Abstract

We determine the theoretical singly resonant second-harmonic generation squeezing performance of several cavity designs and nonlinear materials. We show that, for the doubling of the 1064-nm output of Nd:YAG lasers, monolithic cavities made from periodically poled LiNbO3 (PPLN) will produce the largest amount of squeezing. We also present experimental results for a free-space cavity with a PPLN sample that yielded slightly less than 0.6 dB of measured squeezing. The cavity performance as a function of input power agrees with our theoretical predictions and shows the superior performance of periodically poled materials for the production of bright squeezed light.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. F. Pereira, M. Xiao, H. J. Kimble, and J. L. Hall, “Generation of squeezed light by intracavity frequency doubling,” Phys. Rev. A 38, 4931–4934 (1988).
    [Crossref] [PubMed]
  2. R. Paschotta, M. Collett, P. Kürz, K. Fiedler, H.-A. Bachor, and J. Mlynek, “Bright squeezed light from a singly resonant frequency doubler,” Phys. Rev. Lett. 72, 3807–3810 (1994).
    [Crossref] [PubMed]
  3. T. C. Ralph, M. S. Taubman, A. G. White, D. E. McClelland, and H.-A. Bachor, “Squeezed light from second-harmonic generation: experiment versus theory,” Opt. Lett. 20, 1316–1318 (1995).
    [Crossref] [PubMed]
  4. B. Willke, N. Uehara, E. K. Gustafson, R. L. Byer, P. J. King, S. U. Seel, and R. L. Savage, “Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry–Perot ring-cavity premode cleaner,” Opt. Lett. 23, 1704–1706 (1998).
    [Crossref]
  5. A. G. White, M. S. Taubman, T. C. Ralph, P. K. Lam, D. E. McClelland, and H.-A. Bachor, “Experimental test of modular noise propagation theory for quantum optics,” Phys. Rev. A 54, 3400–3404 (1996).
    [Crossref] [PubMed]
  6. W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second-harmonic generation of a diode-laser-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
    [Crossref]
  7. S. Schiller and R. L. Byer, “Quadruply resonant optical parametric oscillation in a monolithic total-internal-reflection resonator,” J. Opt. Soc. Am. B 10, 1696–1707 (1993).
    [Crossref]
  8. P. Kürz, R. Paschotta, K. Fiedler, and J. Mlynek, “Squeezing by second-harmonic generation in a monolithic resonator,” Appl. Phys. B 55, 216–225 (1992).
    [Crossref]
  9. G. Breitenbach, T. Müller, S. F. Pereira, J.-Ph. Poizat, S. Schiller, and J. Mlynek, “Squeezed vacuum from a monolithic optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2304–2309 (1995).
    [Crossref]
  10. P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H.-A. Bachor, and J. Gao, “Optimization and transfer of vacuum squeezing from an optical parametric oscillator,” J. Opt. B 1, 469–474 (1999).
    [Crossref]
  11. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [Crossref]
  12. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42% efficient single-pass cw second harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
    [Crossref]
  13. L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Quasi-phase-matched optical parametric oscillator in bulk periodically poled LiNbO3,” Opt. Lett. 20, 52–54 (1995).
    [Crossref] [PubMed]
  14. D. K. Serkland, M. M. Fejer, R. L. Byer, and Y. Yamamoto, “Squeezing in a quasi-phase-matched LiNbO3 waveguide,” Opt. Lett. 20, 1649–1652 (1995).
    [Crossref] [PubMed]
  15. D. K. Serkland, P. Kumar, M. A. Arbore, and M. M. Fejer, “Amplitude squeezing by means of quasi-phase-matched second-harmonic generation in a lithium niobate waveguide,” Opt. Lett. 22, 1497–1499 (1997).
    [Crossref]
  16. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
    [Crossref]
  17. G. Imeshev, M. Proctor, and M. M. Fejer, “Phase correction in double-pass quasi-phase-matched second-harmonic generation with a wedged crystal,” Opt. Lett. 23, 165–167 (1998).
    [Crossref]
  18. A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, “Classical and quantum signatures of competing χ(2) nonlinearities,” Phys. Rev. A 55, 4511–4515 (1997).
    [Crossref]
  19. D. A. Shaddock, M. B. Gray, and D. E. McClelland, “Frequency locking a laser to an optical cavity by use of spatial mode interference,” Opt. Lett. 24, 1499–1501 (1999).
    [Crossref]
  20. R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [Crossref]

1999 (2)

P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H.-A. Bachor, and J. Gao, “Optimization and transfer of vacuum squeezing from an optical parametric oscillator,” J. Opt. B 1, 469–474 (1999).
[Crossref]

D. A. Shaddock, M. B. Gray, and D. E. McClelland, “Frequency locking a laser to an optical cavity by use of spatial mode interference,” Opt. Lett. 24, 1499–1501 (1999).
[Crossref]

1998 (2)

1997 (3)

1996 (1)

A. G. White, M. S. Taubman, T. C. Ralph, P. K. Lam, D. E. McClelland, and H.-A. Bachor, “Experimental test of modular noise propagation theory for quantum optics,” Phys. Rev. A 54, 3400–3404 (1996).
[Crossref] [PubMed]

1995 (4)

1994 (1)

R. Paschotta, M. Collett, P. Kürz, K. Fiedler, H.-A. Bachor, and J. Mlynek, “Bright squeezed light from a singly resonant frequency doubler,” Phys. Rev. Lett. 72, 3807–3810 (1994).
[Crossref] [PubMed]

1993 (1)

1992 (2)

P. Kürz, R. Paschotta, K. Fiedler, and J. Mlynek, “Squeezing by second-harmonic generation in a monolithic resonator,” Appl. Phys. B 55, 216–225 (1992).
[Crossref]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

1988 (2)

S. F. Pereira, M. Xiao, H. J. Kimble, and J. L. Hall, “Generation of squeezed light by intracavity frequency doubling,” Phys. Rev. A 38, 4931–4934 (1988).
[Crossref] [PubMed]

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second-harmonic generation of a diode-laser-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[Crossref]

1983 (1)

R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

Arbore, M. A.

Bachor, H.-A.

P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H.-A. Bachor, and J. Gao, “Optimization and transfer of vacuum squeezing from an optical parametric oscillator,” J. Opt. B 1, 469–474 (1999).
[Crossref]

A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, “Classical and quantum signatures of competing χ(2) nonlinearities,” Phys. Rev. A 55, 4511–4515 (1997).
[Crossref]

A. G. White, M. S. Taubman, T. C. Ralph, P. K. Lam, D. E. McClelland, and H.-A. Bachor, “Experimental test of modular noise propagation theory for quantum optics,” Phys. Rev. A 54, 3400–3404 (1996).
[Crossref] [PubMed]

T. C. Ralph, M. S. Taubman, A. G. White, D. E. McClelland, and H.-A. Bachor, “Squeezed light from second-harmonic generation: experiment versus theory,” Opt. Lett. 20, 1316–1318 (1995).
[Crossref] [PubMed]

R. Paschotta, M. Collett, P. Kürz, K. Fiedler, H.-A. Bachor, and J. Mlynek, “Bright squeezed light from a singly resonant frequency doubler,” Phys. Rev. Lett. 72, 3807–3810 (1994).
[Crossref] [PubMed]

Batchko, R. G.

Bosenberg, W. R.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

Breitenbach, G.

Buchler, B. C.

P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H.-A. Bachor, and J. Gao, “Optimization and transfer of vacuum squeezing from an optical parametric oscillator,” J. Opt. B 1, 469–474 (1999).
[Crossref]

Byer, R. L.

B. Willke, N. Uehara, E. K. Gustafson, R. L. Byer, P. J. King, S. U. Seel, and R. L. Savage, “Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry–Perot ring-cavity premode cleaner,” Opt. Lett. 23, 1704–1706 (1998).
[Crossref]

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42% efficient single-pass cw second harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
[Crossref]

D. K. Serkland, M. M. Fejer, R. L. Byer, and Y. Yamamoto, “Squeezing in a quasi-phase-matched LiNbO3 waveguide,” Opt. Lett. 20, 1649–1652 (1995).
[Crossref] [PubMed]

L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Quasi-phase-matched optical parametric oscillator in bulk periodically poled LiNbO3,” Opt. Lett. 20, 52–54 (1995).
[Crossref] [PubMed]

S. Schiller and R. L. Byer, “Quadruply resonant optical parametric oscillation in a monolithic total-internal-reflection resonator,” J. Opt. Soc. Am. B 10, 1696–1707 (1993).
[Crossref]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second-harmonic generation of a diode-laser-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[Crossref]

Collett, M.

R. Paschotta, M. Collett, P. Kürz, K. Fiedler, H.-A. Bachor, and J. Mlynek, “Bright squeezed light from a singly resonant frequency doubler,” Phys. Rev. Lett. 72, 3807–3810 (1994).
[Crossref] [PubMed]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Eckardt, R. C.

Fejer, M. M.

Fiedler, K.

R. Paschotta, M. Collett, P. Kürz, K. Fiedler, H.-A. Bachor, and J. Mlynek, “Bright squeezed light from a singly resonant frequency doubler,” Phys. Rev. Lett. 72, 3807–3810 (1994).
[Crossref] [PubMed]

P. Kürz, R. Paschotta, K. Fiedler, and J. Mlynek, “Squeezing by second-harmonic generation in a monolithic resonator,” Appl. Phys. B 55, 216–225 (1992).
[Crossref]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Gao, J.

P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H.-A. Bachor, and J. Gao, “Optimization and transfer of vacuum squeezing from an optical parametric oscillator,” J. Opt. B 1, 469–474 (1999).
[Crossref]

Gray, M. B.

Gustafson, E. K.

Hall, J. L.

S. F. Pereira, M. Xiao, H. J. Kimble, and J. L. Hall, “Generation of squeezed light by intracavity frequency doubling,” Phys. Rev. A 38, 4931–4934 (1988).
[Crossref] [PubMed]

R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Hough, J.

R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Imeshev, G.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Kimble, H. J.

S. F. Pereira, M. Xiao, H. J. Kimble, and J. L. Hall, “Generation of squeezed light by intracavity frequency doubling,” Phys. Rev. A 38, 4931–4934 (1988).
[Crossref] [PubMed]

King, P. J.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

Kowalski, F. W.

R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Kozlovsky, W. J.

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second-harmonic generation of a diode-laser-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[Crossref]

Kumar, P.

Kürz, P.

R. Paschotta, M. Collett, P. Kürz, K. Fiedler, H.-A. Bachor, and J. Mlynek, “Bright squeezed light from a singly resonant frequency doubler,” Phys. Rev. Lett. 72, 3807–3810 (1994).
[Crossref] [PubMed]

P. Kürz, R. Paschotta, K. Fiedler, and J. Mlynek, “Squeezing by second-harmonic generation in a monolithic resonator,” Appl. Phys. B 55, 216–225 (1992).
[Crossref]

Lam, P. K.

P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H.-A. Bachor, and J. Gao, “Optimization and transfer of vacuum squeezing from an optical parametric oscillator,” J. Opt. B 1, 469–474 (1999).
[Crossref]

A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, “Classical and quantum signatures of competing χ(2) nonlinearities,” Phys. Rev. A 55, 4511–4515 (1997).
[Crossref]

A. G. White, M. S. Taubman, T. C. Ralph, P. K. Lam, D. E. McClelland, and H.-A. Bachor, “Experimental test of modular noise propagation theory for quantum optics,” Phys. Rev. A 54, 3400–3404 (1996).
[Crossref] [PubMed]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Marte, M. A. M.

A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, “Classical and quantum signatures of competing χ(2) nonlinearities,” Phys. Rev. A 55, 4511–4515 (1997).
[Crossref]

McClelland, D. E.

P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H.-A. Bachor, and J. Gao, “Optimization and transfer of vacuum squeezing from an optical parametric oscillator,” J. Opt. B 1, 469–474 (1999).
[Crossref]

D. A. Shaddock, M. B. Gray, and D. E. McClelland, “Frequency locking a laser to an optical cavity by use of spatial mode interference,” Opt. Lett. 24, 1499–1501 (1999).
[Crossref]

A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, “Classical and quantum signatures of competing χ(2) nonlinearities,” Phys. Rev. A 55, 4511–4515 (1997).
[Crossref]

A. G. White, M. S. Taubman, T. C. Ralph, P. K. Lam, D. E. McClelland, and H.-A. Bachor, “Experimental test of modular noise propagation theory for quantum optics,” Phys. Rev. A 54, 3400–3404 (1996).
[Crossref] [PubMed]

T. C. Ralph, M. S. Taubman, A. G. White, D. E. McClelland, and H.-A. Bachor, “Squeezed light from second-harmonic generation: experiment versus theory,” Opt. Lett. 20, 1316–1318 (1995).
[Crossref] [PubMed]

Miller, G. D.

Mlynek, J.

G. Breitenbach, T. Müller, S. F. Pereira, J.-Ph. Poizat, S. Schiller, and J. Mlynek, “Squeezed vacuum from a monolithic optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2304–2309 (1995).
[Crossref]

R. Paschotta, M. Collett, P. Kürz, K. Fiedler, H.-A. Bachor, and J. Mlynek, “Bright squeezed light from a singly resonant frequency doubler,” Phys. Rev. Lett. 72, 3807–3810 (1994).
[Crossref] [PubMed]

P. Kürz, R. Paschotta, K. Fiedler, and J. Mlynek, “Squeezing by second-harmonic generation in a monolithic resonator,” Appl. Phys. B 55, 216–225 (1992).
[Crossref]

Müller, T.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Myers, L. E.

Nabors, C. D.

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second-harmonic generation of a diode-laser-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[Crossref]

Paschotta, R.

R. Paschotta, M. Collett, P. Kürz, K. Fiedler, H.-A. Bachor, and J. Mlynek, “Bright squeezed light from a singly resonant frequency doubler,” Phys. Rev. Lett. 72, 3807–3810 (1994).
[Crossref] [PubMed]

P. Kürz, R. Paschotta, K. Fiedler, and J. Mlynek, “Squeezing by second-harmonic generation in a monolithic resonator,” Appl. Phys. B 55, 216–225 (1992).
[Crossref]

Pereira, S. F.

G. Breitenbach, T. Müller, S. F. Pereira, J.-Ph. Poizat, S. Schiller, and J. Mlynek, “Squeezed vacuum from a monolithic optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2304–2309 (1995).
[Crossref]

S. F. Pereira, M. Xiao, H. J. Kimble, and J. L. Hall, “Generation of squeezed light by intracavity frequency doubling,” Phys. Rev. A 38, 4931–4934 (1988).
[Crossref] [PubMed]

Poizat, J.-Ph.

Proctor, M.

Ralph, T. C.

P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H.-A. Bachor, and J. Gao, “Optimization and transfer of vacuum squeezing from an optical parametric oscillator,” J. Opt. B 1, 469–474 (1999).
[Crossref]

A. G. White, M. S. Taubman, T. C. Ralph, P. K. Lam, D. E. McClelland, and H.-A. Bachor, “Experimental test of modular noise propagation theory for quantum optics,” Phys. Rev. A 54, 3400–3404 (1996).
[Crossref] [PubMed]

T. C. Ralph, M. S. Taubman, A. G. White, D. E. McClelland, and H.-A. Bachor, “Squeezed light from second-harmonic generation: experiment versus theory,” Opt. Lett. 20, 1316–1318 (1995).
[Crossref] [PubMed]

Savage, R. L.

Schiller, S.

Seel, S. U.

Serkland, D. K.

Shaddock, D. A.

Taubman, M. S.

A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, “Classical and quantum signatures of competing χ(2) nonlinearities,” Phys. Rev. A 55, 4511–4515 (1997).
[Crossref]

A. G. White, M. S. Taubman, T. C. Ralph, P. K. Lam, D. E. McClelland, and H.-A. Bachor, “Experimental test of modular noise propagation theory for quantum optics,” Phys. Rev. A 54, 3400–3404 (1996).
[Crossref] [PubMed]

T. C. Ralph, M. S. Taubman, A. G. White, D. E. McClelland, and H.-A. Bachor, “Squeezed light from second-harmonic generation: experiment versus theory,” Opt. Lett. 20, 1316–1318 (1995).
[Crossref] [PubMed]

Tulloch, W. M.

Uehara, N.

Ward, H.

R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Weise, D. R.

White, A. G.

A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, “Classical and quantum signatures of competing χ(2) nonlinearities,” Phys. Rev. A 55, 4511–4515 (1997).
[Crossref]

A. G. White, M. S. Taubman, T. C. Ralph, P. K. Lam, D. E. McClelland, and H.-A. Bachor, “Experimental test of modular noise propagation theory for quantum optics,” Phys. Rev. A 54, 3400–3404 (1996).
[Crossref] [PubMed]

T. C. Ralph, M. S. Taubman, A. G. White, D. E. McClelland, and H.-A. Bachor, “Squeezed light from second-harmonic generation: experiment versus theory,” Opt. Lett. 20, 1316–1318 (1995).
[Crossref] [PubMed]

Willke, B.

Xiao, M.

S. F. Pereira, M. Xiao, H. J. Kimble, and J. L. Hall, “Generation of squeezed light by intracavity frequency doubling,” Phys. Rev. A 38, 4931–4934 (1988).
[Crossref] [PubMed]

Yamamoto, Y.

Appl. Phys. B (2)

P. Kürz, R. Paschotta, K. Fiedler, and J. Mlynek, “Squeezing by second-harmonic generation in a monolithic resonator,” Appl. Phys. B 55, 216–225 (1992).
[Crossref]

R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

IEEE J. Quantum Electron. (2)

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second-harmonic generation of a diode-laser-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[Crossref]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

J. Opt. B (1)

P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H.-A. Bachor, and J. Gao, “Optimization and transfer of vacuum squeezing from an optical parametric oscillator,” J. Opt. B 1, 469–474 (1999).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Lett. (8)

T. C. Ralph, M. S. Taubman, A. G. White, D. E. McClelland, and H.-A. Bachor, “Squeezed light from second-harmonic generation: experiment versus theory,” Opt. Lett. 20, 1316–1318 (1995).
[Crossref] [PubMed]

B. Willke, N. Uehara, E. K. Gustafson, R. L. Byer, P. J. King, S. U. Seel, and R. L. Savage, “Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry–Perot ring-cavity premode cleaner,” Opt. Lett. 23, 1704–1706 (1998).
[Crossref]

D. A. Shaddock, M. B. Gray, and D. E. McClelland, “Frequency locking a laser to an optical cavity by use of spatial mode interference,” Opt. Lett. 24, 1499–1501 (1999).
[Crossref]

G. Imeshev, M. Proctor, and M. M. Fejer, “Phase correction in double-pass quasi-phase-matched second-harmonic generation with a wedged crystal,” Opt. Lett. 23, 165–167 (1998).
[Crossref]

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42% efficient single-pass cw second harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
[Crossref]

L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Quasi-phase-matched optical parametric oscillator in bulk periodically poled LiNbO3,” Opt. Lett. 20, 52–54 (1995).
[Crossref] [PubMed]

D. K. Serkland, M. M. Fejer, R. L. Byer, and Y. Yamamoto, “Squeezing in a quasi-phase-matched LiNbO3 waveguide,” Opt. Lett. 20, 1649–1652 (1995).
[Crossref] [PubMed]

D. K. Serkland, P. Kumar, M. A. Arbore, and M. M. Fejer, “Amplitude squeezing by means of quasi-phase-matched second-harmonic generation in a lithium niobate waveguide,” Opt. Lett. 22, 1497–1499 (1997).
[Crossref]

Phys. Rev. A (3)

A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, “Classical and quantum signatures of competing χ(2) nonlinearities,” Phys. Rev. A 55, 4511–4515 (1997).
[Crossref]

A. G. White, M. S. Taubman, T. C. Ralph, P. K. Lam, D. E. McClelland, and H.-A. Bachor, “Experimental test of modular noise propagation theory for quantum optics,” Phys. Rev. A 54, 3400–3404 (1996).
[Crossref] [PubMed]

S. F. Pereira, M. Xiao, H. J. Kimble, and J. L. Hall, “Generation of squeezed light by intracavity frequency doubling,” Phys. Rev. A 38, 4931–4934 (1988).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

R. Paschotta, M. Collett, P. Kürz, K. Fiedler, H.-A. Bachor, and J. Mlynek, “Bright squeezed light from a singly resonant frequency doubler,” Phys. Rev. Lett. 72, 3807–3810 (1994).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Possible single-resonator configurations: a, free-space; b, hemilithic; c, monolithic; d, ring monolithic.

Fig. 2
Fig. 2

Conversion efficiencies for several cavity configurations with LiNbO3 nonlinear crystals. Dashed curves, birefringently phase matched; solid curves, quasi-phase matched. Parameter values are L=1 cm, R1=99%, R2=99.9%, δc=0.6%, δa=0.1%, and h=0.7. The free-space cavity is 5 cm long, and the hemilithic cavity is 2.5 cm long.

Fig. 3
Fig. 3

Squeezed output at 12 MHz for several cavity configurations, with cavity parameter values as in Fig. 2. The results for birefringently phase-matched LiNbO3 are shown by dashed curves, and those for periodically poled crystals are shown by solid curves. QNL, quantum-noise limit.

Fig. 4
Fig. 4

Experimental setup with a PPLN free-space cavity. The single-axial-mode Nd:YAG laser is passed through a Faraday isolator (FI), followed by a half-wave plate (HWP) and a polarizing beam splitter (PBS) to adjust the power incident upon the SHG cavity. This laser was locked to a mode cleaner by means of tilt locking.19 The phase modulator (PM) is required for the Pound–Drever–Hall locking of the free-space cavity.20 The length of the free-space cavity is controlled by a piezo-actuated mirror (PZT).

Fig. 5
Fig. 5

Raw data from a PPLN free-space cavity. The higher segments show the quantum-noise limit. The lower segments show the squeezing on our beam. The sharp downward spikes between segments are transients that are due to toggling between the two signals. The overall downward trend is due to frequency responses of the balanced detectors. QNL, quantum-noise limit.

Fig. 6
Fig. 6

PPLN free-space cavity experimental results (open circles) and theoretical fit (solid curves). The cavity photon loss rate was the fitted parameter with a value of 180 MHz. The other cavity parameters are as in Fig. 3. The dashed curve indicates the theoretical performance of an identical cavity with birefringently phase-matched LiNbO3.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

H=iκ2(a2ash-a2ash),
a˙=-γa+κaash+2γ0 Ain+2γloss Aloss,
a˙sh=-γshash-κ2a2+2γsh Ash,in,
a˙=-γa-μaa2+2μaAsh,in+2γ0 Ain+2γloss Aloss,
α=2γ0Ainγ+μ|α|2.
δ˙a=-γδa-2µ|α|2δa-μα2δa+2μα*δAsh,in+2γ0δAin+2γlossδAloss,
δX˙=-(γ+3µ|α|2)δX+2μα*δXsh,in+2γ0δXin+2γlossδXloss,
-i2πΩδX˜(Ω)=-(γ+3µ|α|2)δX˜(Ω)+2μα*δX˜sh,in(Ω)+2γ0δX˜in(Ω)+2γlossδX˜loss(Ω),
δX˜(Ω)=2γ0δX˜in(Ω)+2μ|α|2δX˜sh,in(Ω)+2γlossδX˜loss(Ω)γ+3µ|α|2-i2πΩ.
Ash,out=μa2-Ash,in,
δAsh,out=2μ|α|2δa-δAsh,in.
δX˜sh,out(Ω)=2μ|α|2δX˜(Ω)-δX˜sh,in(Ω)=(-γ+μ|α|2+i2πΩ)δX˜sh,in(Ω)+2μ|α|2[2γ0δX˜in(Ω)+2γlossδX˜loss(Ω)]γ+3µ|α|2-i2πΩ,
Vsh,out=[(γ-μ|α|2)2+(2πΩ)2]Vsh,in+4µ|α|2(2γ0Vin+2γlossVloss)(γ+3µ|α|2)2+(2πΩ)2,
Vsh,out=1+8µ|α|2{γ0[Vin(Ω)-1]-μ|α|2}(γ+3µ|α|2)2+(2πΩ)2.
Vsh,out=1-8µ2|α|4(γ+3µ|α|2)2+(2πΩ)2,
Psh=ω2|Ash,out|2,
Psh=2ω1μ|α|4,
|α|2=τPcircω1.
PshPcirc=2µτ2ω1Pcirc=γshPcirc,
γsh=deff2 h16π2lλ3nω1nω20c,
μ=ω12τ2deff2 h16π2lλ3nω1nω20c.
|Ain|2=Pin/ω1
γ=γ0+γloss=½FSR[2-R1-(1-δc)4(1-δa)2R2],
γ=½FSR[2-R1-(1-δc)2(1-δa)2R2].
γ=½FSR[2-R1-(1-δa)2R2],
PshPin=4µγ0|α|2(γ+μ|α|2)2,
PshPin=γ0γ
Vsh,out=1-8µ2|α|416µ2|α|4+(2πΩ)21/2

Metrics