Abstract

The issue of waveguide instability in LiTaO3 is addressed. Changes in refractive index over time were monitored and used to compare the stability of waveguides fabricated by proton exchange, annealed proton exchange, Ti indiffusion, and Zn indiffusion. As opposed to waveguide formation in LiNbO3, all processes were found to produce unstable waveguides in LiTaO3 crystals. It was concluded, therefore, that to eliminate completely the instability of waveguides fabricated in LiTaO3 by using common fabrication techniques better growth procedures for this crystal may be necessary. Because of its extremely high melting point, current growth technology results in Li-deficient crystals that likely have a large number of defect sites and high strain values.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Glass, G. E. Peterson, and T. J. Negran, in Laser Induced Damage in Optical Materials, A. M. Glass and A. H. Guenter, eds. (National Bureau Standards, Washington, D.C., 1972) Special Publication 372, p. 15.
  2. P. J. Matthews and A. R. Mickelson, “Properties of proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 72, 2562–2574 (1992).
    [CrossRef]
  3. K. Mizuuchi, K. Yamamoto, and T. Taniuchi, “Blue-light generation by quasi-phase-matched second-harmonic generation in LiTaO3,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991) pp. 164–166.
  4. K. Mizuuchi and K. Yamamoto, “Characteristics of periodically domain-inverted LiTaO3,” J. Appl. Phys. 72, 5061–5069 (1992).
    [CrossRef]
  5. I. Sawaki and S. Kurimura, “Second-harmonic generation in periodically domain-inverted lithium tantalate channel waveguides,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991) p. 166.
  6. W. B. Spillman, Jr., N. A. Sanford, and R. A. Soref, “Optical waveguides in LiTaO3 formed by proton exchange,” Opt. Lett. 8, 497–498 (1983).
    [CrossRef] [PubMed]
  7. D. B. Maring, S. M. Kostritskii, R. F. Tavlykaev, and R. V. Ramaswamy, “High-power single-mode LiTaO3 waveguides with improved temporal stability,” Integrated Photonics Research, OSA Technical Digest (Optical Society of America, Washington, D.C., 1999) paper RTuK4–1, pp. 281–283.
  8. H. Åhlfeldt, J. Webjörn, F. Laurell, and G. Arvidsson, “Postfabrication changes and dependence on hydrogen concentration of the refractive index of proton-exchanged lithium tantalate waveguides,” J. Appl. Phys. 75, 717–727 (1994).
    [CrossRef]
  9. D. B. Maring, R. F. Tavlykaev, and R. V. Ramaswamy, “Anomalies of refractive-index profiles observed directly in annealed proton-exchanged, X-cut LiTaO3 waveguides,” Electron. Lett. 32, 1473–1475 (1996).
    [CrossRef]
  10. D. B. Maring, R. F. Tavlykaev, and R. V. Ramaswamy, “Direct observation of buried refractive-index profiles in an-nealed proton-exchanged LiTaO3 waveguides,” in Integrated Photonics Research, Vol. 7 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996) pp. 435–437.
  11. D. B. Maring, R. F. Tavlykaev, R. V. Ramaswamy, Yu. N. Korkishko, V. A. Fedorov, and J. M. Zavada, “Effect of crystal phases on refractive index profiles of annealed-proton-exchanged waveguides in X-cut LiTaO3,” Appl. Phys. Lett. 73, 423–425 (1998).
    [CrossRef]
  12. H. Åhlfeldt, J. Webjörn, P. A. Thomas, and S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in Z-cut LiTaO3,” J. Appl. Phys. 77, 4467–4476 (1995).
    [CrossRef]
  13. O. Eknoyan, D. W. Yoon, and H. F. Taylor, “Low-loss optical waveguides in lithium tantalate by vapor diffusion,” Appl. Phys. Lett. 51, 384–386 (1987).
    [CrossRef]
  14. D. W. Yoon and O. Eknoyan, “Characterization of vapor diffused Zn:LiTaO3 optical waveguides,” J. Lightwave Technol. 6, 877–880 (1988).
    [CrossRef]
  15. P. J. Matthews and A. R. Mickelson, “Instabilities in annealed proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 71, 5310–5317 (1992).
    [CrossRef]
  16. H. C. Cheng and R. V. Ramaswamy, “Novel technique for the measurement of coupling length in directional couplers,” in Optical Technology for Signal Processing Systems, M. P. Bendett, ed. Proc. SPIE 1474, pp. 291–297 (1991).
    [CrossRef]
  17. D. B. Maring, “Properties and characteristics of LiTaO3 for integrated-optical device applications,” Ph.D. dissertation (University of Florida, Gainesville, Florida, 2000) pp. 109–118.
  18. K. M. Kissa, P. G. Suchoski, and D. K. Lewis, “Accelerated aging of annealed-proton-exchanged waveguides,” J. Lightwave Technol. 13, 1521–1529 (1995).
    [CrossRef]
  19. P. F. Bordui, R. G. Norwood, C. D. Bird, and J. T. Carella, “Stoichiometry issues in single-crystal lithium tantalate,” J. Appl. Phys. 78, 4647–4650 (1995).
    [CrossRef]
  20. J. C. Doukhan, P. Cordier, N. Doukhan, M. Fragneau, and N. Doukhan, “Lattice defects in lithium tantalate,” in Proceedings of the 43rd Symposium on Frequency Control (IEEE, Piscataway, New Jersey, 1989) pp. 497–508.

1998 (1)

D. B. Maring, R. F. Tavlykaev, R. V. Ramaswamy, Yu. N. Korkishko, V. A. Fedorov, and J. M. Zavada, “Effect of crystal phases on refractive index profiles of annealed-proton-exchanged waveguides in X-cut LiTaO3,” Appl. Phys. Lett. 73, 423–425 (1998).
[CrossRef]

1996 (1)

D. B. Maring, R. F. Tavlykaev, and R. V. Ramaswamy, “Anomalies of refractive-index profiles observed directly in annealed proton-exchanged, X-cut LiTaO3 waveguides,” Electron. Lett. 32, 1473–1475 (1996).
[CrossRef]

1995 (3)

H. Åhlfeldt, J. Webjörn, P. A. Thomas, and S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in Z-cut LiTaO3,” J. Appl. Phys. 77, 4467–4476 (1995).
[CrossRef]

K. M. Kissa, P. G. Suchoski, and D. K. Lewis, “Accelerated aging of annealed-proton-exchanged waveguides,” J. Lightwave Technol. 13, 1521–1529 (1995).
[CrossRef]

P. F. Bordui, R. G. Norwood, C. D. Bird, and J. T. Carella, “Stoichiometry issues in single-crystal lithium tantalate,” J. Appl. Phys. 78, 4647–4650 (1995).
[CrossRef]

1994 (1)

H. Åhlfeldt, J. Webjörn, F. Laurell, and G. Arvidsson, “Postfabrication changes and dependence on hydrogen concentration of the refractive index of proton-exchanged lithium tantalate waveguides,” J. Appl. Phys. 75, 717–727 (1994).
[CrossRef]

1992 (3)

P. J. Matthews and A. R. Mickelson, “Properties of proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 72, 2562–2574 (1992).
[CrossRef]

K. Mizuuchi and K. Yamamoto, “Characteristics of periodically domain-inverted LiTaO3,” J. Appl. Phys. 72, 5061–5069 (1992).
[CrossRef]

P. J. Matthews and A. R. Mickelson, “Instabilities in annealed proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 71, 5310–5317 (1992).
[CrossRef]

1991 (1)

H. C. Cheng and R. V. Ramaswamy, “Novel technique for the measurement of coupling length in directional couplers,” in Optical Technology for Signal Processing Systems, M. P. Bendett, ed. Proc. SPIE 1474, pp. 291–297 (1991).
[CrossRef]

1988 (1)

D. W. Yoon and O. Eknoyan, “Characterization of vapor diffused Zn:LiTaO3 optical waveguides,” J. Lightwave Technol. 6, 877–880 (1988).
[CrossRef]

1987 (1)

O. Eknoyan, D. W. Yoon, and H. F. Taylor, “Low-loss optical waveguides in lithium tantalate by vapor diffusion,” Appl. Phys. Lett. 51, 384–386 (1987).
[CrossRef]

1983 (1)

Åhlfeldt, H.

H. Åhlfeldt, J. Webjörn, P. A. Thomas, and S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in Z-cut LiTaO3,” J. Appl. Phys. 77, 4467–4476 (1995).
[CrossRef]

H. Åhlfeldt, J. Webjörn, F. Laurell, and G. Arvidsson, “Postfabrication changes and dependence on hydrogen concentration of the refractive index of proton-exchanged lithium tantalate waveguides,” J. Appl. Phys. 75, 717–727 (1994).
[CrossRef]

Arvidsson, G.

H. Åhlfeldt, J. Webjörn, F. Laurell, and G. Arvidsson, “Postfabrication changes and dependence on hydrogen concentration of the refractive index of proton-exchanged lithium tantalate waveguides,” J. Appl. Phys. 75, 717–727 (1994).
[CrossRef]

Bird, C. D.

P. F. Bordui, R. G. Norwood, C. D. Bird, and J. T. Carella, “Stoichiometry issues in single-crystal lithium tantalate,” J. Appl. Phys. 78, 4647–4650 (1995).
[CrossRef]

Bordui, P. F.

P. F. Bordui, R. G. Norwood, C. D. Bird, and J. T. Carella, “Stoichiometry issues in single-crystal lithium tantalate,” J. Appl. Phys. 78, 4647–4650 (1995).
[CrossRef]

Carella, J. T.

P. F. Bordui, R. G. Norwood, C. D. Bird, and J. T. Carella, “Stoichiometry issues in single-crystal lithium tantalate,” J. Appl. Phys. 78, 4647–4650 (1995).
[CrossRef]

Cheng, H. C.

H. C. Cheng and R. V. Ramaswamy, “Novel technique for the measurement of coupling length in directional couplers,” in Optical Technology for Signal Processing Systems, M. P. Bendett, ed. Proc. SPIE 1474, pp. 291–297 (1991).
[CrossRef]

Eknoyan, O.

D. W. Yoon and O. Eknoyan, “Characterization of vapor diffused Zn:LiTaO3 optical waveguides,” J. Lightwave Technol. 6, 877–880 (1988).
[CrossRef]

O. Eknoyan, D. W. Yoon, and H. F. Taylor, “Low-loss optical waveguides in lithium tantalate by vapor diffusion,” Appl. Phys. Lett. 51, 384–386 (1987).
[CrossRef]

Fedorov, V. A.

D. B. Maring, R. F. Tavlykaev, R. V. Ramaswamy, Yu. N. Korkishko, V. A. Fedorov, and J. M. Zavada, “Effect of crystal phases on refractive index profiles of annealed-proton-exchanged waveguides in X-cut LiTaO3,” Appl. Phys. Lett. 73, 423–425 (1998).
[CrossRef]

Kissa, K. M.

K. M. Kissa, P. G. Suchoski, and D. K. Lewis, “Accelerated aging of annealed-proton-exchanged waveguides,” J. Lightwave Technol. 13, 1521–1529 (1995).
[CrossRef]

Korkishko, Yu. N.

D. B. Maring, R. F. Tavlykaev, R. V. Ramaswamy, Yu. N. Korkishko, V. A. Fedorov, and J. M. Zavada, “Effect of crystal phases on refractive index profiles of annealed-proton-exchanged waveguides in X-cut LiTaO3,” Appl. Phys. Lett. 73, 423–425 (1998).
[CrossRef]

Laurell, F.

H. Åhlfeldt, J. Webjörn, F. Laurell, and G. Arvidsson, “Postfabrication changes and dependence on hydrogen concentration of the refractive index of proton-exchanged lithium tantalate waveguides,” J. Appl. Phys. 75, 717–727 (1994).
[CrossRef]

Lewis, D. K.

K. M. Kissa, P. G. Suchoski, and D. K. Lewis, “Accelerated aging of annealed-proton-exchanged waveguides,” J. Lightwave Technol. 13, 1521–1529 (1995).
[CrossRef]

Maring, D. B.

D. B. Maring, R. F. Tavlykaev, R. V. Ramaswamy, Yu. N. Korkishko, V. A. Fedorov, and J. M. Zavada, “Effect of crystal phases on refractive index profiles of annealed-proton-exchanged waveguides in X-cut LiTaO3,” Appl. Phys. Lett. 73, 423–425 (1998).
[CrossRef]

D. B. Maring, R. F. Tavlykaev, and R. V. Ramaswamy, “Anomalies of refractive-index profiles observed directly in annealed proton-exchanged, X-cut LiTaO3 waveguides,” Electron. Lett. 32, 1473–1475 (1996).
[CrossRef]

Matthews, P. J.

P. J. Matthews and A. R. Mickelson, “Instabilities in annealed proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 71, 5310–5317 (1992).
[CrossRef]

P. J. Matthews and A. R. Mickelson, “Properties of proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 72, 2562–2574 (1992).
[CrossRef]

Mickelson, A. R.

P. J. Matthews and A. R. Mickelson, “Properties of proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 72, 2562–2574 (1992).
[CrossRef]

P. J. Matthews and A. R. Mickelson, “Instabilities in annealed proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 71, 5310–5317 (1992).
[CrossRef]

Mizuuchi, K.

K. Mizuuchi and K. Yamamoto, “Characteristics of periodically domain-inverted LiTaO3,” J. Appl. Phys. 72, 5061–5069 (1992).
[CrossRef]

Norwood, R. G.

P. F. Bordui, R. G. Norwood, C. D. Bird, and J. T. Carella, “Stoichiometry issues in single-crystal lithium tantalate,” J. Appl. Phys. 78, 4647–4650 (1995).
[CrossRef]

Ramaswamy, R. V.

D. B. Maring, R. F. Tavlykaev, R. V. Ramaswamy, Yu. N. Korkishko, V. A. Fedorov, and J. M. Zavada, “Effect of crystal phases on refractive index profiles of annealed-proton-exchanged waveguides in X-cut LiTaO3,” Appl. Phys. Lett. 73, 423–425 (1998).
[CrossRef]

D. B. Maring, R. F. Tavlykaev, and R. V. Ramaswamy, “Anomalies of refractive-index profiles observed directly in annealed proton-exchanged, X-cut LiTaO3 waveguides,” Electron. Lett. 32, 1473–1475 (1996).
[CrossRef]

H. C. Cheng and R. V. Ramaswamy, “Novel technique for the measurement of coupling length in directional couplers,” in Optical Technology for Signal Processing Systems, M. P. Bendett, ed. Proc. SPIE 1474, pp. 291–297 (1991).
[CrossRef]

Sanford, N. A.

Soref, R. A.

Spillman Jr., W. B.

Suchoski, P. G.

K. M. Kissa, P. G. Suchoski, and D. K. Lewis, “Accelerated aging of annealed-proton-exchanged waveguides,” J. Lightwave Technol. 13, 1521–1529 (1995).
[CrossRef]

Tavlykaev, R. F.

D. B. Maring, R. F. Tavlykaev, R. V. Ramaswamy, Yu. N. Korkishko, V. A. Fedorov, and J. M. Zavada, “Effect of crystal phases on refractive index profiles of annealed-proton-exchanged waveguides in X-cut LiTaO3,” Appl. Phys. Lett. 73, 423–425 (1998).
[CrossRef]

D. B. Maring, R. F. Tavlykaev, and R. V. Ramaswamy, “Anomalies of refractive-index profiles observed directly in annealed proton-exchanged, X-cut LiTaO3 waveguides,” Electron. Lett. 32, 1473–1475 (1996).
[CrossRef]

Taylor, H. F.

O. Eknoyan, D. W. Yoon, and H. F. Taylor, “Low-loss optical waveguides in lithium tantalate by vapor diffusion,” Appl. Phys. Lett. 51, 384–386 (1987).
[CrossRef]

Teat, S. J.

H. Åhlfeldt, J. Webjörn, P. A. Thomas, and S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in Z-cut LiTaO3,” J. Appl. Phys. 77, 4467–4476 (1995).
[CrossRef]

Thomas, P. A.

H. Åhlfeldt, J. Webjörn, P. A. Thomas, and S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in Z-cut LiTaO3,” J. Appl. Phys. 77, 4467–4476 (1995).
[CrossRef]

Webjörn, J.

H. Åhlfeldt, J. Webjörn, P. A. Thomas, and S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in Z-cut LiTaO3,” J. Appl. Phys. 77, 4467–4476 (1995).
[CrossRef]

H. Åhlfeldt, J. Webjörn, F. Laurell, and G. Arvidsson, “Postfabrication changes and dependence on hydrogen concentration of the refractive index of proton-exchanged lithium tantalate waveguides,” J. Appl. Phys. 75, 717–727 (1994).
[CrossRef]

Yamamoto, K.

K. Mizuuchi and K. Yamamoto, “Characteristics of periodically domain-inverted LiTaO3,” J. Appl. Phys. 72, 5061–5069 (1992).
[CrossRef]

Yoon, D. W.

D. W. Yoon and O. Eknoyan, “Characterization of vapor diffused Zn:LiTaO3 optical waveguides,” J. Lightwave Technol. 6, 877–880 (1988).
[CrossRef]

O. Eknoyan, D. W. Yoon, and H. F. Taylor, “Low-loss optical waveguides in lithium tantalate by vapor diffusion,” Appl. Phys. Lett. 51, 384–386 (1987).
[CrossRef]

Zavada, J. M.

D. B. Maring, R. F. Tavlykaev, R. V. Ramaswamy, Yu. N. Korkishko, V. A. Fedorov, and J. M. Zavada, “Effect of crystal phases on refractive index profiles of annealed-proton-exchanged waveguides in X-cut LiTaO3,” Appl. Phys. Lett. 73, 423–425 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

D. B. Maring, R. F. Tavlykaev, R. V. Ramaswamy, Yu. N. Korkishko, V. A. Fedorov, and J. M. Zavada, “Effect of crystal phases on refractive index profiles of annealed-proton-exchanged waveguides in X-cut LiTaO3,” Appl. Phys. Lett. 73, 423–425 (1998).
[CrossRef]

O. Eknoyan, D. W. Yoon, and H. F. Taylor, “Low-loss optical waveguides in lithium tantalate by vapor diffusion,” Appl. Phys. Lett. 51, 384–386 (1987).
[CrossRef]

Electron. Lett. (1)

D. B. Maring, R. F. Tavlykaev, and R. V. Ramaswamy, “Anomalies of refractive-index profiles observed directly in annealed proton-exchanged, X-cut LiTaO3 waveguides,” Electron. Lett. 32, 1473–1475 (1996).
[CrossRef]

J. Appl. Phys. (6)

H. Åhlfeldt, J. Webjörn, P. A. Thomas, and S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in Z-cut LiTaO3,” J. Appl. Phys. 77, 4467–4476 (1995).
[CrossRef]

P. J. Matthews and A. R. Mickelson, “Instabilities in annealed proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 71, 5310–5317 (1992).
[CrossRef]

P. J. Matthews and A. R. Mickelson, “Properties of proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 72, 2562–2574 (1992).
[CrossRef]

K. Mizuuchi and K. Yamamoto, “Characteristics of periodically domain-inverted LiTaO3,” J. Appl. Phys. 72, 5061–5069 (1992).
[CrossRef]

H. Åhlfeldt, J. Webjörn, F. Laurell, and G. Arvidsson, “Postfabrication changes and dependence on hydrogen concentration of the refractive index of proton-exchanged lithium tantalate waveguides,” J. Appl. Phys. 75, 717–727 (1994).
[CrossRef]

P. F. Bordui, R. G. Norwood, C. D. Bird, and J. T. Carella, “Stoichiometry issues in single-crystal lithium tantalate,” J. Appl. Phys. 78, 4647–4650 (1995).
[CrossRef]

J. Lightwave Technol. (2)

K. M. Kissa, P. G. Suchoski, and D. K. Lewis, “Accelerated aging of annealed-proton-exchanged waveguides,” J. Lightwave Technol. 13, 1521–1529 (1995).
[CrossRef]

D. W. Yoon and O. Eknoyan, “Characterization of vapor diffused Zn:LiTaO3 optical waveguides,” J. Lightwave Technol. 6, 877–880 (1988).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

H. C. Cheng and R. V. Ramaswamy, “Novel technique for the measurement of coupling length in directional couplers,” in Optical Technology for Signal Processing Systems, M. P. Bendett, ed. Proc. SPIE 1474, pp. 291–297 (1991).
[CrossRef]

Other (7)

D. B. Maring, “Properties and characteristics of LiTaO3 for integrated-optical device applications,” Ph.D. dissertation (University of Florida, Gainesville, Florida, 2000) pp. 109–118.

D. B. Maring, R. F. Tavlykaev, and R. V. Ramaswamy, “Direct observation of buried refractive-index profiles in an-nealed proton-exchanged LiTaO3 waveguides,” in Integrated Photonics Research, Vol. 7 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996) pp. 435–437.

D. B. Maring, S. M. Kostritskii, R. F. Tavlykaev, and R. V. Ramaswamy, “High-power single-mode LiTaO3 waveguides with improved temporal stability,” Integrated Photonics Research, OSA Technical Digest (Optical Society of America, Washington, D.C., 1999) paper RTuK4–1, pp. 281–283.

A. M. Glass, G. E. Peterson, and T. J. Negran, in Laser Induced Damage in Optical Materials, A. M. Glass and A. H. Guenter, eds. (National Bureau Standards, Washington, D.C., 1972) Special Publication 372, p. 15.

I. Sawaki and S. Kurimura, “Second-harmonic generation in periodically domain-inverted lithium tantalate channel waveguides,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991) p. 166.

K. Mizuuchi, K. Yamamoto, and T. Taniuchi, “Blue-light generation by quasi-phase-matched second-harmonic generation in LiTaO3,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991) pp. 164–166.

J. C. Doukhan, P. Cordier, N. Doukhan, M. Fragneau, and N. Doukhan, “Lattice defects in lithium tantalate,” in Proceedings of the 43rd Symposium on Frequency Control (IEEE, Piscataway, New Jersey, 1989) pp. 497–508.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Illustration of a passive directional coupler.

Fig. 2
Fig. 2

Measured coupling length lc over time for a coupler comprising 7-µm channels with an 8-µm gap and interaction lengths of 9, 10, and 11 mm.

Fig. 3
Fig. 3

Structural phase diagram for Z-cut APE:LiTaO3.

Fig. 4
Fig. 4

Structural phase diagram for X-cut APE:LiTaO3.

Tables (4)

Tables Icon

Table 1 APE Fabrication Conditions (with Pyrophosphoric Acid) and Characteristicsa at Various Periods After Fabrication

Tables Icon

Table 2 PE Fabrication Conditions at Various Periods After Fabricationa

Tables Icon

Table 3 Regions of Single-Mode Operation in Terms of Channel Width (µm) for the Extraordinary Fundamental Mode Measured at 1.55 µma

Tables Icon

Table 4 Regions of Single-Mode Operation in terms of channel width (µm), for the Extraordinary Fundamental Mode Measured at 1.55 µma

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P2P1=tan2ΔβL2+θnp=tan2πL2lc+θnp

Metrics