Abstract

The influence of energy-transfer upconversion (ETU) on diode-end-pumped actively Q-switched lasers is investigated by the space-dependent rate equation analysis. The numerical analysis reveals that as a consequence of the ETU effect there is an optimum pump size for yielding the largest pulse energy and a different optimum pump for yielding the highest peak power at a given pump power. The practical example of the diode-pumped actively Q-switched Nd:YAG laser has been used to verify the present model.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
    [CrossRef]
  2. Y. Guyot, H. Manan, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3A15O12,YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784–799 (1995).
    [CrossRef]
  3. S. A. Payne, G. D. Wilke, L. K. Smith, and W. F. Krupke, “Auger upconversion losses in Nd-doped laser glasses,” Opt. Commun. 111, 263–268 (1994).
    [CrossRef]
  4. J. L. Doualan, C. Maunier, D. Descamps, J. Landais, and R. Moncorge, “Excited-state absorption and up-conversion losses in the Nd-doped glass for high-power lasers,” Phys. Rev. B 62, 4459–4463 (2000).
    [CrossRef]
  5. D. L. Russell and K. Holliday, “Upconversion and energy transfer dynamics in Nd3+:KLiY5,” Opt. Commun. 191, 277–294 (2001).
    [CrossRef]
  6. V. Ostroumov, T. Jensen, J. P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4 laser crystals,” J. Opt. Soc. Am. B 15, 1052–1060 (1998).
    [CrossRef]
  7. M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
    [CrossRef]
  8. Y. F. Chen, Y. P. Lan, and S. C. Wang, “Influence of energy-transfer upconversion on the performance of high-power diode-end-pumped cw lasers,” IEEE J. Quantum Electron. 36, 615–619 (2000).
    [CrossRef]
  9. Y. P. Lan, Y. F. Chen, and S. C. Wang, “Repetition-rate dependence of thermal loading in diode-end-pumped Q-switched lasers: influence of energy-transfer upconversion,” Appl. Phys. B 71, 27–31 (2000).
    [CrossRef]
  10. L. C. Courrol, E. P. Maldonado, L. Gomes, N. D. Vieira, I. M. Ranieri, and S. P. Morato, “Diode pumping Nd-laser efficiency limitations due to up-conversion processes in Nd:YLF and Nd:GLF,” Opt. Mater. 14, 81–90 (2000).
    [CrossRef]
  11. Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped laser to high power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424–1429 (1997).
    [CrossRef]
  12. Y. F. Chen, “Design criteria for concentration optimization in scaling diode end-pumped lasers to high powers: influence of thermal fracture,” IEEE J. Quantum Electron. 35, 234–239 (1999).
    [CrossRef]
  13. Y. F. Chen, “Pump-to-mode size ratio dependence of thermal loading in diode-end-pumped solid-state lasers,” J. Opt. Soc. Am. B 17, 1835–1840 (2000).
    [CrossRef]
  14. R. B. Chesler, M. A. Karr, and J. E. Geusic, “An experimental and theoretical study of high repetition rate Q-switched Nd:YAlG lasers,” Proc. IEEE 58, 1899–1914 (1970).
    [CrossRef]
  15. P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35, 647 (1999).
    [CrossRef]
  16. W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, New York, 1996), p. 51.

2001 (1)

D. L. Russell and K. Holliday, “Upconversion and energy transfer dynamics in Nd3+:KLiY5,” Opt. Commun. 191, 277–294 (2001).
[CrossRef]

2000 (6)

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[CrossRef]

Y. F. Chen, Y. P. Lan, and S. C. Wang, “Influence of energy-transfer upconversion on the performance of high-power diode-end-pumped cw lasers,” IEEE J. Quantum Electron. 36, 615–619 (2000).
[CrossRef]

Y. P. Lan, Y. F. Chen, and S. C. Wang, “Repetition-rate dependence of thermal loading in diode-end-pumped Q-switched lasers: influence of energy-transfer upconversion,” Appl. Phys. B 71, 27–31 (2000).
[CrossRef]

L. C. Courrol, E. P. Maldonado, L. Gomes, N. D. Vieira, I. M. Ranieri, and S. P. Morato, “Diode pumping Nd-laser efficiency limitations due to up-conversion processes in Nd:YLF and Nd:GLF,” Opt. Mater. 14, 81–90 (2000).
[CrossRef]

J. L. Doualan, C. Maunier, D. Descamps, J. Landais, and R. Moncorge, “Excited-state absorption and up-conversion losses in the Nd-doped glass for high-power lasers,” Phys. Rev. B 62, 4459–4463 (2000).
[CrossRef]

Y. F. Chen, “Pump-to-mode size ratio dependence of thermal loading in diode-end-pumped solid-state lasers,” J. Opt. Soc. Am. B 17, 1835–1840 (2000).
[CrossRef]

1999 (3)

Y. F. Chen, “Design criteria for concentration optimization in scaling diode end-pumped lasers to high powers: influence of thermal fracture,” IEEE J. Quantum Electron. 35, 234–239 (1999).
[CrossRef]

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35, 647 (1999).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
[CrossRef]

1998 (1)

1997 (1)

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped laser to high power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424–1429 (1997).
[CrossRef]

1995 (1)

Y. Guyot, H. Manan, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3A15O12,YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

1994 (1)

S. A. Payne, G. D. Wilke, L. K. Smith, and W. F. Krupke, “Auger upconversion losses in Nd-doped laser glasses,” Opt. Commun. 111, 263–268 (1994).
[CrossRef]

1970 (1)

R. B. Chesler, M. A. Karr, and J. E. Geusic, “An experimental and theoretical study of high repetition rate Q-switched Nd:YAlG lasers,” Proc. IEEE 58, 1899–1914 (1970).
[CrossRef]

Bon, M.

Y. Guyot, H. Manan, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3A15O12,YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

Chen, Y. F.

Y. F. Chen, Y. P. Lan, and S. C. Wang, “Influence of energy-transfer upconversion on the performance of high-power diode-end-pumped cw lasers,” IEEE J. Quantum Electron. 36, 615–619 (2000).
[CrossRef]

Y. P. Lan, Y. F. Chen, and S. C. Wang, “Repetition-rate dependence of thermal loading in diode-end-pumped Q-switched lasers: influence of energy-transfer upconversion,” Appl. Phys. B 71, 27–31 (2000).
[CrossRef]

Y. F. Chen, “Pump-to-mode size ratio dependence of thermal loading in diode-end-pumped solid-state lasers,” J. Opt. Soc. Am. B 17, 1835–1840 (2000).
[CrossRef]

Y. F. Chen, “Design criteria for concentration optimization in scaling diode end-pumped lasers to high powers: influence of thermal fracture,” IEEE J. Quantum Electron. 35, 234–239 (1999).
[CrossRef]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped laser to high power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424–1429 (1997).
[CrossRef]

Chesler, R. B.

R. B. Chesler, M. A. Karr, and J. E. Geusic, “An experimental and theoretical study of high repetition rate Q-switched Nd:YAlG lasers,” Proc. IEEE 58, 1899–1914 (1970).
[CrossRef]

Clarkson, W. A.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35, 647 (1999).
[CrossRef]

Courrol, L. C.

L. C. Courrol, E. P. Maldonado, L. Gomes, N. D. Vieira, I. M. Ranieri, and S. P. Morato, “Diode pumping Nd-laser efficiency limitations due to up-conversion processes in Nd:YLF and Nd:GLF,” Opt. Mater. 14, 81–90 (2000).
[CrossRef]

Descamps, D.

J. L. Doualan, C. Maunier, D. Descamps, J. Landais, and R. Moncorge, “Excited-state absorption and up-conversion losses in the Nd-doped glass for high-power lasers,” Phys. Rev. B 62, 4459–4463 (2000).
[CrossRef]

Descroix, E.

Y. Guyot, H. Manan, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3A15O12,YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

Doualan, J. L.

J. L. Doualan, C. Maunier, D. Descamps, J. Landais, and R. Moncorge, “Excited-state absorption and up-conversion losses in the Nd-doped glass for high-power lasers,” Phys. Rev. B 62, 4459–4463 (2000).
[CrossRef]

Friel, G. J.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35, 647 (1999).
[CrossRef]

Gamelin, D. R.

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[CrossRef]

Garnier, N.

Y. Guyot, H. Manan, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3A15O12,YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

Geusic, J. E.

R. B. Chesler, M. A. Karr, and J. E. Geusic, “An experimental and theoretical study of high repetition rate Q-switched Nd:YAlG lasers,” Proc. IEEE 58, 1899–1914 (1970).
[CrossRef]

Gomes, L.

L. C. Courrol, E. P. Maldonado, L. Gomes, N. D. Vieira, I. M. Ranieri, and S. P. Morato, “Diode pumping Nd-laser efficiency limitations due to up-conversion processes in Nd:YLF and Nd:GLF,” Opt. Mater. 14, 81–90 (2000).
[CrossRef]

Gudel, H. U.

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[CrossRef]

Guyot, Y.

Y. Guyot, H. Manan, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3A15O12,YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

Hanna, D. C.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35, 647 (1999).
[CrossRef]

Hardman, P. J.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35, 647 (1999).
[CrossRef]

Hehlen, M. P.

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[CrossRef]

Holliday, K.

D. L. Russell and K. Holliday, “Upconversion and energy transfer dynamics in Nd3+:KLiY5,” Opt. Commun. 191, 277–294 (2001).
[CrossRef]

Huang, T. M.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped laser to high power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424–1429 (1997).
[CrossRef]

Huber, G.

Jensen, T.

Kao, C. F.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped laser to high power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424–1429 (1997).
[CrossRef]

Karr, M. A.

R. B. Chesler, M. A. Karr, and J. E. Geusic, “An experimental and theoretical study of high repetition rate Q-switched Nd:YAlG lasers,” Proc. IEEE 58, 1899–1914 (1970).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, New York, 1996), p. 51.

Krupke, W. F.

S. A. Payne, G. D. Wilke, L. K. Smith, and W. F. Krupke, “Auger upconversion losses in Nd-doped laser glasses,” Opt. Commun. 111, 263–268 (1994).
[CrossRef]

Lan, Y. P.

Y. F. Chen, Y. P. Lan, and S. C. Wang, “Influence of energy-transfer upconversion on the performance of high-power diode-end-pumped cw lasers,” IEEE J. Quantum Electron. 36, 615–619 (2000).
[CrossRef]

Y. P. Lan, Y. F. Chen, and S. C. Wang, “Repetition-rate dependence of thermal loading in diode-end-pumped Q-switched lasers: influence of energy-transfer upconversion,” Appl. Phys. B 71, 27–31 (2000).
[CrossRef]

Landais, J.

J. L. Doualan, C. Maunier, D. Descamps, J. Landais, and R. Moncorge, “Excited-state absorption and up-conversion losses in the Nd-doped glass for high-power lasers,” Phys. Rev. B 62, 4459–4463 (2000).
[CrossRef]

Laporte, P.

Y. Guyot, H. Manan, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3A15O12,YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

Luthi, S. R.

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[CrossRef]

Maldonado, E. P.

L. C. Courrol, E. P. Maldonado, L. Gomes, N. D. Vieira, I. M. Ranieri, and S. P. Morato, “Diode pumping Nd-laser efficiency limitations due to up-conversion processes in Nd:YLF and Nd:GLF,” Opt. Mater. 14, 81–90 (2000).
[CrossRef]

Manan, H.

Y. Guyot, H. Manan, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3A15O12,YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

Maunier, C.

J. L. Doualan, C. Maunier, D. Descamps, J. Landais, and R. Moncorge, “Excited-state absorption and up-conversion losses in the Nd-doped glass for high-power lasers,” Phys. Rev. B 62, 4459–4463 (2000).
[CrossRef]

Meyn, J. P.

Moncorge, R.

J. L. Doualan, C. Maunier, D. Descamps, J. Landais, and R. Moncorge, “Excited-state absorption and up-conversion losses in the Nd-doped glass for high-power lasers,” Phys. Rev. B 62, 4459–4463 (2000).
[CrossRef]

Moncorgé, R.

Y. Guyot, H. Manan, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3A15O12,YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

Morato, S. P.

L. C. Courrol, E. P. Maldonado, L. Gomes, N. D. Vieira, I. M. Ranieri, and S. P. Morato, “Diode pumping Nd-laser efficiency limitations due to up-conversion processes in Nd:YLF and Nd:GLF,” Opt. Mater. 14, 81–90 (2000).
[CrossRef]

Noginov, M. A.

Ostroumov, V.

Ozygus, B.

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
[CrossRef]

Payne, S. A.

S. A. Payne, G. D. Wilke, L. K. Smith, and W. F. Krupke, “Auger upconversion losses in Nd-doped laser glasses,” Opt. Commun. 111, 263–268 (1994).
[CrossRef]

Pollnau, M.

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[CrossRef]

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35, 647 (1999).
[CrossRef]

Ranieri, I. M.

L. C. Courrol, E. P. Maldonado, L. Gomes, N. D. Vieira, I. M. Ranieri, and S. P. Morato, “Diode pumping Nd-laser efficiency limitations due to up-conversion processes in Nd:YLF and Nd:GLF,” Opt. Mater. 14, 81–90 (2000).
[CrossRef]

Rivoire, J. Y.

Y. Guyot, H. Manan, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3A15O12,YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

Russell, D. L.

D. L. Russell and K. Holliday, “Upconversion and energy transfer dynamics in Nd3+:KLiY5,” Opt. Commun. 191, 277–294 (2001).
[CrossRef]

Smith, L. K.

S. A. Payne, G. D. Wilke, L. K. Smith, and W. F. Krupke, “Auger upconversion losses in Nd-doped laser glasses,” Opt. Commun. 111, 263–268 (1994).
[CrossRef]

Vieira, N. D.

L. C. Courrol, E. P. Maldonado, L. Gomes, N. D. Vieira, I. M. Ranieri, and S. P. Morato, “Diode pumping Nd-laser efficiency limitations due to up-conversion processes in Nd:YLF and Nd:GLF,” Opt. Mater. 14, 81–90 (2000).
[CrossRef]

Wang, C. L.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped laser to high power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424–1429 (1997).
[CrossRef]

Wang, Q.

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
[CrossRef]

Wang, S. C.

Y. F. Chen, Y. P. Lan, and S. C. Wang, “Influence of energy-transfer upconversion on the performance of high-power diode-end-pumped cw lasers,” IEEE J. Quantum Electron. 36, 615–619 (2000).
[CrossRef]

Y. P. Lan, Y. F. Chen, and S. C. Wang, “Repetition-rate dependence of thermal loading in diode-end-pumped Q-switched lasers: influence of energy-transfer upconversion,” Appl. Phys. B 71, 27–31 (2000).
[CrossRef]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped laser to high power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424–1429 (1997).
[CrossRef]

Weber, H.

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
[CrossRef]

Wilke, G. D.

S. A. Payne, G. D. Wilke, L. K. Smith, and W. F. Krupke, “Auger upconversion losses in Nd-doped laser glasses,” Opt. Commun. 111, 263–268 (1994).
[CrossRef]

Zhang, X.

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
[CrossRef]

Zhao, S.

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
[CrossRef]

Appl. Phys. B (1)

Y. P. Lan, Y. F. Chen, and S. C. Wang, “Repetition-rate dependence of thermal loading in diode-end-pumped Q-switched lasers: influence of energy-transfer upconversion,” Appl. Phys. B 71, 27–31 (2000).
[CrossRef]

IEEE J. Quantum Electron. (5)

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35, 647 (1999).
[CrossRef]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped laser to high power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424–1429 (1997).
[CrossRef]

Y. F. Chen, “Design criteria for concentration optimization in scaling diode end-pumped lasers to high powers: influence of thermal fracture,” IEEE J. Quantum Electron. 35, 234–239 (1999).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
[CrossRef]

Y. F. Chen, Y. P. Lan, and S. C. Wang, “Influence of energy-transfer upconversion on the performance of high-power diode-end-pumped cw lasers,” IEEE J. Quantum Electron. 36, 615–619 (2000).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

D. L. Russell and K. Holliday, “Upconversion and energy transfer dynamics in Nd3+:KLiY5,” Opt. Commun. 191, 277–294 (2001).
[CrossRef]

S. A. Payne, G. D. Wilke, L. K. Smith, and W. F. Krupke, “Auger upconversion losses in Nd-doped laser glasses,” Opt. Commun. 111, 263–268 (1994).
[CrossRef]

Opt. Mater. (1)

L. C. Courrol, E. P. Maldonado, L. Gomes, N. D. Vieira, I. M. Ranieri, and S. P. Morato, “Diode pumping Nd-laser efficiency limitations due to up-conversion processes in Nd:YLF and Nd:GLF,” Opt. Mater. 14, 81–90 (2000).
[CrossRef]

Phys. Rev. B (3)

J. L. Doualan, C. Maunier, D. Descamps, J. Landais, and R. Moncorge, “Excited-state absorption and up-conversion losses in the Nd-doped glass for high-power lasers,” Phys. Rev. B 62, 4459–4463 (2000).
[CrossRef]

Y. Guyot, H. Manan, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3A15O12,YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[CrossRef]

Proc. IEEE (1)

R. B. Chesler, M. A. Karr, and J. E. Geusic, “An experimental and theoretical study of high repetition rate Q-switched Nd:YAlG lasers,” Proc. IEEE 58, 1899–1914 (1970).
[CrossRef]

Other (1)

W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, New York, 1996), p. 51.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Dependence of g(β) on the parameter β for the example αl=3.

Fig. 2
Fig. 2

Calculated results for Φinteg as a function of the pump size for several absorbed pump powers (solid curves) with and (dashed curves) without the ETU effect.

Fig. 3
Fig. 3

Calculated results for Φm as a function of the pump size for several absorbed pump powers (solid curves) with and (dashed curves) without the ETU effect.

Fig. 4
Fig. 4

Schematic of the fiber-coupled diode-end-pumped actively Q-switched Nd:YAG laser.

Fig. 5
Fig. 5

Output pulse energy versus the absorbed pump power for ωp0.3 mm: (circles) experimental results and theoretical results (solid curve) with and (dashed curve) without the ETU effect.

Fig. 6
Fig. 6

Output pulse energy versus the absorbed pump power for ωp0.2 mm: (circles) experimental results and theoretical results (solid curve) with and (dashed curve) without the ETU effect.

Fig. 7
Fig. 7

Output pulse width versus the absorbed pump power for (a) ωp0.2 mm, (b) ωp0.3 mm: (circles) experimental results and theoretical results (solid curve) with and (dashed curve) without the ETU effect.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

cavitydϕ(r, z, t)dt dV
=rodcσn(r, z, t)ϕ(r, z, t)dV
-ln(1/R)+Ltr cavityϕ(r, z, t)dV,
dn(r, z, t)dt=-γcσn(r, z, t)ϕ(r, z, t),
ϕ(r, z, t)=ϕo(t)exp[-2r2/ωl2(z)],
ωl(z)=ωL{1+[(z-zl)λ1/πωL2]2}1/2ωL.
n(r, z, t)=n(r, z, 0)exp-γcσ0tϕo(t)dt exp-2r2ωL2,
dn(r, z, t)dt=Rp(r, z)-n(r, z, t)τs-ζn(r, z, t)2,
n(r, z, 0)=2τsRp(r, z)A(r, z)+11-A(r, z)+1A(r, z)-1A(r, z)-B(r, z)-1A(r, z)+B(r, z)+1exp-A(r, z)τsf1+A(r, z)-B(r, z)-1A(r, z)+B(r, z)+1exp-A(r, z)τsf,
A(r, z)=[1+4τs2ζRp(r, z)]1/2,
B(r, z)=2τsζnf(r, z),
n(r, z, 0)
=2τsRp(r, z)A(r, z)+11-exp-A(r, z)τsf1+A(r, z)-1A(r, z)+1exp-A(r, z)τsf.
n(r, z, 0)=2τsRp(r, z)A(r, z)+1.
Rp(r, z)=Pabshνp1πωp2α exp(-αz)1-exp(-αl)Θ(ωp2-r2),
τ=ttr[ln(1/R)+L],
Φ(τ)=γcσϕo(t)[ln(1/R)+L]/tr,
β=4ζτs2απωp2[1-exp(-αl)]Pabshνρ,
G=2σπωp2Pabsτshνp1ln(1/R)+Lg(β),
g(β)=2β[1-exp(-αl)]×2{(1+β)1/2-[1+β exp(-αl)]1/2}+lnexp(-αl)[2+β-2(1+β)1/2]2+β exp(-αl)-2[1+β exp(-αl)]1/2-αl,
dΦ(τ)dτ=GΦ(τ)F(τ)exp-F(τ)exp-2ωp2ωL2-exp[-F(τ)]-Φ(τ),
F(τ)=0τΦ(τ)dτ.
g(β)=2β2[(1+β)1/2-1]+ln4[2+β-2(1+β)1/2]β2.
Ppo=πωL2hν4σγtrln1R+Lln1RΦm,
Eo=πωL2hν4σγtr ln1RΦinteg,

Metrics