Abstract

Designing a high-energy Q-switched all-solid-state laser operating on the quasi-four-level 0.946-µm transition of Nd:YAG is quite challenging because of intense competition from the high-gain 1.064-µm transition. We have achieved such a laser by implementing an innovative resonator design, augmented by specialty coatings. Utilizing this approach, we obtained >75 mJ of Q-switched TEM00 mode energy in an all-solid-state diode pumped laser, a factor of 22 times more energy per pulse than any published data have reported.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. P. Risk and W. Lenth, “Frequency-doubled and Q-switched 946-nm Nd:YAG laser pumped by a diode-laser array,” Opt. Lett. 12, 993–995 (1987).
    [CrossRef] [PubMed]
  2. P. Cuthbertson and G. J. Dixon, “Pump-resonant excitation of the 946-nm Nd:YAG laser,” Opt. Lett. 16, 396–398 (1991).
    [CrossRef] [PubMed]
  3. F. Hanson and P. Poirier, “Long-pulse and Q-switched operation of diode-pumped Nd:YAG at 946 nm,” in Advanced Solid-State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19, of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 105–107.
  4. H. W. Yates and J. H. Taylor, “Infrared transmission of the atmosphere,” (Naval Research Laboratories, Washington, D.C., 1960).
  5. E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
    [CrossRef]
  6. N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission—application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35, 101–109 (1999).
    [CrossRef]
  7. N. P. Barnes, B. M. Walsh, R. L. Hutcheson, and R. W. Equall, “Pulsed  4F3/2 to  4I9/2 operation of Nd lasers,” J. Opt. Soc. Am. B 16, 2169–2177 (1999).
    [CrossRef]
  8. E. E. Koehler, “Quasi-four-level laser design and analysis of Nd:YAG operating at the 946 nm transition,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 2000).
  9. H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
    [CrossRef]
  10. T. J. Axenson, N. P. Barnes, and D. J. Reichle, “946 nm diode pumped laser produces 100 mJ,” in Lidar Remote Sensing for Industry and Environment Monitoring, U. Singh, T. Itabe, and N. Sugimoto, eds., Proc. SPIE4153, 78–85 (2000).
    [CrossRef]
  11. T. J. Axenson, N. P. Barnes, and D. J. Reichle, “High energy Q-switched 946 nm diode pumped laser,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 116–118.

1999 (2)

N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission—application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35, 101–109 (1999).
[CrossRef]

N. P. Barnes, B. M. Walsh, R. L. Hutcheson, and R. W. Equall, “Pulsed  4F3/2 to  4I9/2 operation of Nd lasers,” J. Opt. Soc. Am. B 16, 2169–2177 (1999).
[CrossRef]

1998 (1)

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
[CrossRef]

1991 (1)

1987 (1)

1966 (1)

H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
[CrossRef]

Axenson, T. J.

T. J. Axenson, N. P. Barnes, and D. J. Reichle, “946 nm diode pumped laser produces 100 mJ,” in Lidar Remote Sensing for Industry and Environment Monitoring, U. Singh, T. Itabe, and N. Sugimoto, eds., Proc. SPIE4153, 78–85 (2000).
[CrossRef]

T. J. Axenson, N. P. Barnes, and D. J. Reichle, “High energy Q-switched 946 nm diode pumped laser,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 116–118.

Barnes, N. P.

N. P. Barnes, B. M. Walsh, R. L. Hutcheson, and R. W. Equall, “Pulsed  4F3/2 to  4I9/2 operation of Nd lasers,” J. Opt. Soc. Am. B 16, 2169–2177 (1999).
[CrossRef]

N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission—application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35, 101–109 (1999).
[CrossRef]

T. J. Axenson, N. P. Barnes, and D. J. Reichle, “946 nm diode pumped laser produces 100 mJ,” in Lidar Remote Sensing for Industry and Environment Monitoring, U. Singh, T. Itabe, and N. Sugimoto, eds., Proc. SPIE4153, 78–85 (2000).
[CrossRef]

T. J. Axenson, N. P. Barnes, and D. J. Reichle, “High energy Q-switched 946 nm diode pumped laser,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 116–118.

Browell, E. V.

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
[CrossRef]

Cuthbertson, P.

Dixon, G. J.

Equall, R. W.

Grant, W. B.

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
[CrossRef]

Hanson, F.

F. Hanson and P. Poirier, “Long-pulse and Q-switched operation of diode-pumped Nd:YAG at 946 nm,” in Advanced Solid-State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19, of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 105–107.

Hutcheson, R. L.

Ismail, S.

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
[CrossRef]

Koehler, E. E.

E. E. Koehler, “Quasi-four-level laser design and analysis of Nd:YAG operating at the 946 nm transition,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 2000).

Kogelnik, H.

H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
[CrossRef]

Lenth, W.

Li, T.

H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
[CrossRef]

Poirier, P.

F. Hanson and P. Poirier, “Long-pulse and Q-switched operation of diode-pumped Nd:YAG at 946 nm,” in Advanced Solid-State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19, of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 105–107.

Reichle, D. J.

T. J. Axenson, N. P. Barnes, and D. J. Reichle, “High energy Q-switched 946 nm diode pumped laser,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 116–118.

T. J. Axenson, N. P. Barnes, and D. J. Reichle, “946 nm diode pumped laser produces 100 mJ,” in Lidar Remote Sensing for Industry and Environment Monitoring, U. Singh, T. Itabe, and N. Sugimoto, eds., Proc. SPIE4153, 78–85 (2000).
[CrossRef]

Risk, W. P.

Taylor, J. H.

H. W. Yates and J. H. Taylor, “Infrared transmission of the atmosphere,” (Naval Research Laboratories, Washington, D.C., 1960).

Walsh, B. M.

N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission—application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35, 101–109 (1999).
[CrossRef]

N. P. Barnes, B. M. Walsh, R. L. Hutcheson, and R. W. Equall, “Pulsed  4F3/2 to  4I9/2 operation of Nd lasers,” J. Opt. Soc. Am. B 16, 2169–2177 (1999).
[CrossRef]

Yates, H. W.

H. W. Yates and J. H. Taylor, “Infrared transmission of the atmosphere,” (Naval Research Laboratories, Washington, D.C., 1960).

Appl. Phys. B (1)

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission—application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35, 101–109 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Proc. IEEE (1)

H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
[CrossRef]

Other (5)

T. J. Axenson, N. P. Barnes, and D. J. Reichle, “946 nm diode pumped laser produces 100 mJ,” in Lidar Remote Sensing for Industry and Environment Monitoring, U. Singh, T. Itabe, and N. Sugimoto, eds., Proc. SPIE4153, 78–85 (2000).
[CrossRef]

T. J. Axenson, N. P. Barnes, and D. J. Reichle, “High energy Q-switched 946 nm diode pumped laser,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 116–118.

F. Hanson and P. Poirier, “Long-pulse and Q-switched operation of diode-pumped Nd:YAG at 946 nm,” in Advanced Solid-State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19, of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 105–107.

H. W. Yates and J. H. Taylor, “Infrared transmission of the atmosphere,” (Naval Research Laboratories, Washington, D.C., 1960).

E. E. Koehler, “Quasi-four-level laser design and analysis of Nd:YAG operating at the 946 nm transition,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup with multiple modules for high energy.

Fig. 2
Fig. 2

Typical normal mode energy results for a series of output couplers in a single-module resonator.

Fig. 3
Fig. 3

Two-module resonator evaluation using data obtained in normal mode operation [slope efficiency and threshold versus -ln(RM)].

Fig. 4
Fig. 4

Normal mode energy comparison for three resonator configurations.

Fig. 5
Fig. 5

Q-switched energy comparison for three resonator configurations.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

EPTH=m ln(RM)+EPTHO,
σs=σsm ln(RM)/ln(RMRL),

Metrics