Abstract

We present an analysis of photorefractive properties of bulk periodically poled lithium niobate. The results obtained are applied to description and interpretation of phase-matched four-wave processes found recently in this novel nonlinear material. These processes manifest themselves in rings, lines, and dots of light-induced scattering that are essentially different from those known for single-domain crystals. We conclude that periodically poled lithium niobate is a new nonlinear material promising for various photorefractive applications.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–437 (1993).
    [CrossRef]
  2. W. K. Burns, W. McElhanon, and L. Goldberg, “Second harmonic generation in field poled, quasi-phase-matched, bulk LiNbO3,” IEEE Photon. Technol. Lett. 6, 252–254 (1994).
    [CrossRef]
  3. J. Webjörn, V. Pruneri, P. St. Russel, J. R. M. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett. 30, 894–895 (1994).
    [CrossRef]
  4. L. E. Myers, R. C. Eckhard, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. R. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [CrossRef]
  5. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. G. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
    [CrossRef] [PubMed]
  6. M. Taya, M. C. Bashew, and M. M. Fejer, “Photorefractive effect in periodically poled ferroelectrics,” Opt. Lett. 21, 857–859 (1996).
    [CrossRef] [PubMed]
  7. V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. Russel, and D. C. Hanna, “Self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 67, 1957–1959 (1995).
    [CrossRef]
  8. B. I. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, P. G. Kazansky, and D. C. Hanna, “Mechanism of self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 69, 1349–1451 (1997).
    [CrossRef]
  9. B. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, and P. G. Kazansky, “Photorefractive nonlinearity of periodically poled lithium niobate,” J. Opt. Soc. Am. B 14, 2641–1649 (1997).
    [CrossRef]
  10. E. V. Podivilov, B. I. Sturman, G. F. Calvo, F. Agullo-Lopez, M. Carrascosa, and V. Pruneri, “Effect of domain structure fluctuations on the photorefractive response of periodically poled lithium niobate,” Phys. Rev. B 62, 13182–13187 (2000).
    [CrossRef]
  11. S. Odoulov, T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, “Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies,” Phys. Rev. Lett. 84, 3294–3297 (2000).
    [CrossRef] [PubMed]
  12. M. Goul’kov, S. Odoulov, I. Naumova, F. Agullo-Lopez, G. Calvo, E. Podivilov, B. Sturman, and V. Pruneri, “Degenerate parametric light scattering in periodically poled LiNbO3:Y:Fe,” Phys. Rev. Lett. 86, 4021–4024 (2001).
    [CrossRef]
  13. B. I. Sturman, S. G. Odoulov, and M. Yu. Goul’kov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 199–254 (1996).
    [CrossRef]
  14. B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon and Breach, Philadelphia, 1992).
  15. L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996).
  16. B. I. Sturman, F. Agullo-Lopez, M. Carrascosa, and L. Solymar, “On macroscopic description of photorefractive phenomena,” Appl. Phys. B 68, 1013–1020 (1999).
    [CrossRef]

2001 (1)

M. Goul’kov, S. Odoulov, I. Naumova, F. Agullo-Lopez, G. Calvo, E. Podivilov, B. Sturman, and V. Pruneri, “Degenerate parametric light scattering in periodically poled LiNbO3:Y:Fe,” Phys. Rev. Lett. 86, 4021–4024 (2001).
[CrossRef]

2000 (3)

E. V. Podivilov, B. I. Sturman, G. F. Calvo, F. Agullo-Lopez, M. Carrascosa, and V. Pruneri, “Effect of domain structure fluctuations on the photorefractive response of periodically poled lithium niobate,” Phys. Rev. B 62, 13182–13187 (2000).
[CrossRef]

S. Odoulov, T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, “Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies,” Phys. Rev. Lett. 84, 3294–3297 (2000).
[CrossRef] [PubMed]

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. G. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef] [PubMed]

1999 (1)

B. I. Sturman, F. Agullo-Lopez, M. Carrascosa, and L. Solymar, “On macroscopic description of photorefractive phenomena,” Appl. Phys. B 68, 1013–1020 (1999).
[CrossRef]

1997 (2)

B. I. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, P. G. Kazansky, and D. C. Hanna, “Mechanism of self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 69, 1349–1451 (1997).
[CrossRef]

B. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, and P. G. Kazansky, “Photorefractive nonlinearity of periodically poled lithium niobate,” J. Opt. Soc. Am. B 14, 2641–1649 (1997).
[CrossRef]

1996 (2)

M. Taya, M. C. Bashew, and M. M. Fejer, “Photorefractive effect in periodically poled ferroelectrics,” Opt. Lett. 21, 857–859 (1996).
[CrossRef] [PubMed]

B. I. Sturman, S. G. Odoulov, and M. Yu. Goul’kov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 199–254 (1996).
[CrossRef]

1995 (2)

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. Russel, and D. C. Hanna, “Self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 67, 1957–1959 (1995).
[CrossRef]

L. E. Myers, R. C. Eckhard, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. R. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
[CrossRef]

1994 (2)

W. K. Burns, W. McElhanon, and L. Goldberg, “Second harmonic generation in field poled, quasi-phase-matched, bulk LiNbO3,” IEEE Photon. Technol. Lett. 6, 252–254 (1994).
[CrossRef]

J. Webjörn, V. Pruneri, P. St. Russel, J. R. M. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett. 30, 894–895 (1994).
[CrossRef]

1993 (1)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–437 (1993).
[CrossRef]

Aguilar, M.

B. I. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, P. G. Kazansky, and D. C. Hanna, “Mechanism of self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 69, 1349–1451 (1997).
[CrossRef]

B. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, and P. G. Kazansky, “Photorefractive nonlinearity of periodically poled lithium niobate,” J. Opt. Soc. Am. B 14, 2641–1649 (1997).
[CrossRef]

Agullo-Lopez, F.

M. Goul’kov, S. Odoulov, I. Naumova, F. Agullo-Lopez, G. Calvo, E. Podivilov, B. Sturman, and V. Pruneri, “Degenerate parametric light scattering in periodically poled LiNbO3:Y:Fe,” Phys. Rev. Lett. 86, 4021–4024 (2001).
[CrossRef]

E. V. Podivilov, B. I. Sturman, G. F. Calvo, F. Agullo-Lopez, M. Carrascosa, and V. Pruneri, “Effect of domain structure fluctuations on the photorefractive response of periodically poled lithium niobate,” Phys. Rev. B 62, 13182–13187 (2000).
[CrossRef]

B. I. Sturman, F. Agullo-Lopez, M. Carrascosa, and L. Solymar, “On macroscopic description of photorefractive phenomena,” Appl. Phys. B 68, 1013–1020 (1999).
[CrossRef]

B. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, and P. G. Kazansky, “Photorefractive nonlinearity of periodically poled lithium niobate,” J. Opt. Soc. Am. B 14, 2641–1649 (1997).
[CrossRef]

B. I. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, P. G. Kazansky, and D. C. Hanna, “Mechanism of self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 69, 1349–1451 (1997).
[CrossRef]

Barr, J. R. M.

J. Webjörn, V. Pruneri, P. St. Russel, J. R. M. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett. 30, 894–895 (1994).
[CrossRef]

Bashew, M. C.

Bosenberg, W. R.

Broderick, N. G. R.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. G. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef] [PubMed]

Burns, W. K.

W. K. Burns, W. McElhanon, and L. Goldberg, “Second harmonic generation in field poled, quasi-phase-matched, bulk LiNbO3,” IEEE Photon. Technol. Lett. 6, 252–254 (1994).
[CrossRef]

Byer, R. L.

Calvo, G.

M. Goul’kov, S. Odoulov, I. Naumova, F. Agullo-Lopez, G. Calvo, E. Podivilov, B. Sturman, and V. Pruneri, “Degenerate parametric light scattering in periodically poled LiNbO3:Y:Fe,” Phys. Rev. Lett. 86, 4021–4024 (2001).
[CrossRef]

Calvo, G. F.

E. V. Podivilov, B. I. Sturman, G. F. Calvo, F. Agullo-Lopez, M. Carrascosa, and V. Pruneri, “Effect of domain structure fluctuations on the photorefractive response of periodically poled lithium niobate,” Phys. Rev. B 62, 13182–13187 (2000).
[CrossRef]

Carrascosa, M.

E. V. Podivilov, B. I. Sturman, G. F. Calvo, F. Agullo-Lopez, M. Carrascosa, and V. Pruneri, “Effect of domain structure fluctuations on the photorefractive response of periodically poled lithium niobate,” Phys. Rev. B 62, 13182–13187 (2000).
[CrossRef]

B. I. Sturman, F. Agullo-Lopez, M. Carrascosa, and L. Solymar, “On macroscopic description of photorefractive phenomena,” Appl. Phys. B 68, 1013–1020 (1999).
[CrossRef]

Chaplina, T. O.

S. Odoulov, T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, “Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies,” Phys. Rev. Lett. 84, 3294–3297 (2000).
[CrossRef] [PubMed]

Eckhard, R. C.

Fejer, M. M.

Goldberg, L.

W. K. Burns, W. McElhanon, and L. Goldberg, “Second harmonic generation in field poled, quasi-phase-matched, bulk LiNbO3,” IEEE Photon. Technol. Lett. 6, 252–254 (1994).
[CrossRef]

Goul’kov, M.

M. Goul’kov, S. Odoulov, I. Naumova, F. Agullo-Lopez, G. Calvo, E. Podivilov, B. Sturman, and V. Pruneri, “Degenerate parametric light scattering in periodically poled LiNbO3:Y:Fe,” Phys. Rev. Lett. 86, 4021–4024 (2001).
[CrossRef]

Goul’kov, M. Yu.

B. I. Sturman, S. G. Odoulov, and M. Yu. Goul’kov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 199–254 (1996).
[CrossRef]

Hanna, D. C.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. G. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef] [PubMed]

B. I. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, P. G. Kazansky, and D. C. Hanna, “Mechanism of self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 69, 1349–1451 (1997).
[CrossRef]

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. Russel, and D. C. Hanna, “Self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 67, 1957–1959 (1995).
[CrossRef]

J. Webjörn, V. Pruneri, P. St. Russel, J. R. M. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett. 30, 894–895 (1994).
[CrossRef]

Kazansky, P. G.

B. I. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, P. G. Kazansky, and D. C. Hanna, “Mechanism of self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 69, 1349–1451 (1997).
[CrossRef]

B. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, and P. G. Kazansky, “Photorefractive nonlinearity of periodically poled lithium niobate,” J. Opt. Soc. Am. B 14, 2641–1649 (1997).
[CrossRef]

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. Russel, and D. C. Hanna, “Self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 67, 1957–1959 (1995).
[CrossRef]

McElhanon, W.

W. K. Burns, W. McElhanon, and L. Goldberg, “Second harmonic generation in field poled, quasi-phase-matched, bulk LiNbO3,” IEEE Photon. Technol. Lett. 6, 252–254 (1994).
[CrossRef]

Myers, L. E.

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–437 (1993).
[CrossRef]

Naumova, I.

M. Goul’kov, S. Odoulov, I. Naumova, F. Agullo-Lopez, G. Calvo, E. Podivilov, B. Sturman, and V. Pruneri, “Degenerate parametric light scattering in periodically poled LiNbO3:Y:Fe,” Phys. Rev. Lett. 86, 4021–4024 (2001).
[CrossRef]

Naumova, I. I.

S. Odoulov, T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, “Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies,” Phys. Rev. Lett. 84, 3294–3297 (2000).
[CrossRef] [PubMed]

Odoulov, S.

M. Goul’kov, S. Odoulov, I. Naumova, F. Agullo-Lopez, G. Calvo, E. Podivilov, B. Sturman, and V. Pruneri, “Degenerate parametric light scattering in periodically poled LiNbO3:Y:Fe,” Phys. Rev. Lett. 86, 4021–4024 (2001).
[CrossRef]

S. Odoulov, T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, “Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies,” Phys. Rev. Lett. 84, 3294–3297 (2000).
[CrossRef] [PubMed]

Odoulov, S. G.

B. I. Sturman, S. G. Odoulov, and M. Yu. Goul’kov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 199–254 (1996).
[CrossRef]

Offerhaus, H. L.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. G. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef] [PubMed]

Pierce, J. R.

Podivilov, E.

M. Goul’kov, S. Odoulov, I. Naumova, F. Agullo-Lopez, G. Calvo, E. Podivilov, B. Sturman, and V. Pruneri, “Degenerate parametric light scattering in periodically poled LiNbO3:Y:Fe,” Phys. Rev. Lett. 86, 4021–4024 (2001).
[CrossRef]

Podivilov, E. V.

E. V. Podivilov, B. I. Sturman, G. F. Calvo, F. Agullo-Lopez, M. Carrascosa, and V. Pruneri, “Effect of domain structure fluctuations on the photorefractive response of periodically poled lithium niobate,” Phys. Rev. B 62, 13182–13187 (2000).
[CrossRef]

Pruneri, V.

M. Goul’kov, S. Odoulov, I. Naumova, F. Agullo-Lopez, G. Calvo, E. Podivilov, B. Sturman, and V. Pruneri, “Degenerate parametric light scattering in periodically poled LiNbO3:Y:Fe,” Phys. Rev. Lett. 86, 4021–4024 (2001).
[CrossRef]

E. V. Podivilov, B. I. Sturman, G. F. Calvo, F. Agullo-Lopez, M. Carrascosa, and V. Pruneri, “Effect of domain structure fluctuations on the photorefractive response of periodically poled lithium niobate,” Phys. Rev. B 62, 13182–13187 (2000).
[CrossRef]

B. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, and P. G. Kazansky, “Photorefractive nonlinearity of periodically poled lithium niobate,” J. Opt. Soc. Am. B 14, 2641–1649 (1997).
[CrossRef]

B. I. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, P. G. Kazansky, and D. C. Hanna, “Mechanism of self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 69, 1349–1451 (1997).
[CrossRef]

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. Russel, and D. C. Hanna, “Self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 67, 1957–1959 (1995).
[CrossRef]

J. Webjörn, V. Pruneri, P. St. Russel, J. R. M. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett. 30, 894–895 (1994).
[CrossRef]

Richardson, D. G.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. G. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef] [PubMed]

Ross, G. W.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. G. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef] [PubMed]

Russel, P. St.

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. Russel, and D. C. Hanna, “Self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 67, 1957–1959 (1995).
[CrossRef]

J. Webjörn, V. Pruneri, P. St. Russel, J. R. M. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett. 30, 894–895 (1994).
[CrossRef]

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–437 (1993).
[CrossRef]

Shumelyuk, A.

S. Odoulov, T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, “Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies,” Phys. Rev. Lett. 84, 3294–3297 (2000).
[CrossRef] [PubMed]

Solymar, L.

B. I. Sturman, F. Agullo-Lopez, M. Carrascosa, and L. Solymar, “On macroscopic description of photorefractive phenomena,” Appl. Phys. B 68, 1013–1020 (1999).
[CrossRef]

Sturman, B.

M. Goul’kov, S. Odoulov, I. Naumova, F. Agullo-Lopez, G. Calvo, E. Podivilov, B. Sturman, and V. Pruneri, “Degenerate parametric light scattering in periodically poled LiNbO3:Y:Fe,” Phys. Rev. Lett. 86, 4021–4024 (2001).
[CrossRef]

B. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, and P. G. Kazansky, “Photorefractive nonlinearity of periodically poled lithium niobate,” J. Opt. Soc. Am. B 14, 2641–1649 (1997).
[CrossRef]

Sturman, B. I.

E. V. Podivilov, B. I. Sturman, G. F. Calvo, F. Agullo-Lopez, M. Carrascosa, and V. Pruneri, “Effect of domain structure fluctuations on the photorefractive response of periodically poled lithium niobate,” Phys. Rev. B 62, 13182–13187 (2000).
[CrossRef]

B. I. Sturman, F. Agullo-Lopez, M. Carrascosa, and L. Solymar, “On macroscopic description of photorefractive phenomena,” Appl. Phys. B 68, 1013–1020 (1999).
[CrossRef]

B. I. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, P. G. Kazansky, and D. C. Hanna, “Mechanism of self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 69, 1349–1451 (1997).
[CrossRef]

B. I. Sturman, S. G. Odoulov, and M. Yu. Goul’kov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 199–254 (1996).
[CrossRef]

Tarabrova, T.

S. Odoulov, T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, “Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies,” Phys. Rev. Lett. 84, 3294–3297 (2000).
[CrossRef] [PubMed]

Taya, M.

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–437 (1993).
[CrossRef]

Webjörn, J.

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. Russel, and D. C. Hanna, “Self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 67, 1957–1959 (1995).
[CrossRef]

J. Webjörn, V. Pruneri, P. St. Russel, J. R. M. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett. 30, 894–895 (1994).
[CrossRef]

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–437 (1993).
[CrossRef]

Appl. Phys. B (1)

B. I. Sturman, F. Agullo-Lopez, M. Carrascosa, and L. Solymar, “On macroscopic description of photorefractive phenomena,” Appl. Phys. B 68, 1013–1020 (1999).
[CrossRef]

Appl. Phys. Lett. (3)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–437 (1993).
[CrossRef]

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. Russel, and D. C. Hanna, “Self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 67, 1957–1959 (1995).
[CrossRef]

B. I. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, P. G. Kazansky, and D. C. Hanna, “Mechanism of self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 69, 1349–1451 (1997).
[CrossRef]

Electron. Lett. (1)

J. Webjörn, V. Pruneri, P. St. Russel, J. R. M. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett. 30, 894–895 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. K. Burns, W. McElhanon, and L. Goldberg, “Second harmonic generation in field poled, quasi-phase-matched, bulk LiNbO3,” IEEE Photon. Technol. Lett. 6, 252–254 (1994).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (1)

Phys. Rep. (1)

B. I. Sturman, S. G. Odoulov, and M. Yu. Goul’kov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 199–254 (1996).
[CrossRef]

Phys. Rev. B (1)

E. V. Podivilov, B. I. Sturman, G. F. Calvo, F. Agullo-Lopez, M. Carrascosa, and V. Pruneri, “Effect of domain structure fluctuations on the photorefractive response of periodically poled lithium niobate,” Phys. Rev. B 62, 13182–13187 (2000).
[CrossRef]

Phys. Rev. Lett. (3)

S. Odoulov, T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, “Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies,” Phys. Rev. Lett. 84, 3294–3297 (2000).
[CrossRef] [PubMed]

M. Goul’kov, S. Odoulov, I. Naumova, F. Agullo-Lopez, G. Calvo, E. Podivilov, B. Sturman, and V. Pruneri, “Degenerate parametric light scattering in periodically poled LiNbO3:Y:Fe,” Phys. Rev. Lett. 86, 4021–4024 (2001).
[CrossRef]

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. G. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef] [PubMed]

Other (2)

B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon and Breach, Philadelphia, 1992).

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Geometric diagram of the PPLN domain structure.

Fig. 2
Fig. 2

Schematic diagram of the wave and grating vectors for the processes (a) A: eeee and (b) B: eeee. The gray dots mark the tips of the wave vectors.

Fig. 3
Fig. 3

Far-field distributions of scattered light for (a) the single-domain and (b) PPLN parts of the sample. Image doubling is due to reflection from the output face. (c) Azimuth dependence of the ring intensity; the open and filled dots correspond to the cases (a) and (b), respectively.

Fig. 4
Fig. 4

Wave-vector diagrams for the processes responsible for the generation of anomalous light dots in PPLN; the cases (a) and (b), (c) correspond to 1G: eeee and 1G: eeoo processes, respectively.

Fig. 5
Fig. 5

Far-field intensity distributions for 2G: eeee scattering process; the patterns (a) and (b) are obtained in PPLN and single-domain parts of the sample, respectively. The central pump spots are shadowed by small disks.

Fig. 6
Fig. 6

Far-field intensity distribution for 1G: eeoo scattering process; the central (pump) and side (scatter) light beams are e and o polarized, respectively.

Fig. 7
Fig. 7

Geometric diagrams for four different cases of grating recording in PPLN.

Fig. 8
Fig. 8

Dependence of the harmonics EK(0), EK,z(2), and EK,x(2) on Q=Kx0/2 (curves 1, 2, and 3, respectively) for the photovoltaic transport in the case (a) of Fig. 7.

Fig. 9
Fig. 9

Dependence EK(0)(θ) for different values of Q=Kx0/2 in the case (c) of Fig. 7. Curves 1, 2, and 3 are plotted for Q=1, 1.5, and 5, respectively.

Fig. 10
Fig. 10

Dependences (a) FA(φA) and (b) FB(φB) for three different values of the pump angle θp (in air) and λ=514 nm.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

δmn(r)-n4rmnlEl(r)p(x),
jm=p(x)βmnlAnAl*+κ(Em+kBTe-1m)|A|2,
βmnl=βmnlL+iδmnkβklC,
kp1e+kp2e=ks1e+ks2e,
kp1e-kp2e=ks1e-ks2e.
k2se-k2pe+2G=k1pe-k1se-2G=K,
ks1o-kp1e±G=kp2e-ks2o±G=-K±.
A=A1 exp(ik1·r)+A2 exp(ik2·r).
pEsc=sEK(s)exp[i(K+sG)·r]+c.c.
EK(s)=2insπ(n·E0+iED)A1·A2*I0,
EK(s)=-KK2x0q(ν·E)νq*-isG tanhq*x02+q*(ν*·E)ν*q+isG tanhqx02-n(E·n)δs0,
EK(0)=-nzEpv1-2Kx0 tanhKx02A1A2*I0,
EK(2)=Epv tanhKx02(Kx0/2)nz+πnx(Kx0/2)2+π2A1A2*I0,
EK,z(0)=Epv cos θ(Q-1 Re{exp(2iθ)×tanh[Q exp(-iθ)]}-cos θ)A1A2*/I0,
EK,x(0)=Epv cos θ(Q-1 Im{exp(2iθ)×tanh[Q exp(-iθ)]}-sin θ)A1A2*/I0.
EK(0)=(E15L-iE12C)[nx cos θQ-1 tanh Q+ny sin θ(1-Q-1 tanh Q)]AoAe*/I0.
ΓA=|πmpn3r33E33L/2λ|FA(φA),
FA=cos2(φA/2)F[Q sin(φA/2)]+sin2(φA/2)F[Q cos(φA/2)].
ΓB=|πn3r33E33L/4λ|FB,
FB=2F(Q tan φB)+sin2 φBF(Q/cos φB).
EK,z(2)E33L=mpKx0 tanh(Kx0/2)K2x02+4π2.
(I1s/I1p)1/2=(I2s/I2p)1/2πn3r33d|EK,z(2)|/λ.
(I1so/I1pe)1/2=(I2so/I2pe)1/2mpn3r51EDd/λ.
d2dx2+2iKxddx-K2φK=ip(x)(K·E),
φK±=C1± exp(q*x)+C2±exp(-qx)i(K·E)/K2,
(dφK+/dx)(0)-(dφK-/dx)(0)=2Ex,
(dφK+/dx)(x0)-(dφK-/dx)(-x0)=2Ex.
C1±=q(ν·E)2K2 sinh(q*x0)[1-exp(q*x0)],
C2±=q*(ν*·E)2K2 sinh(qx0)[1-exp(±qx0)],
Esc=-(iKφK+nxdφK/dx)exp(iK·r)+c.c.

Metrics