Abstract

We present an analysis of photorefractive properties of bulk periodically poled lithium niobate. The results obtained are applied to description and interpretation of phase-matched four-wave processes found recently in this novel nonlinear material. These processes manifest themselves in rings, lines, and dots of light-induced scattering that are essentially different from those known for single-domain crystals. We conclude that periodically poled lithium niobate is a new nonlinear material promising for various photorefractive applications.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–437 (1993).
    [Crossref]
  2. W. K. Burns, W. McElhanon, and L. Goldberg, “Second harmonic generation in field poled, quasi-phase-matched, bulk LiNbO3,” IEEE Photon. Technol. Lett. 6, 252–254 (1994).
    [Crossref]
  3. J. Webjörn, V. Pruneri, P. St. Russel, J. R. M. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett. 30, 894–895 (1994).
    [Crossref]
  4. L. E. Myers, R. C. Eckhard, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. R. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [Crossref]
  5. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. G. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
    [Crossref] [PubMed]
  6. M. Taya, M. C. Bashew, and M. M. Fejer, “Photorefractive effect in periodically poled ferroelectrics,” Opt. Lett. 21, 857–859 (1996).
    [Crossref] [PubMed]
  7. V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. Russel, and D. C. Hanna, “Self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 67, 1957–1959 (1995).
    [Crossref]
  8. B. I. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, P. G. Kazansky, and D. C. Hanna, “Mechanism of self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 69, 1349–1451 (1997).
    [Crossref]
  9. B. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, and P. G. Kazansky, “Photorefractive nonlinearity of periodically poled lithium niobate,” J. Opt. Soc. Am. B 14, 2641–1649 (1997).
    [Crossref]
  10. E. V. Podivilov, B. I. Sturman, G. F. Calvo, F. Agullo-Lopez, M. Carrascosa, and V. Pruneri, “Effect of domain structure fluctuations on the photorefractive response of periodically poled lithium niobate,” Phys. Rev. B 62, 13182–13187 (2000).
    [Crossref]
  11. S. Odoulov, T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, “Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies,” Phys. Rev. Lett. 84, 3294–3297 (2000).
    [Crossref] [PubMed]
  12. M. Goul’kov, S. Odoulov, I. Naumova, F. Agullo-Lopez, G. Calvo, E. Podivilov, B. Sturman, and V. Pruneri, “Degenerate parametric light scattering in periodically poled LiNbO3:Y:Fe,” Phys. Rev. Lett. 86, 4021–4024 (2001).
    [Crossref]
  13. B. I. Sturman, S. G. Odoulov, and M. Yu. Goul’kov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 199–254 (1996).
    [Crossref]
  14. B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon and Breach, Philadelphia, 1992).
  15. L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996).
  16. B. I. Sturman, F. Agullo-Lopez, M. Carrascosa, and L. Solymar, “On macroscopic description of photorefractive phenomena,” Appl. Phys. B 68, 1013–1020 (1999).
    [Crossref]

2001 (1)

M. Goul’kov, S. Odoulov, I. Naumova, F. Agullo-Lopez, G. Calvo, E. Podivilov, B. Sturman, and V. Pruneri, “Degenerate parametric light scattering in periodically poled LiNbO3:Y:Fe,” Phys. Rev. Lett. 86, 4021–4024 (2001).
[Crossref]

2000 (3)

E. V. Podivilov, B. I. Sturman, G. F. Calvo, F. Agullo-Lopez, M. Carrascosa, and V. Pruneri, “Effect of domain structure fluctuations on the photorefractive response of periodically poled lithium niobate,” Phys. Rev. B 62, 13182–13187 (2000).
[Crossref]

S. Odoulov, T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, “Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies,” Phys. Rev. Lett. 84, 3294–3297 (2000).
[Crossref] [PubMed]

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. G. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[Crossref] [PubMed]

1999 (1)

B. I. Sturman, F. Agullo-Lopez, M. Carrascosa, and L. Solymar, “On macroscopic description of photorefractive phenomena,” Appl. Phys. B 68, 1013–1020 (1999).
[Crossref]

1997 (2)

B. I. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, P. G. Kazansky, and D. C. Hanna, “Mechanism of self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 69, 1349–1451 (1997).
[Crossref]

B. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, and P. G. Kazansky, “Photorefractive nonlinearity of periodically poled lithium niobate,” J. Opt. Soc. Am. B 14, 2641–1649 (1997).
[Crossref]

1996 (2)

M. Taya, M. C. Bashew, and M. M. Fejer, “Photorefractive effect in periodically poled ferroelectrics,” Opt. Lett. 21, 857–859 (1996).
[Crossref] [PubMed]

B. I. Sturman, S. G. Odoulov, and M. Yu. Goul’kov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 199–254 (1996).
[Crossref]

1995 (2)

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. Russel, and D. C. Hanna, “Self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 67, 1957–1959 (1995).
[Crossref]

L. E. Myers, R. C. Eckhard, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. R. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
[Crossref]

1994 (2)

W. K. Burns, W. McElhanon, and L. Goldberg, “Second harmonic generation in field poled, quasi-phase-matched, bulk LiNbO3,” IEEE Photon. Technol. Lett. 6, 252–254 (1994).
[Crossref]

J. Webjörn, V. Pruneri, P. St. Russel, J. R. M. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett. 30, 894–895 (1994).
[Crossref]

1993 (1)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–437 (1993).
[Crossref]

Aguilar, M.

B. I. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, P. G. Kazansky, and D. C. Hanna, “Mechanism of self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 69, 1349–1451 (1997).
[Crossref]

B. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, and P. G. Kazansky, “Photorefractive nonlinearity of periodically poled lithium niobate,” J. Opt. Soc. Am. B 14, 2641–1649 (1997).
[Crossref]

Agullo-Lopez, F.

M. Goul’kov, S. Odoulov, I. Naumova, F. Agullo-Lopez, G. Calvo, E. Podivilov, B. Sturman, and V. Pruneri, “Degenerate parametric light scattering in periodically poled LiNbO3:Y:Fe,” Phys. Rev. Lett. 86, 4021–4024 (2001).
[Crossref]

E. V. Podivilov, B. I. Sturman, G. F. Calvo, F. Agullo-Lopez, M. Carrascosa, and V. Pruneri, “Effect of domain structure fluctuations on the photorefractive response of periodically poled lithium niobate,” Phys. Rev. B 62, 13182–13187 (2000).
[Crossref]

B. I. Sturman, F. Agullo-Lopez, M. Carrascosa, and L. Solymar, “On macroscopic description of photorefractive phenomena,” Appl. Phys. B 68, 1013–1020 (1999).
[Crossref]

B. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, and P. G. Kazansky, “Photorefractive nonlinearity of periodically poled lithium niobate,” J. Opt. Soc. Am. B 14, 2641–1649 (1997).
[Crossref]

B. I. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, P. G. Kazansky, and D. C. Hanna, “Mechanism of self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 69, 1349–1451 (1997).
[Crossref]

Barr, J. R. M.

J. Webjörn, V. Pruneri, P. St. Russel, J. R. M. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett. 30, 894–895 (1994).
[Crossref]

Bashew, M. C.

Bosenberg, W. R.

Broderick, N. G. R.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. G. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[Crossref] [PubMed]

Burns, W. K.

W. K. Burns, W. McElhanon, and L. Goldberg, “Second harmonic generation in field poled, quasi-phase-matched, bulk LiNbO3,” IEEE Photon. Technol. Lett. 6, 252–254 (1994).
[Crossref]

Byer, R. L.

Calvo, G.

M. Goul’kov, S. Odoulov, I. Naumova, F. Agullo-Lopez, G. Calvo, E. Podivilov, B. Sturman, and V. Pruneri, “Degenerate parametric light scattering in periodically poled LiNbO3:Y:Fe,” Phys. Rev. Lett. 86, 4021–4024 (2001).
[Crossref]

Calvo, G. F.

E. V. Podivilov, B. I. Sturman, G. F. Calvo, F. Agullo-Lopez, M. Carrascosa, and V. Pruneri, “Effect of domain structure fluctuations on the photorefractive response of periodically poled lithium niobate,” Phys. Rev. B 62, 13182–13187 (2000).
[Crossref]

Carrascosa, M.

E. V. Podivilov, B. I. Sturman, G. F. Calvo, F. Agullo-Lopez, M. Carrascosa, and V. Pruneri, “Effect of domain structure fluctuations on the photorefractive response of periodically poled lithium niobate,” Phys. Rev. B 62, 13182–13187 (2000).
[Crossref]

B. I. Sturman, F. Agullo-Lopez, M. Carrascosa, and L. Solymar, “On macroscopic description of photorefractive phenomena,” Appl. Phys. B 68, 1013–1020 (1999).
[Crossref]

Chaplina, T. O.

S. Odoulov, T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, “Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies,” Phys. Rev. Lett. 84, 3294–3297 (2000).
[Crossref] [PubMed]

Eckhard, R. C.

Fejer, M. M.

Fridkin, V. M.

B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon and Breach, Philadelphia, 1992).

Goldberg, L.

W. K. Burns, W. McElhanon, and L. Goldberg, “Second harmonic generation in field poled, quasi-phase-matched, bulk LiNbO3,” IEEE Photon. Technol. Lett. 6, 252–254 (1994).
[Crossref]

Goul’kov, M.

M. Goul’kov, S. Odoulov, I. Naumova, F. Agullo-Lopez, G. Calvo, E. Podivilov, B. Sturman, and V. Pruneri, “Degenerate parametric light scattering in periodically poled LiNbO3:Y:Fe,” Phys. Rev. Lett. 86, 4021–4024 (2001).
[Crossref]

Goul’kov, M. Yu.

B. I. Sturman, S. G. Odoulov, and M. Yu. Goul’kov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 199–254 (1996).
[Crossref]

Grunnet-Jepsen, A.

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996).

Hanna, D. C.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. G. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[Crossref] [PubMed]

B. I. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, P. G. Kazansky, and D. C. Hanna, “Mechanism of self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 69, 1349–1451 (1997).
[Crossref]

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. Russel, and D. C. Hanna, “Self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 67, 1957–1959 (1995).
[Crossref]

J. Webjörn, V. Pruneri, P. St. Russel, J. R. M. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett. 30, 894–895 (1994).
[Crossref]

Kazansky, P. G.

B. I. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, P. G. Kazansky, and D. C. Hanna, “Mechanism of self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 69, 1349–1451 (1997).
[Crossref]

B. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, and P. G. Kazansky, “Photorefractive nonlinearity of periodically poled lithium niobate,” J. Opt. Soc. Am. B 14, 2641–1649 (1997).
[Crossref]

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. Russel, and D. C. Hanna, “Self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 67, 1957–1959 (1995).
[Crossref]

McElhanon, W.

W. K. Burns, W. McElhanon, and L. Goldberg, “Second harmonic generation in field poled, quasi-phase-matched, bulk LiNbO3,” IEEE Photon. Technol. Lett. 6, 252–254 (1994).
[Crossref]

Myers, L. E.

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–437 (1993).
[Crossref]

Naumova, I.

M. Goul’kov, S. Odoulov, I. Naumova, F. Agullo-Lopez, G. Calvo, E. Podivilov, B. Sturman, and V. Pruneri, “Degenerate parametric light scattering in periodically poled LiNbO3:Y:Fe,” Phys. Rev. Lett. 86, 4021–4024 (2001).
[Crossref]

Naumova, I. I.

S. Odoulov, T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, “Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies,” Phys. Rev. Lett. 84, 3294–3297 (2000).
[Crossref] [PubMed]

Odoulov, S.

M. Goul’kov, S. Odoulov, I. Naumova, F. Agullo-Lopez, G. Calvo, E. Podivilov, B. Sturman, and V. Pruneri, “Degenerate parametric light scattering in periodically poled LiNbO3:Y:Fe,” Phys. Rev. Lett. 86, 4021–4024 (2001).
[Crossref]

S. Odoulov, T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, “Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies,” Phys. Rev. Lett. 84, 3294–3297 (2000).
[Crossref] [PubMed]

Odoulov, S. G.

B. I. Sturman, S. G. Odoulov, and M. Yu. Goul’kov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 199–254 (1996).
[Crossref]

Offerhaus, H. L.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. G. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[Crossref] [PubMed]

Pierce, J. R.

Podivilov, E.

M. Goul’kov, S. Odoulov, I. Naumova, F. Agullo-Lopez, G. Calvo, E. Podivilov, B. Sturman, and V. Pruneri, “Degenerate parametric light scattering in periodically poled LiNbO3:Y:Fe,” Phys. Rev. Lett. 86, 4021–4024 (2001).
[Crossref]

Podivilov, E. V.

E. V. Podivilov, B. I. Sturman, G. F. Calvo, F. Agullo-Lopez, M. Carrascosa, and V. Pruneri, “Effect of domain structure fluctuations on the photorefractive response of periodically poled lithium niobate,” Phys. Rev. B 62, 13182–13187 (2000).
[Crossref]

Pruneri, V.

M. Goul’kov, S. Odoulov, I. Naumova, F. Agullo-Lopez, G. Calvo, E. Podivilov, B. Sturman, and V. Pruneri, “Degenerate parametric light scattering in periodically poled LiNbO3:Y:Fe,” Phys. Rev. Lett. 86, 4021–4024 (2001).
[Crossref]

E. V. Podivilov, B. I. Sturman, G. F. Calvo, F. Agullo-Lopez, M. Carrascosa, and V. Pruneri, “Effect of domain structure fluctuations on the photorefractive response of periodically poled lithium niobate,” Phys. Rev. B 62, 13182–13187 (2000).
[Crossref]

B. I. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, P. G. Kazansky, and D. C. Hanna, “Mechanism of self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 69, 1349–1451 (1997).
[Crossref]

B. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, and P. G. Kazansky, “Photorefractive nonlinearity of periodically poled lithium niobate,” J. Opt. Soc. Am. B 14, 2641–1649 (1997).
[Crossref]

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. Russel, and D. C. Hanna, “Self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 67, 1957–1959 (1995).
[Crossref]

J. Webjörn, V. Pruneri, P. St. Russel, J. R. M. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett. 30, 894–895 (1994).
[Crossref]

Richardson, D. G.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. G. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[Crossref] [PubMed]

Ross, G. W.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. G. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[Crossref] [PubMed]

Russel, P. St.

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. Russel, and D. C. Hanna, “Self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 67, 1957–1959 (1995).
[Crossref]

J. Webjörn, V. Pruneri, P. St. Russel, J. R. M. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett. 30, 894–895 (1994).
[Crossref]

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–437 (1993).
[Crossref]

Shumelyuk, A.

S. Odoulov, T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, “Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies,” Phys. Rev. Lett. 84, 3294–3297 (2000).
[Crossref] [PubMed]

Solymar, L.

B. I. Sturman, F. Agullo-Lopez, M. Carrascosa, and L. Solymar, “On macroscopic description of photorefractive phenomena,” Appl. Phys. B 68, 1013–1020 (1999).
[Crossref]

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996).

Sturman, B.

M. Goul’kov, S. Odoulov, I. Naumova, F. Agullo-Lopez, G. Calvo, E. Podivilov, B. Sturman, and V. Pruneri, “Degenerate parametric light scattering in periodically poled LiNbO3:Y:Fe,” Phys. Rev. Lett. 86, 4021–4024 (2001).
[Crossref]

B. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, and P. G. Kazansky, “Photorefractive nonlinearity of periodically poled lithium niobate,” J. Opt. Soc. Am. B 14, 2641–1649 (1997).
[Crossref]

Sturman, B. I.

E. V. Podivilov, B. I. Sturman, G. F. Calvo, F. Agullo-Lopez, M. Carrascosa, and V. Pruneri, “Effect of domain structure fluctuations on the photorefractive response of periodically poled lithium niobate,” Phys. Rev. B 62, 13182–13187 (2000).
[Crossref]

B. I. Sturman, F. Agullo-Lopez, M. Carrascosa, and L. Solymar, “On macroscopic description of photorefractive phenomena,” Appl. Phys. B 68, 1013–1020 (1999).
[Crossref]

B. I. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, P. G. Kazansky, and D. C. Hanna, “Mechanism of self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 69, 1349–1451 (1997).
[Crossref]

B. I. Sturman, S. G. Odoulov, and M. Yu. Goul’kov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 199–254 (1996).
[Crossref]

B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon and Breach, Philadelphia, 1992).

Tarabrova, T.

S. Odoulov, T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, “Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies,” Phys. Rev. Lett. 84, 3294–3297 (2000).
[Crossref] [PubMed]

Taya, M.

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–437 (1993).
[Crossref]

Webb, D. J.

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996).

Webjörn, J.

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. Russel, and D. C. Hanna, “Self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 67, 1957–1959 (1995).
[Crossref]

J. Webjörn, V. Pruneri, P. St. Russel, J. R. M. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett. 30, 894–895 (1994).
[Crossref]

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–437 (1993).
[Crossref]

Appl. Phys. B (1)

B. I. Sturman, F. Agullo-Lopez, M. Carrascosa, and L. Solymar, “On macroscopic description of photorefractive phenomena,” Appl. Phys. B 68, 1013–1020 (1999).
[Crossref]

Appl. Phys. Lett. (3)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–437 (1993).
[Crossref]

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. Russel, and D. C. Hanna, “Self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 67, 1957–1959 (1995).
[Crossref]

B. I. Sturman, M. Aguilar, F. Agullo-Lopez, V. Pruneri, P. G. Kazansky, and D. C. Hanna, “Mechanism of self-organized light-induced scattering in periodically poled lithium niobate,” Appl. Phys. Lett. 69, 1349–1451 (1997).
[Crossref]

Electron. Lett. (1)

J. Webjörn, V. Pruneri, P. St. Russel, J. R. M. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett. 30, 894–895 (1994).
[Crossref]

IEEE Photon. Technol. Lett. (1)

W. K. Burns, W. McElhanon, and L. Goldberg, “Second harmonic generation in field poled, quasi-phase-matched, bulk LiNbO3,” IEEE Photon. Technol. Lett. 6, 252–254 (1994).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Lett. (1)

Phys. Rep. (1)

B. I. Sturman, S. G. Odoulov, and M. Yu. Goul’kov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 199–254 (1996).
[Crossref]

Phys. Rev. B (1)

E. V. Podivilov, B. I. Sturman, G. F. Calvo, F. Agullo-Lopez, M. Carrascosa, and V. Pruneri, “Effect of domain structure fluctuations on the photorefractive response of periodically poled lithium niobate,” Phys. Rev. B 62, 13182–13187 (2000).
[Crossref]

Phys. Rev. Lett. (3)

S. Odoulov, T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, “Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies,” Phys. Rev. Lett. 84, 3294–3297 (2000).
[Crossref] [PubMed]

M. Goul’kov, S. Odoulov, I. Naumova, F. Agullo-Lopez, G. Calvo, E. Podivilov, B. Sturman, and V. Pruneri, “Degenerate parametric light scattering in periodically poled LiNbO3:Y:Fe,” Phys. Rev. Lett. 86, 4021–4024 (2001).
[Crossref]

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. G. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[Crossref] [PubMed]

Other (2)

B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon and Breach, Philadelphia, 1992).

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Geometric diagram of the PPLN domain structure.

Fig. 2
Fig. 2

Schematic diagram of the wave and grating vectors for the processes (a) A: eeee and (b) B: eeee. The gray dots mark the tips of the wave vectors.

Fig. 3
Fig. 3

Far-field distributions of scattered light for (a) the single-domain and (b) PPLN parts of the sample. Image doubling is due to reflection from the output face. (c) Azimuth dependence of the ring intensity; the open and filled dots correspond to the cases (a) and (b), respectively.

Fig. 4
Fig. 4

Wave-vector diagrams for the processes responsible for the generation of anomalous light dots in PPLN; the cases (a) and (b), (c) correspond to 1G: eeee and 1G: eeoo processes, respectively.

Fig. 5
Fig. 5

Far-field intensity distributions for 2G: eeee scattering process; the patterns (a) and (b) are obtained in PPLN and single-domain parts of the sample, respectively. The central pump spots are shadowed by small disks.

Fig. 6
Fig. 6

Far-field intensity distribution for 1G: eeoo scattering process; the central (pump) and side (scatter) light beams are e and o polarized, respectively.

Fig. 7
Fig. 7

Geometric diagrams for four different cases of grating recording in PPLN.

Fig. 8
Fig. 8

Dependence of the harmonics EK(0), EK,z(2), and EK,x(2) on Q=Kx0/2 (curves 1, 2, and 3, respectively) for the photovoltaic transport in the case (a) of Fig. 7.

Fig. 9
Fig. 9

Dependence EK(0)(θ) for different values of Q=Kx0/2 in the case (c) of Fig. 7. Curves 1, 2, and 3 are plotted for Q=1, 1.5, and 5, respectively.

Fig. 10
Fig. 10

Dependences (a) FA(φA) and (b) FB(φB) for three different values of the pump angle θp (in air) and λ=514 nm.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

δmn(r)-n4rmnlEl(r)p(x),
jm=p(x)βmnlAnAl*+κ(Em+kBTe-1m)|A|2,
βmnl=βmnlL+iδmnkβklC,
kp1e+kp2e=ks1e+ks2e,
kp1e-kp2e=ks1e-ks2e.
k2se-k2pe+2G=k1pe-k1se-2G=K,
ks1o-kp1e±G=kp2e-ks2o±G=-K±.
A=A1 exp(ik1·r)+A2 exp(ik2·r).
pEsc=sEK(s)exp[i(K+sG)·r]+c.c.
EK(s)=2insπ(n·E0+iED)A1·A2*I0,
EK(s)=-KK2x0q(ν·E)νq*-isG tanhq*x02+q*(ν*·E)ν*q+isG tanhqx02-n(E·n)δs0,
EK(0)=-nzEpv1-2Kx0 tanhKx02A1A2*I0,
EK(2)=Epv tanhKx02(Kx0/2)nz+πnx(Kx0/2)2+π2A1A2*I0,
EK,z(0)=Epv cos θ(Q-1 Re{exp(2iθ)×tanh[Q exp(-iθ)]}-cos θ)A1A2*/I0,
EK,x(0)=Epv cos θ(Q-1 Im{exp(2iθ)×tanh[Q exp(-iθ)]}-sin θ)A1A2*/I0.
EK(0)=(E15L-iE12C)[nx cos θQ-1 tanh Q+ny sin θ(1-Q-1 tanh Q)]AoAe*/I0.
ΓA=|πmpn3r33E33L/2λ|FA(φA),
FA=cos2(φA/2)F[Q sin(φA/2)]+sin2(φA/2)F[Q cos(φA/2)].
ΓB=|πn3r33E33L/4λ|FB,
FB=2F(Q tan φB)+sin2 φBF(Q/cos φB).
EK,z(2)E33L=mpKx0 tanh(Kx0/2)K2x02+4π2.
(I1s/I1p)1/2=(I2s/I2p)1/2πn3r33d|EK,z(2)|/λ.
(I1so/I1pe)1/2=(I2so/I2pe)1/2mpn3r51EDd/λ.
d2dx2+2iKxddx-K2φK=ip(x)(K·E),
φK±=C1± exp(q*x)+C2±exp(-qx)i(K·E)/K2,
(dφK+/dx)(0)-(dφK-/dx)(0)=2Ex,
(dφK+/dx)(x0)-(dφK-/dx)(-x0)=2Ex.
C1±=q(ν·E)2K2 sinh(q*x0)[1-exp(q*x0)],
C2±=q*(ν*·E)2K2 sinh(qx0)[1-exp(±qx0)],
Esc=-(iKφK+nxdφK/dx)exp(iK·r)+c.c.

Metrics