE Photonics Technol. Lett. 12, 1295–1297 (2000).
[Crossref]

O. Painter, A. Husain, A. Scherer, P. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a photonic crystal laser array,” IEEE Photonics Technol. Lett. 12, 1126–1128 (2000).
[Crossref]

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, and Y. H. Lee, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 µm,” Appl. Phys. Lett. 76, 2982–2984 (2000).
[Crossref]

1999 (4)

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–284 (1999).
[Crossref]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

O. Painter, A. Husain, A. Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, “Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,” J. Lightwave Technol. 17, 2082–2088 (1999).
[Crossref]

S. G. Johnson, S. Fan, R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodzeijski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

1998 (1)

P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc. Optoelectron. 145, 384–390 (1998).
[Crossref]

1996 (1)

A. Mathur and P. D. Dapkus, “Fabrication, characterization and analysis of low threshold current density 1.55 mm strained quantum-well lasers,” IEEE J. Quantum Electron. 32, 222–226 (1996).
[Crossref]

1995 (1)

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
[Crossref]

1992 (1)

Z. Bi, Ying Shen, Keli Wu, and J. Litva, “Fast finite-difference time domain analysis of resonators using digital filtering and spectrum estimation techniques,” IEEE Trans. Microwave Theory Tech. 40, 869–872 (1992).
[Crossref]

Aspar, B.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 µm,” Electron. Lett. 37, 764–765 (2001).
[Crossref]

Benisty, H.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[Crossref]

Beraud, A.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[Crossref]

Bi, Z.

Z. Bi, Ying Shen, Keli Wu, and J. Litva, “Fast finite-difference time domain analysis of resonators using digital filtering and spectrum estimation techniques,” IEEE Trans. Microwave Theory Tech. 40, 869–872 (1992).
[Crossref]

Cao, J. P.

P. T. Lee, J. P. Cao, S. J. Choi, J. D. O’Brien, and P. D. Dapkus, “Room temperature operation of VCSEL-pumped photonic crystal lasers,” submitted to IEEE Photonics Technol. Lett. (2001).

Cassagne, D.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[Crossref]

Chan, C. T.

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
[Crossref]

Choi, S. J.

P. T. Lee, J. P. Cao, S. J. Choi, J. D. O’Brien, and P. D. Dapkus, “Room temperature operation of VCSEL-pumped photonic crystal lasers,” submitted to IEEE Photonics Technol. Lett. (2001).

Dapkus, P. D.

O. Painter, A. Husain, A. Scherer, P. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a photonic crystal laser array,” IEEE Photonics Technol. Lett. 12, 1126–1128 (2000).
[Crossref]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

O. Painter, A. Husain, A. Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, “Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,” J. Lightwave Technol. 17, 2082–2088 (1999).
[Crossref]

A. Mathur and P. D. Dapkus, “Fabrication, characterization and analysis of low threshold current density 1.55 mm strained quantum-well lasers,” IEEE J. Quantum Electron. 32, 222–226 (1996).
[Crossref]

P. T. Lee, J. P. Cao, S. J. Choi, J. D. O’Brien, and P. D. Dapkus, “Room temperature operation of VCSEL-pumped photonic crystal lasers,” submitted to IEEE Photonics Technol. Lett. (2001).

Fan, S.

S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic bandgap,” Appl. Phys. Lett. 78, 3388–3390 (2001).
[Crossref]

S. G. Johnson, S. Fan, R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodzeijski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc. Optoelectron. 145, 384–390 (1998).
[Crossref]

Gendry, M.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 µm,” Electron. Lett. 37, 764–765 (2001).
[Crossref]

Han, I. Y.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, and Y. H. Lee, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 µm,” Appl. Phys. Lett. 76, 2982–2984 (2000).
[Crossref]

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 µm,” IEEE Photonics Technol. Lett. 12, 1295–1297 (2000).
[Crossref]

Ho, K. M.

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
[Crossref]

Hollinger, G.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 µm,” Electron. Lett. 37, 764–765 (2001).
[Crossref]

Husain, A.

O. Painter, A. Husain, A. Scherer, P. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a photonic crystal laser array,” IEEE Photonics Technol. Lett. 12, 1126–1128 (2000).
[Crossref]

O. Painter, A. Husain, A. Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, “Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,” J. Lightwave Technol. 17, 2082–2088 (1999).
[Crossref]

Hwang, J. K.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 µm,” IEEE Photonics Technol. Lett. 12, 1295–1297 (2000).
[Crossref]

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, and Y. H. Lee, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 µm,” Appl. Phys. Lett. 76, 2982–2984 (2000).
[Crossref]

Jalaguier, E.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 µm,” Electron. Lett. 37, 764–765 (2001).
[Crossref]

Jang, D. H.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 µm,” IEEE Photonics Technol. Lett. 12, 1295–1297 (2000).
[Crossref]

Joannopoulos, J. D.

S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic bandgap,” Appl. Phys. Lett. 78, 3388–3390 (2001).
[Crossref]

S. G. Johnson, S. Fan, R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodzeijski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc. Optoelectron. 145, 384–390 (1998).
[Crossref]

Johnson, S. G.

S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic bandgap,” Appl. Phys. Lett. 78, 3388–3390 (2001).
[Crossref]

S. G. Johnson, S. Fan, R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodzeijski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc. Optoelectron. 145, 384–390 (1998).
[Crossref]

Jouanin, C.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[Crossref]

Kim, I.

O. Painter, A. Husain, A. Scherer, P. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a photonic crystal laser array,” IEEE Photonics Technol. Lett. 12, 1126–1128 (2000).
[Crossref]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

O. Painter, A. Husain, A. Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, “Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,” J. Lightwave Technol. 17, 2082–2088 (1999).
[Crossref]

Kolodzeijski, L. A.

S. G. Johnson, S. Fan, R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodzeijski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

Krauss, T. F.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[Crossref]

Labilloy, D.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[Crossref]

Lee, P.

O. Painter, A. Husain, A. Scherer, P. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a photonic crystal laser array,” IEEE Photonics Technol. Lett. 12, 1126–1128 (2000).
[Crossref]

Lee, P. T.

P. T. Lee, J. P. Cao, S. J. Choi, J. D. O’Brien, and P. D. Dapkus, “Room temperature operation of VCSEL-pumped photonic crystal lasers,” submitted to IEEE Photonics Technol. Lett. (2001).

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

Lee, Y. H.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, and Y. H. Lee, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 µm,” Appl. Phys. Lett. 76, 2982–2984 (2000).
[Crossref]

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 µm,” IEEE Photonics Technol. Lett. 12, 1295–1297 (2000).
[Crossref]

Letartre, X.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 µm,” Electron. Lett. 37, 764–765 (2001).
[Crossref]

Litva, J.

Z. Bi, Ying Shen, Keli Wu, and J. Litva, “Fast finite-difference time domain analysis of resonators using digital filtering and spectrum estimation techniques,” IEEE Trans. Microwave Theory Tech. 40, 869–872 (1992).
[Crossref]

Mathur, A.

A. Mathur and P. D. Dapkus, “Fabrication, characterization and analysis of low threshold current density 1.55 mm strained quantum-well lasers,” IEEE J. Quantum Electron. 32, 222–226 (1996).
[Crossref]

Mekis, A.

S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic bandgap,” Appl. Phys. Lett. 78, 3388–3390 (2001).
[Crossref]

Miyai, E.

Monat, C.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 µm,” Electron. Lett. 37, 764–765 (2001).
[Crossref]

O’Brien, J. D.

O. Painter, A. Husain, A. Scherer, P. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a photonic crystal laser array,” IEEE Photonics Technol. Lett. 12, 1126–1128 (2000).
[Crossref]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

O. Painter, A. Husain, A. Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, “Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,” J. Lightwave Technol. 17, 2082–2088 (1999).
[Crossref]

P. T. Lee, J. P. Cao, S. J. Choi, J. D. O’Brien, and P. D. Dapkus, “Room temperature operation of VCSEL-pumped photonic crystal lasers,” submitted to IEEE Photonics Technol. Lett. (2001).

Painter, O.

O. Painter, A. Husain, A. Scherer, P. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a photonic crystal laser array,” IEEE Photonics Technol. Lett. 12, 1126–1128 (2000).
[Crossref]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

O. Painter, A. Husain, A. Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, “Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,” J. Lightwave Technol. 17, 2082–2088 (1999).
[Crossref]

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–284 (1999).
[Crossref]

Park, H. K.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, and Y. H. Lee, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 µm,” Appl. Phys. Lett. 76, 2982–2984 (2000).
[Crossref]

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 µm,” IEEE Photonics Technol. Lett. 12, 1295–1297 (2000).
[Crossref]

Pocas, S.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 µm,” Electron. Lett. 37, 764–765 (2001).
[Crossref]

Regreny, P.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 µm,” Electron. Lett. 37, 764–765 (2001).
[Crossref]

Rojo-Romeo, P.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 µm,” Electron. Lett. 37, 764–765 (2001).
[Crossref]

Ryu, H. Y.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, and Y. H. Lee, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 µm,” Appl. Phys. Lett. 76, 2982–2984 (2000).
[Crossref]

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 µm,” IEEE Photonics Technol. Lett. 12, 1295–1297 (2000).
[Crossref]

Sakoda, K.

Scherer, A.

O. Painter, A. Husain, A. Scherer, P. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a photonic crystal laser array,” IEEE Photonics Technol. Lett. 12, 1126–1128 (2000).
[Crossref]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

O. Painter, A. Husain, A. Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, “Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,” J. Lightwave Technol. 17, 2082–2088 (1999).
[Crossref]

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–284 (1999).
[Crossref]

Seassal, C.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 µm,” Electron. Lett. 37, 764–765 (2001).
[Crossref]

Shen, Ying

Z. Bi, Ying Shen, Keli Wu, and J. Litva, “Fast finite-difference time domain analysis of resonators using digital filtering and spectrum estimation techniques,” IEEE Trans. Microwave Theory Tech. 40, 869–872 (1992).
[Crossref]

Smith, C. J. M.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[Crossref]

Song, D. S.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, and Y. H. Lee, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 µm,” Appl. Phys. Lett. 76, 2982–2984 (2000).
[Crossref]

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 µm,” IEEE Photonics Technol. Lett. 12, 1295–1297 (2000).
[Crossref]

Song, H. W.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, and Y. H. Lee, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 µm,” Appl. Phys. Lett. 76, 2982–2984 (2000).
[Crossref]

Viktorovitch, P.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 µm,” Electron. Lett. 37, 764–765 (2001).
[Crossref]

Villeneuve, P. R.

P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc. Optoelectron. 145, 384–390 (1998).
[Crossref]

Villeneuve, R.

S. G. Johnson, S. Fan, R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodzeijski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

Vuckovic, J.

Weisbuch, C.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[Crossref]

Wu, Keli

Z. Bi, Ying Shen, Keli Wu, and J. Litva, “Fast finite-difference time domain analysis of resonators using digital filtering and spectrum estimation techniques,” IEEE Trans. Microwave Theory Tech. 40, 869–872 (1992).
[Crossref]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

Yu, Q. L.

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
[Crossref]

Appl. Phys. Lett. (3)

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, and Y. H. Lee, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 µm,” Appl. Phys. Lett. 76, 2982–2984 (2000).
[Crossref]

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[Crossref]

S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic bandgap,” Appl. Phys. Lett. 78, 3388–3390 (2001).
[Crossref]

Electron. Lett. (1)

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlaser on Si wafer: room temperature operation at 1.55 µm,” Electron. Lett. 37, 764–765 (2001).
[Crossref]

IEE Proc. Optoelectron. (1)

P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc. Optoelectron. 145, 384–390 (1998).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Mathur and P. D. Dapkus, “Fabrication, characterization and analysis of low threshold current density 1.55 mm strained quantum-well lasers,” IEEE J. Quantum Electron. 32, 222–226 (1996).
[Crossref]

IEEE Photonics Technol. Lett. (2)

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 µm,” IEEE Photonics Technol. Lett. 12, 1295–1297 (2000).
[Crossref]

O. Painter, A. Husain, A. Scherer, P. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a photonic crystal laser array,” IEEE Photonics Technol. Lett. 12, 1126–1128 (2000).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

Z. Bi, Ying Shen, Keli Wu, and J. Litva, “Fast finite-difference time domain analysis of resonators using digital filtering and spectrum estimation techniques,” IEEE Trans. Microwave Theory Tech. 40, 869–872 (1992).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Phys. Rev. B (2)

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
[Crossref]

S. G. Johnson, S. Fan, R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodzeijski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

Other (1)

P. T. Lee, J. P. Cao, S. J. Choi, J. D. O’Brien, and P. D. Dapkus, “Room temperature operation of VCSEL-pumped photonic crystal lasers,” submitted to IEEE Photonics Technol. Lett. (2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Illustration of resonant cavity geometry modeled in this work.

Fig. 2
Fig. 2

Finite-element calculations of the dispersion relations of the photonic-crystal membrane for (a) Symmetric air cladding, (b) asymmetric air–sapphire cladding.

Fig. 3
Fig. 3

FDTD calculation of electric field intensity inside the air–sapphire-clad photonic-crystal resonant cavity.

Fig. 4
Fig. 4

FDTD calculation of Qbottom, Qside, and Qtotal as a function of the membrane thickness for (a) three-layer slab on sapphire, (b) single-layer slab on sapphire.

Fig. 5
Fig. 5

FDTD calculation of Qtop, Qvertical and Qbottom as a function of r/a with the membrane thickness fixed at 1.6 a.

Fig. 6
Fig. 6

FDTD calculation of Q values as a function of the number of photonic-crystal periods for a single-mode slab.

Fig. 7
Fig. 7

FDTD calculation of threshold modal gain as a function of d/a for the three-layer and single-layer slab cases.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Q=ωtph=2πneffλ 1Γgth,

Metrics