Abstract

Quasi-phase matching facilitates the phase matching of any parametric interaction by setting an appropriately modulated period. We propose a dual-periodic structure that is used in the construction of a frequency-conversion device. For example, we have designed and fabricated such a dual-periodic structure in a LiTaO3 crystal. Using a fundamental source at 1.064 µm, we obtained ultraviolet radiation at 355 nm and green radiation at 532 nm simultaneously by frequency tripling and frequency doubling the fundamental source. Theoretically, this idea can be further extended to the design of a multiperiodic structure for achievement of more quasi-phase-matched processes in a single optical superlattice.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
    [CrossRef]
  2. P. A. Franken and J. F. Ward, “Optical harmonics and nonlinear phenomena,” Rev. Mod. Phys. 35, 23–39 (1963).
    [CrossRef]
  3. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasiphased matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
    [CrossRef]
  4. R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, and L. Erman, “Continuous-wave quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate,” Opt. Lett. 24, 1293–1295 (1999).
    [CrossRef]
  5. M. Fujimura, T. Suhara, and H. Nishihara, “Periodically domain-inverted LiNbO3 for waveguide quasi-phase matched nonlinear optic wavelength conversion devices,” Mater. Sci. B 22, 413–420 (1999).
    [CrossRef]
  6. K. Koch and G. T. Moore, “Singly resonant cavity-enhanced frequency tripling,” J. Opt. Soc. Am. B 16, 448–459 (1999).
    [CrossRef]
  7. M. Fujimura, A. Shiratsuki, T. Suhara, and H. Nishihara, “Wavelength conversion in LiNbO3 waveguide difference-frequency generation devices with domain-inverted gratings fabricated by voltage application,” Jpn. J. Appl. Phys. 37, L659–L662 (1998).
    [CrossRef]
  8. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [CrossRef]
  9. M. A. Arbore, O. Marco, and M. M. Fejer, “Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings,” Opt. Lett. 22, 865–867 (1997).
    [CrossRef] [PubMed]
  10. C. B. Clausen, O. Bang, and Y. S. Kivshar, “Spatial solitons and induced Kerr effects in quasi-phase-matched quadratic media,” Phys. Rev. Lett. 78, 4749–4752 (1997).
    [CrossRef]
  11. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
    [CrossRef]
  12. S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
    [CrossRef]
  13. K. F. Kashi and A. Arie, “Multiple-wavelength quasi-phase-matched nonlinear interactions,” IEEE J. Quantum Electron. 35, 1649–1655 (1999).
    [CrossRef]
  14. Y. B. Chen, C. Zhang, Y. Y. Zhu, S. N. Zhu, H. T. Wang, and N. B. Ming, “Optical harmonic generation in a quasi-phase-matched three-component Fibonacci superlattice LiTaO3,” Appl. Phys. Lett. 78, 577–579 (2001).
    [CrossRef]
  15. C. B. Clausen, Y. S. Kivshar, O. Bang, and P. L. Christiansen, “Quasiperiodic envelope solitons,” Phys. Rev. Lett. 83, 4740–4743 (1999).
    [CrossRef]
  16. X. J. Liu, Z. L. Wang, J. Wu, and N. B. Ming, “Second-harmonic generation in a Thue–Morse optical superlattice,” Chin. Phys. Lett. 15, 426–428 (1998).
    [CrossRef]
  17. X. J. Liu, Z. L. Wang, X. S. Jiang, J. Wu, and N. B. Ming, “Characterization of harmonic generation in an intergrowth optical superlattice,” J. Phys. D 31, 2502–2506 (1998).
    [CrossRef]
  18. B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175–2177 (1999).
    [CrossRef]
  19. O. Pfister, J. S. Wells, L. Hollberg, L. Zink, D. A. Van Baak, M. D. Levenson, and W. R. Bosenberg, “Continuous-wave frequency tripling and quadrupling by simultaneous three-wave mixings in periodically poled crystals: application to a two-step 1.19–10.71-μm frequency bridge,” Opt. Lett. 22, 1211–1213 (1997).
    [CrossRef] [PubMed]
  20. C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899–901 (2001).
    [CrossRef]
  21. C. Zhang, Y. Y. Zhu, S. X. Yang, Y. Q. Qin, S. N. Zhu, Y. B. Chen, H. Liu, and N. B. Ming, “Crucial effects of coupling coefficients on quasi-phase-matched harmonic genera-tion in an optical superlattice,” Opt. Lett. 25, 436–439 (2000).
    [CrossRef]
  22. S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
    [CrossRef]
  23. V. Y. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. G. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, “Nanoscale backswitched domain patterning in lithium niobate,” Appl. Phys. Lett. 76, 143–145 (2000).
    [CrossRef]

2001

Y. B. Chen, C. Zhang, Y. Y. Zhu, S. N. Zhu, H. T. Wang, and N. B. Ming, “Optical harmonic generation in a quasi-phase-matched three-component Fibonacci superlattice LiTaO3,” Appl. Phys. Lett. 78, 577–579 (2001).
[CrossRef]

C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899–901 (2001).
[CrossRef]

2000

V. Y. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. G. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, “Nanoscale backswitched domain patterning in lithium niobate,” Appl. Phys. Lett. 76, 143–145 (2000).
[CrossRef]

C. Zhang, Y. Y. Zhu, S. X. Yang, Y. Q. Qin, S. N. Zhu, Y. B. Chen, H. Liu, and N. B. Ming, “Crucial effects of coupling coefficients on quasi-phase-matched harmonic genera-tion in an optical superlattice,” Opt. Lett. 25, 436–439 (2000).
[CrossRef]

1999

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175–2177 (1999).
[CrossRef]

C. B. Clausen, Y. S. Kivshar, O. Bang, and P. L. Christiansen, “Quasiperiodic envelope solitons,” Phys. Rev. Lett. 83, 4740–4743 (1999).
[CrossRef]

M. Fujimura, T. Suhara, and H. Nishihara, “Periodically domain-inverted LiNbO3 for waveguide quasi-phase matched nonlinear optic wavelength conversion devices,” Mater. Sci. B 22, 413–420 (1999).
[CrossRef]

K. F. Kashi and A. Arie, “Multiple-wavelength quasi-phase-matched nonlinear interactions,” IEEE J. Quantum Electron. 35, 1649–1655 (1999).
[CrossRef]

R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, and L. Erman, “Continuous-wave quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate,” Opt. Lett. 24, 1293–1295 (1999).
[CrossRef]

K. Koch and G. T. Moore, “Singly resonant cavity-enhanced frequency tripling,” J. Opt. Soc. Am. B 16, 448–459 (1999).
[CrossRef]

1998

M. Fujimura, A. Shiratsuki, T. Suhara, and H. Nishihara, “Wavelength conversion in LiNbO3 waveguide difference-frequency generation devices with domain-inverted gratings fabricated by voltage application,” Jpn. J. Appl. Phys. 37, L659–L662 (1998).
[CrossRef]

X. J. Liu, Z. L. Wang, J. Wu, and N. B. Ming, “Second-harmonic generation in a Thue–Morse optical superlattice,” Chin. Phys. Lett. 15, 426–428 (1998).
[CrossRef]

X. J. Liu, Z. L. Wang, X. S. Jiang, J. Wu, and N. B. Ming, “Characterization of harmonic generation in an intergrowth optical superlattice,” J. Phys. D 31, 2502–2506 (1998).
[CrossRef]

1997

C. B. Clausen, O. Bang, and Y. S. Kivshar, “Spatial solitons and induced Kerr effects in quasi-phase-matched quadratic media,” Phys. Rev. Lett. 78, 4749–4752 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[CrossRef]

M. A. Arbore, O. Marco, and M. M. Fejer, “Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings,” Opt. Lett. 22, 865–867 (1997).
[CrossRef] [PubMed]

O. Pfister, J. S. Wells, L. Hollberg, L. Zink, D. A. Van Baak, M. D. Levenson, and W. R. Bosenberg, “Continuous-wave frequency tripling and quadrupling by simultaneous three-wave mixings in periodically poled crystals: application to a two-step 1.19–10.71-μm frequency bridge,” Opt. Lett. 22, 1211–1213 (1997).
[CrossRef] [PubMed]

1995

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
[CrossRef]

1993

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasiphased matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[CrossRef]

1963

P. A. Franken and J. F. Ward, “Optical harmonics and nonlinear phenomena,” Rev. Mod. Phys. 35, 23–39 (1963).
[CrossRef]

1962

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Arbore, M. A.

Arie, A.

K. F. Kashi and A. Arie, “Multiple-wavelength quasi-phase-matched nonlinear interactions,” IEEE J. Quantum Electron. 35, 1649–1655 (1999).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Bang, O.

C. B. Clausen, Y. S. Kivshar, O. Bang, and P. L. Christiansen, “Quasiperiodic envelope solitons,” Phys. Rev. Lett. 83, 4740–4743 (1999).
[CrossRef]

C. B. Clausen, O. Bang, and Y. S. Kivshar, “Spatial solitons and induced Kerr effects in quasi-phase-matched quadratic media,” Phys. Rev. Lett. 78, 4749–4752 (1997).
[CrossRef]

Batchko, R. G.

V. Y. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. G. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, “Nanoscale backswitched domain patterning in lithium niobate,” Appl. Phys. Lett. 76, 143–145 (2000).
[CrossRef]

R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, and L. Erman, “Continuous-wave quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate,” Opt. Lett. 24, 1293–1295 (1999).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Bosenberg, W. R.

Byer, R. L.

Chen, Y. B.

Y. B. Chen, C. Zhang, Y. Y. Zhu, S. N. Zhu, H. T. Wang, and N. B. Ming, “Optical harmonic generation in a quasi-phase-matched three-component Fibonacci superlattice LiTaO3,” Appl. Phys. Lett. 78, 577–579 (2001).
[CrossRef]

C. Zhang, Y. Y. Zhu, S. X. Yang, Y. Q. Qin, S. N. Zhu, Y. B. Chen, H. Liu, and N. B. Ming, “Crucial effects of coupling coefficients on quasi-phase-matched harmonic genera-tion in an optical superlattice,” Opt. Lett. 25, 436–439 (2000).
[CrossRef]

Christiansen, P. L.

C. B. Clausen, Y. S. Kivshar, O. Bang, and P. L. Christiansen, “Quasiperiodic envelope solitons,” Phys. Rev. Lett. 83, 4740–4743 (1999).
[CrossRef]

Clausen, C. B.

C. B. Clausen, Y. S. Kivshar, O. Bang, and P. L. Christiansen, “Quasiperiodic envelope solitons,” Phys. Rev. Lett. 83, 4740–4743 (1999).
[CrossRef]

C. B. Clausen, O. Bang, and Y. S. Kivshar, “Spatial solitons and induced Kerr effects in quasi-phase-matched quadratic media,” Phys. Rev. Lett. 78, 4749–4752 (1997).
[CrossRef]

Dong, B. Z.

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175–2177 (1999).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Eckardt, R. C.

Erman, L.

Eyres, L. A.

V. Y. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. G. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, “Nanoscale backswitched domain patterning in lithium niobate,” Appl. Phys. Lett. 76, 143–145 (2000).
[CrossRef]

Fejer, M. M.

Franken, P. A.

P. A. Franken and J. F. Ward, “Optical harmonics and nonlinear phenomena,” Rev. Mod. Phys. 35, 23–39 (1963).
[CrossRef]

Fujimura, M.

M. Fujimura, T. Suhara, and H. Nishihara, “Periodically domain-inverted LiNbO3 for waveguide quasi-phase matched nonlinear optic wavelength conversion devices,” Mater. Sci. B 22, 413–420 (1999).
[CrossRef]

M. Fujimura, A. Shiratsuki, T. Suhara, and H. Nishihara, “Wavelength conversion in LiNbO3 waveguide difference-frequency generation devices with domain-inverted gratings fabricated by voltage application,” Jpn. J. Appl. Phys. 37, L659–L662 (1998).
[CrossRef]

Fursov, D. V.

V. Y. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. G. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, “Nanoscale backswitched domain patterning in lithium niobate,” Appl. Phys. Lett. 76, 143–145 (2000).
[CrossRef]

Ge, C. Z.

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

Gu, B. Y.

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175–2177 (1999).
[CrossRef]

Hollberg, L.

Hong, J. F.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

Jiang, X. S.

X. J. Liu, Z. L. Wang, X. S. Jiang, J. Wu, and N. B. Ming, “Characterization of harmonic generation in an intergrowth optical superlattice,” J. Phys. D 31, 2502–2506 (1998).
[CrossRef]

Kashi, K. F.

K. F. Kashi and A. Arie, “Multiple-wavelength quasi-phase-matched nonlinear interactions,” IEEE J. Quantum Electron. 35, 1649–1655 (1999).
[CrossRef]

Kivshar, Y. S.

C. B. Clausen, Y. S. Kivshar, O. Bang, and P. L. Christiansen, “Quasiperiodic envelope solitons,” Phys. Rev. Lett. 83, 4740–4743 (1999).
[CrossRef]

C. B. Clausen, O. Bang, and Y. S. Kivshar, “Spatial solitons and induced Kerr effects in quasi-phase-matched quadratic media,” Phys. Rev. Lett. 78, 4749–4752 (1997).
[CrossRef]

Koch, K.

Levenson, M. D.

Liu, H.

Liu, X. J.

X. J. Liu, Z. L. Wang, X. S. Jiang, J. Wu, and N. B. Ming, “Characterization of harmonic generation in an intergrowth optical superlattice,” J. Phys. D 31, 2502–2506 (1998).
[CrossRef]

X. J. Liu, Z. L. Wang, J. Wu, and N. B. Ming, “Second-harmonic generation in a Thue–Morse optical superlattice,” Chin. Phys. Lett. 15, 426–428 (1998).
[CrossRef]

Marco, O.

Ming, N. B.

Y. B. Chen, C. Zhang, Y. Y. Zhu, S. N. Zhu, H. T. Wang, and N. B. Ming, “Optical harmonic generation in a quasi-phase-matched three-component Fibonacci superlattice LiTaO3,” Appl. Phys. Lett. 78, 577–579 (2001).
[CrossRef]

C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899–901 (2001).
[CrossRef]

C. Zhang, Y. Y. Zhu, S. X. Yang, Y. Q. Qin, S. N. Zhu, Y. B. Chen, H. Liu, and N. B. Ming, “Crucial effects of coupling coefficients on quasi-phase-matched harmonic genera-tion in an optical superlattice,” Opt. Lett. 25, 436–439 (2000).
[CrossRef]

X. J. Liu, Z. L. Wang, J. Wu, and N. B. Ming, “Second-harmonic generation in a Thue–Morse optical superlattice,” Chin. Phys. Lett. 15, 426–428 (1998).
[CrossRef]

X. J. Liu, Z. L. Wang, X. S. Jiang, J. Wu, and N. B. Ming, “Characterization of harmonic generation in an intergrowth optical superlattice,” J. Phys. D 31, 2502–2506 (1998).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

Moore, G. T.

Myers, L. E.

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasiphased matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[CrossRef]

Nikolaeva, E. V.

V. Y. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. G. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, “Nanoscale backswitched domain patterning in lithium niobate,” Appl. Phys. Lett. 76, 143–145 (2000).
[CrossRef]

Nishihara, H.

M. Fujimura, T. Suhara, and H. Nishihara, “Periodically domain-inverted LiNbO3 for waveguide quasi-phase matched nonlinear optic wavelength conversion devices,” Mater. Sci. B 22, 413–420 (1999).
[CrossRef]

M. Fujimura, A. Shiratsuki, T. Suhara, and H. Nishihara, “Wavelength conversion in LiNbO3 waveguide difference-frequency generation devices with domain-inverted gratings fabricated by voltage application,” Jpn. J. Appl. Phys. 37, L659–L662 (1998).
[CrossRef]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Pfister, O.

Pierce, J. W.

Qin, Y. Q.

C. Zhang, Y. Y. Zhu, S. X. Yang, Y. Q. Qin, S. N. Zhu, Y. B. Chen, H. Liu, and N. B. Ming, “Crucial effects of coupling coefficients on quasi-phase-matched harmonic genera-tion in an optical superlattice,” Opt. Lett. 25, 436–439 (2000).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[CrossRef]

Rumyantsev, E. L.

V. Y. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. G. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, “Nanoscale backswitched domain patterning in lithium niobate,” Appl. Phys. Lett. 76, 143–145 (2000).
[CrossRef]

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasiphased matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[CrossRef]

Shiratsuki, A.

M. Fujimura, A. Shiratsuki, T. Suhara, and H. Nishihara, “Wavelength conversion in LiNbO3 waveguide difference-frequency generation devices with domain-inverted gratings fabricated by voltage application,” Jpn. J. Appl. Phys. 37, L659–L662 (1998).
[CrossRef]

Shishkin, E. I.

V. Y. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. G. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, “Nanoscale backswitched domain patterning in lithium niobate,” Appl. Phys. Lett. 76, 143–145 (2000).
[CrossRef]

Shu, H.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

Shur, V. Y.

V. Y. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. G. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, “Nanoscale backswitched domain patterning in lithium niobate,” Appl. Phys. Lett. 76, 143–145 (2000).
[CrossRef]

R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, and L. Erman, “Continuous-wave quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate,” Opt. Lett. 24, 1293–1295 (1999).
[CrossRef]

Suhara, T.

M. Fujimura, T. Suhara, and H. Nishihara, “Periodically domain-inverted LiNbO3 for waveguide quasi-phase matched nonlinear optic wavelength conversion devices,” Mater. Sci. B 22, 413–420 (1999).
[CrossRef]

M. Fujimura, A. Shiratsuki, T. Suhara, and H. Nishihara, “Wavelength conversion in LiNbO3 waveguide difference-frequency generation devices with domain-inverted gratings fabricated by voltage application,” Jpn. J. Appl. Phys. 37, L659–L662 (1998).
[CrossRef]

Van Baak, D. A.

Wallenstein, R.

Wang, H. F.

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

Wang, H. T.

C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899–901 (2001).
[CrossRef]

Y. B. Chen, C. Zhang, Y. Y. Zhu, S. N. Zhu, H. T. Wang, and N. B. Ming, “Optical harmonic generation in a quasi-phase-matched three-component Fibonacci superlattice LiTaO3,” Appl. Phys. Lett. 78, 577–579 (2001).
[CrossRef]

Wang, Z. L.

X. J. Liu, Z. L. Wang, J. Wu, and N. B. Ming, “Second-harmonic generation in a Thue–Morse optical superlattice,” Chin. Phys. Lett. 15, 426–428 (1998).
[CrossRef]

X. J. Liu, Z. L. Wang, X. S. Jiang, J. Wu, and N. B. Ming, “Characterization of harmonic generation in an intergrowth optical superlattice,” J. Phys. D 31, 2502–2506 (1998).
[CrossRef]

Ward, J. F.

P. A. Franken and J. F. Ward, “Optical harmonics and nonlinear phenomena,” Rev. Mod. Phys. 35, 23–39 (1963).
[CrossRef]

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasiphased matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[CrossRef]

Wei, H.

Wells, J. S.

Woll, D.

Wu, J.

X. J. Liu, Z. L. Wang, X. S. Jiang, J. Wu, and N. B. Ming, “Characterization of harmonic generation in an intergrowth optical superlattice,” J. Phys. D 31, 2502–2506 (1998).
[CrossRef]

X. J. Liu, Z. L. Wang, J. Wu, and N. B. Ming, “Second-harmonic generation in a Thue–Morse optical superlattice,” Chin. Phys. Lett. 15, 426–428 (1998).
[CrossRef]

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasiphased matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[CrossRef]

Yang, G. Z.

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175–2177 (1999).
[CrossRef]

Yang, S. X.

Zhang, C.

Zhang, Y.

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175–2177 (1999).
[CrossRef]

Zhang, Z. Y.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

Zhu, S. N.

C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899–901 (2001).
[CrossRef]

Y. B. Chen, C. Zhang, Y. Y. Zhu, S. N. Zhu, H. T. Wang, and N. B. Ming, “Optical harmonic generation in a quasi-phase-matched three-component Fibonacci superlattice LiTaO3,” Appl. Phys. Lett. 78, 577–579 (2001).
[CrossRef]

C. Zhang, Y. Y. Zhu, S. X. Yang, Y. Q. Qin, S. N. Zhu, Y. B. Chen, H. Liu, and N. B. Ming, “Crucial effects of coupling coefficients on quasi-phase-matched harmonic genera-tion in an optical superlattice,” Opt. Lett. 25, 436–439 (2000).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

Zhu, Y. Y.

C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899–901 (2001).
[CrossRef]

Y. B. Chen, C. Zhang, Y. Y. Zhu, S. N. Zhu, H. T. Wang, and N. B. Ming, “Optical harmonic generation in a quasi-phase-matched three-component Fibonacci superlattice LiTaO3,” Appl. Phys. Lett. 78, 577–579 (2001).
[CrossRef]

C. Zhang, Y. Y. Zhu, S. X. Yang, Y. Q. Qin, S. N. Zhu, Y. B. Chen, H. Liu, and N. B. Ming, “Crucial effects of coupling coefficients on quasi-phase-matched harmonic genera-tion in an optical superlattice,” Opt. Lett. 25, 436–439 (2000).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

Zink, L.

Appl. Phys. Lett.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasiphased matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[CrossRef]

Y. B. Chen, C. Zhang, Y. Y. Zhu, S. N. Zhu, H. T. Wang, and N. B. Ming, “Optical harmonic generation in a quasi-phase-matched three-component Fibonacci superlattice LiTaO3,” Appl. Phys. Lett. 78, 577–579 (2001).
[CrossRef]

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175–2177 (1999).
[CrossRef]

V. Y. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. G. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, “Nanoscale backswitched domain patterning in lithium niobate,” Appl. Phys. Lett. 76, 143–145 (2000).
[CrossRef]

Chin. Phys. Lett.

X. J. Liu, Z. L. Wang, J. Wu, and N. B. Ming, “Second-harmonic generation in a Thue–Morse optical superlattice,” Chin. Phys. Lett. 15, 426–428 (1998).
[CrossRef]

IEEE J. Quantum Electron.

K. F. Kashi and A. Arie, “Multiple-wavelength quasi-phase-matched nonlinear interactions,” IEEE J. Quantum Electron. 35, 1649–1655 (1999).
[CrossRef]

J. Appl. Phys.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D

X. J. Liu, Z. L. Wang, X. S. Jiang, J. Wu, and N. B. Ming, “Characterization of harmonic generation in an intergrowth optical superlattice,” J. Phys. D 31, 2502–2506 (1998).
[CrossRef]

Jpn. J. Appl. Phys.

M. Fujimura, A. Shiratsuki, T. Suhara, and H. Nishihara, “Wavelength conversion in LiNbO3 waveguide difference-frequency generation devices with domain-inverted gratings fabricated by voltage application,” Jpn. J. Appl. Phys. 37, L659–L662 (1998).
[CrossRef]

Mater. Sci. B

M. Fujimura, T. Suhara, and H. Nishihara, “Periodically domain-inverted LiNbO3 for waveguide quasi-phase matched nonlinear optic wavelength conversion devices,” Mater. Sci. B 22, 413–420 (1999).
[CrossRef]

Opt. Lett.

Phys. Rev.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Phys. Rev. Lett.

C. B. Clausen, O. Bang, and Y. S. Kivshar, “Spatial solitons and induced Kerr effects in quasi-phase-matched quadratic media,” Phys. Rev. Lett. 78, 4749–4752 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[CrossRef]

C. B. Clausen, Y. S. Kivshar, O. Bang, and P. L. Christiansen, “Quasiperiodic envelope solitons,” Phys. Rev. Lett. 83, 4740–4743 (1999).
[CrossRef]

Rev. Mod. Phys.

P. A. Franken and J. F. Ward, “Optical harmonics and nonlinear phenomena,” Rev. Mod. Phys. 35, 23–39 (1963).
[CrossRef]

Science

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Dual-period QPM structure formed by modulation twice upon a periodic grating. (a) Ratio L/l is an integer. (b) Amended method for obtaining a dual-periodic structure with the ratio of l to L unmeasurable.

Fig. 2
Fig. 2

Fourier spectrum of the four dual-periodic structures. The two reciprocals marked are used for SHG and SFG (left to right).

Fig. 3
Fig. 3

(a) Evolution of the three waves in a dual-periodic structure. The larger period L of the dual-periodic structure is marked at the top. (b) Efficiencies of SHG and THG versus A10L in a periodic structure (period l=6.77 µm, L=50.86 µm).

Fig. 4
Fig. 4

Same as in Fig. 3, except that here l=5.67 µm and L=25.42 µm.

Fig. 5
Fig. 5

Same as in Fig. 3, except that here l=6.34 µm and L=101.67 µm.

Fig. 6
Fig. 6

Same as in Fig. 3, except that here l=6.58 µm and L=127.08 µm.

Fig. 7
Fig. 7

Evolution of SHG and THG versus parameter A10L in a homogeneous LT crystal.

Fig. 8
Fig. 8

Optical micrograph of a dual-periodic superlattice as revealed by etching (+c).

Fig. 9
Fig. 9

(a) Average powers of SH and TH fields versus tuned temperature. The average power of the fundamental field is 1.1 W. (b) Average powers of SH and TH fields versus average power of the fundamental field. The sample temperature is constant at 39 °C.

Fig. 10
Fig. 10

Temporal behavior of the UV light output during a 10-min period.

Tables (1)

Tables Icon

Table 1 Parameters of Four Dual-Periodic Superlattices and Their Relationship to One Another

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

dA1dx=iκ2A3A2* exp(-iΔk2x)-iκ1A2A1* exp(-iΔk1x),
dA2dx=-iκ2A3A1* exp(-iΔk2x)-i2κ1A12 exp(iΔk1x),
dA3dx=-iκ2A1A2 exp(iΔk2x),
Δk1=k2ϖ-2kϖ-Gm,n,
Δk2=k3ϖ-k2ϖ-kϖ-Gm,n,
κ1=dm,nc ω2ω12n2n121/2
κ2=dm,nc ω3ω2ω1n3n2n11/2,
FPOSL(x)=m fm exp(iGmx),
Gm=2πm/Λ,m=1, 2, 3 
fm=2mπ sinmπ2.
FQPOSL(x)=m,n fm,n exp(iGm,nx),
Gm,n=2π(m+nτ)D
fm,n=2 (1+τ)lD sin(Gm,nl/2)Gm,nl/2 sin(Xm,n)Xm,n,
Xm,n=πD-1τ2(mlA-nlB),
D=τlA+lB;
F1(x)=m=- fm exp(-iGmx),
F2(x)=n=- fn exp(-iGnx).
F(x)=F1(x)F2(x)=m,n=- fmfn exp[-i(Gm+Gn)x]=m,n=- fmn exp(-iGm,nx),
Gm,n=Gm+Gn=mGl+nGL,
Δk1=k2-2k1-Gm,n=0
Δk2=k3-k2-k1-Gm,n=0
Gm,n=mGl+nGL=4πλ(n2-n1)=2πml+2πnL,
Gm,n=mGl+nGL=2πλ(3n3-2n2-n1)=2πml+2πnL.
Fj(x)=m=- fm(j) exp(-iGm(j)x)(j=1, 2, 3  n).
F(x)=F1(x)F2(x)  Fn(x)=m=- fm(1)fm(2)  fm(n)×exp[i(Gm(1)+Gm(2)+ Gm(n))x]=m,n=- fM exp(-iGMx),
GM=i=1nGmi(i)=i=1nmiGli,

Metrics