Abstract

We apply the recently developed technique of ultrafast scanning tunneling microscopy to study carrier dynamics in InAs/GaAs self-assembled quantum-dot samples. The results obtained with this new technique are compared with standard ensemble-averaging ultrafast optoelectronic techniques such as femtosecond optical pump/probe reflectivity measurements and time-resolved terahertz spectroscopy. These measurements reveal a unified picture of the relaxation dynamics in InAs/GaAs self-assembled quantum-dot samples at T=300 K. The initial carrier relaxation proceeds by Auger carrier capture from the InAs wetting layer on a time scale of 1–2 ps, followed by recombination of carriers in the wetting layer, GaAs substrate, and quantum dots on time scales of 350 ps, 2.3 ns, and 900 ps, respectively. The consistency of these three experimental techniques demonstrates ultrafast scanning tunneling microscopy as a reliable tool for probing the local dynamics of nanostructures.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Schmitt-Rink, D. Miller, and D. Chemla, “Theory of the linear and nonlinear optical properties of semiconductor microcrystallites,” Phys. Rev. B 35, 8113–8125 (1987).
    [CrossRef]
  2. L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
    [CrossRef]
  3. G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35, 1163–1165 (1999).
    [CrossRef]
  4. T. C. Newell, D. J. Bossert, A. Stintz, B. A. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Tech. Lett. 11, 1527–1529 (1999).
    [CrossRef]
  5. S. Weiss, D. F. Ogletree, D. Botkin, M. Salmeron, and D. S. Chemla, “Ultrafast scanning probe microscopy,” Appl. Phys. Lett. 63, 2567–2569 (1993).
    [CrossRef]
  6. G. Nunes and M. R. Freeman, “Picosecond resolution in scanning tunneling microscopy,” Science 262, 1029–1032 (1993).
    [CrossRef] [PubMed]
  7. D. Morris and N. Perret, “Carrier energy relaxation by means of Auger processes in InAs/GaAs self-assembled quantum dots,” Appl. Phys. Lett. 75, 3593–3595 (1999).
    [CrossRef]
  8. K. Yamanaka, K. Suzuki, S. Ishida, and Y. Arakawa, “Light emission from individual self-assembled InAs/GaAs quantum dots excited by tunneling current injection,” Appl. Phys. Lett. 73, 1460–1462 (1998).
    [CrossRef]
  9. J. Shah, “Ultrafast spectroscopy of semiconductors and semiconductor nanostructures,” (Springer, Berlin, 1995), p. 133.
  10. F. Adler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge, and A. Forchel, “Optical transitions and carrier relaxation in self-assembled InAs/GaAs quantum dots,” J. Appl. Phys. 80, 4019–4026 (1996).
    [CrossRef]
  11. D. S. McCallum, X. R. Huang, M. D. Dawson, T. F. Boggess, A. L. Smirl, T. C. Hasenberg, and A. Kost, “Optical nonlinearities and ultrafast charge transport in all-binary InAs/GaAs strained hetero n-i-p-i’s,” J. Appl. Phys. 70, 6891–6897 (1991).
    [CrossRef]
  12. Q. Li, Z. Y. Xu, and W. K. Ge, “Carrier capture into InAs/GaAs quantum dots detected by a simple degenerate pump-probe technique,” Solid State Commun. 115, 105–108 (2000).
    [CrossRef]
  13. T. S. Sosnowski, T. B. Norris, H. Jiang, J. Singh, K. Kamath, and P. Bhattacharya, “Rapid carrier relaxation in In0.4Ga0.6As/GaAs quantum dots characterized by differential transmission spectroscopy,” Phys. Rev. B 57, R9423–R9426 (1998).
    [CrossRef]
  14. A. V. Uskov, J. McInerney, F. Adler, H. Schweizer, and M. H. Pilkuhn, “Auger carrier capture kinetics in self-assembled quantum dot structures,” Appl. Phys. Lett. 72, 58–60 (1998).
    [CrossRef]
  15. G. P. Donati, G. Rodriguez, and A. J. Taylor, “Ultrafast, dynamical imaging of surfaces by use of a scanning tunneling microscope with a photoexcited, low-temperature-grown GaAs tip,” J. Opt. Soc. Am. B 17, 1077–1083 (2000).
    [CrossRef]
  16. R. H. M. Groeneveld and H. van Kempen, “The capacitive origin of the picosecond electrical transients detected by a photoconductively gated scanning tunneling microscope,” Appl. Phys. Lett. 69, 2294–2296 (1996).
    [CrossRef]
  17. R. Ferreira and G. Bastard, “Intra-dot Auger relaxation in quantum dots,” C.R. Acad. Sci., Ser. IIb: Mec. Phys. Chim. Astron. 327, 901–906 (1999).
  18. M. Grundmann, O. Stier, and D. Bimberg, “InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure,” Phys. Rev. B 52, 11969–11981 (1995).
    [CrossRef]
  19. M. C. Nuss and J. Orenstein, “Terahertz time-domain spectroscopy,” in Millimeter and Submillimeter Wave Spectroscopy of Solids, G. Gruner, ed. (Springer-Verlag, Berlin, 1998), pp. 7–50.
  20. T. I. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett. 78, 1106–1109 (1997).
    [CrossRef]
  21. R. D. Averitt, G. Rodriguez, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, “Conductivity artifacts in optical-pump THz-probe measurements of YBa2Cu3O7,” J. Opt. Soc. Am. B 17, 327–331 (2000).
    [CrossRef]
  22. R. D. Averitt, G. Rodriguez, A. I. Lobad, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, “Nonequilibrium superconductivity and quasiparticle dynamics in YBa2Cu3O7−Δ,” Phys. Rev. B 63, 140502/1–4 (2001).
    [CrossRef]

2001 (1)

R. D. Averitt, G. Rodriguez, A. I. Lobad, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, “Nonequilibrium superconductivity and quasiparticle dynamics in YBa2Cu3O7−Δ,” Phys. Rev. B 63, 140502/1–4 (2001).
[CrossRef]

2000 (3)

1999 (5)

R. Ferreira and G. Bastard, “Intra-dot Auger relaxation in quantum dots,” C.R. Acad. Sci., Ser. IIb: Mec. Phys. Chim. Astron. 327, 901–906 (1999).

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[CrossRef]

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35, 1163–1165 (1999).
[CrossRef]

T. C. Newell, D. J. Bossert, A. Stintz, B. A. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Tech. Lett. 11, 1527–1529 (1999).
[CrossRef]

D. Morris and N. Perret, “Carrier energy relaxation by means of Auger processes in InAs/GaAs self-assembled quantum dots,” Appl. Phys. Lett. 75, 3593–3595 (1999).
[CrossRef]

1998 (3)

K. Yamanaka, K. Suzuki, S. Ishida, and Y. Arakawa, “Light emission from individual self-assembled InAs/GaAs quantum dots excited by tunneling current injection,” Appl. Phys. Lett. 73, 1460–1462 (1998).
[CrossRef]

T. S. Sosnowski, T. B. Norris, H. Jiang, J. Singh, K. Kamath, and P. Bhattacharya, “Rapid carrier relaxation in In0.4Ga0.6As/GaAs quantum dots characterized by differential transmission spectroscopy,” Phys. Rev. B 57, R9423–R9426 (1998).
[CrossRef]

A. V. Uskov, J. McInerney, F. Adler, H. Schweizer, and M. H. Pilkuhn, “Auger carrier capture kinetics in self-assembled quantum dot structures,” Appl. Phys. Lett. 72, 58–60 (1998).
[CrossRef]

1997 (1)

T. I. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett. 78, 1106–1109 (1997).
[CrossRef]

1996 (2)

R. H. M. Groeneveld and H. van Kempen, “The capacitive origin of the picosecond electrical transients detected by a photoconductively gated scanning tunneling microscope,” Appl. Phys. Lett. 69, 2294–2296 (1996).
[CrossRef]

F. Adler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge, and A. Forchel, “Optical transitions and carrier relaxation in self-assembled InAs/GaAs quantum dots,” J. Appl. Phys. 80, 4019–4026 (1996).
[CrossRef]

1995 (1)

M. Grundmann, O. Stier, and D. Bimberg, “InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure,” Phys. Rev. B 52, 11969–11981 (1995).
[CrossRef]

1993 (2)

S. Weiss, D. F. Ogletree, D. Botkin, M. Salmeron, and D. S. Chemla, “Ultrafast scanning probe microscopy,” Appl. Phys. Lett. 63, 2567–2569 (1993).
[CrossRef]

G. Nunes and M. R. Freeman, “Picosecond resolution in scanning tunneling microscopy,” Science 262, 1029–1032 (1993).
[CrossRef] [PubMed]

1991 (1)

D. S. McCallum, X. R. Huang, M. D. Dawson, T. F. Boggess, A. L. Smirl, T. C. Hasenberg, and A. Kost, “Optical nonlinearities and ultrafast charge transport in all-binary InAs/GaAs strained hetero n-i-p-i’s,” J. Appl. Phys. 70, 6891–6897 (1991).
[CrossRef]

1987 (1)

S. Schmitt-Rink, D. Miller, and D. Chemla, “Theory of the linear and nonlinear optical properties of semiconductor microcrystallites,” Phys. Rev. B 35, 8113–8125 (1987).
[CrossRef]

Adler, F.

A. V. Uskov, J. McInerney, F. Adler, H. Schweizer, and M. H. Pilkuhn, “Auger carrier capture kinetics in self-assembled quantum dot structures,” Appl. Phys. Lett. 72, 58–60 (1998).
[CrossRef]

F. Adler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge, and A. Forchel, “Optical transitions and carrier relaxation in self-assembled InAs/GaAs quantum dots,” J. Appl. Phys. 80, 4019–4026 (1996).
[CrossRef]

Arakawa, Y.

K. Yamanaka, K. Suzuki, S. Ishida, and Y. Arakawa, “Light emission from individual self-assembled InAs/GaAs quantum dots excited by tunneling current injection,” Appl. Phys. Lett. 73, 1460–1462 (1998).
[CrossRef]

Averitt, R. D.

R. D. Averitt, G. Rodriguez, A. I. Lobad, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, “Nonequilibrium superconductivity and quasiparticle dynamics in YBa2Cu3O7−Δ,” Phys. Rev. B 63, 140502/1–4 (2001).
[CrossRef]

R. D. Averitt, G. Rodriguez, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, “Conductivity artifacts in optical-pump THz-probe measurements of YBa2Cu3O7,” J. Opt. Soc. Am. B 17, 327–331 (2000).
[CrossRef]

Bastard, G.

R. Ferreira and G. Bastard, “Intra-dot Auger relaxation in quantum dots,” C.R. Acad. Sci., Ser. IIb: Mec. Phys. Chim. Astron. 327, 901–906 (1999).

Bauknecht, A.

F. Adler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge, and A. Forchel, “Optical transitions and carrier relaxation in self-assembled InAs/GaAs quantum dots,” J. Appl. Phys. 80, 4019–4026 (1996).
[CrossRef]

Bhattacharya, P.

T. S. Sosnowski, T. B. Norris, H. Jiang, J. Singh, K. Kamath, and P. Bhattacharya, “Rapid carrier relaxation in In0.4Ga0.6As/GaAs quantum dots characterized by differential transmission spectroscopy,” Phys. Rev. B 57, R9423–R9426 (1998).
[CrossRef]

Bimberg, D.

M. Grundmann, O. Stier, and D. Bimberg, “InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure,” Phys. Rev. B 52, 11969–11981 (1995).
[CrossRef]

Boggess, T. F.

D. S. McCallum, X. R. Huang, M. D. Dawson, T. F. Boggess, A. L. Smirl, T. C. Hasenberg, and A. Kost, “Optical nonlinearities and ultrafast charge transport in all-binary InAs/GaAs strained hetero n-i-p-i’s,” J. Appl. Phys. 70, 6891–6897 (1991).
[CrossRef]

Bossert, D. J.

T. C. Newell, D. J. Bossert, A. Stintz, B. A. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Tech. Lett. 11, 1527–1529 (1999).
[CrossRef]

Botkin, D.

S. Weiss, D. F. Ogletree, D. Botkin, M. Salmeron, and D. S. Chemla, “Ultrafast scanning probe microscopy,” Appl. Phys. Lett. 63, 2567–2569 (1993).
[CrossRef]

Chemla, D.

S. Schmitt-Rink, D. Miller, and D. Chemla, “Theory of the linear and nonlinear optical properties of semiconductor microcrystallites,” Phys. Rev. B 35, 8113–8125 (1987).
[CrossRef]

Chemla, D. S.

S. Weiss, D. F. Ogletree, D. Botkin, M. Salmeron, and D. S. Chemla, “Ultrafast scanning probe microscopy,” Appl. Phys. Lett. 63, 2567–2569 (1993).
[CrossRef]

Dawson, M. D.

D. S. McCallum, X. R. Huang, M. D. Dawson, T. F. Boggess, A. L. Smirl, T. C. Hasenberg, and A. Kost, “Optical nonlinearities and ultrafast charge transport in all-binary InAs/GaAs strained hetero n-i-p-i’s,” J. Appl. Phys. 70, 6891–6897 (1991).
[CrossRef]

Donati, G. P.

Ferreira, R.

R. Ferreira and G. Bastard, “Intra-dot Auger relaxation in quantum dots,” C.R. Acad. Sci., Ser. IIb: Mec. Phys. Chim. Astron. 327, 901–906 (1999).

Forchel, A.

F. Adler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge, and A. Forchel, “Optical transitions and carrier relaxation in self-assembled InAs/GaAs quantum dots,” J. Appl. Phys. 80, 4019–4026 (1996).
[CrossRef]

Freeman, M. R.

G. Nunes and M. R. Freeman, “Picosecond resolution in scanning tunneling microscopy,” Science 262, 1029–1032 (1993).
[CrossRef] [PubMed]

Fuchs, B. A.

T. C. Newell, D. J. Bossert, A. Stintz, B. A. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Tech. Lett. 11, 1527–1529 (1999).
[CrossRef]

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[CrossRef]

Ge, W. K.

Q. Li, Z. Y. Xu, and W. K. Ge, “Carrier capture into InAs/GaAs quantum dots detected by a simple degenerate pump-probe technique,” Solid State Commun. 115, 105–108 (2000).
[CrossRef]

Geiger, M.

F. Adler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge, and A. Forchel, “Optical transitions and carrier relaxation in self-assembled InAs/GaAs quantum dots,” J. Appl. Phys. 80, 4019–4026 (1996).
[CrossRef]

Grischkowsky, D.

T. I. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett. 78, 1106–1109 (1997).
[CrossRef]

Groeneveld, R. H. M.

R. H. M. Groeneveld and H. van Kempen, “The capacitive origin of the picosecond electrical transients detected by a photoconductively gated scanning tunneling microscope,” Appl. Phys. Lett. 69, 2294–2296 (1996).
[CrossRef]

Grundmann, M.

M. Grundmann, O. Stier, and D. Bimberg, “InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure,” Phys. Rev. B 52, 11969–11981 (1995).
[CrossRef]

Hasenberg, T. C.

D. S. McCallum, X. R. Huang, M. D. Dawson, T. F. Boggess, A. L. Smirl, T. C. Hasenberg, and A. Kost, “Optical nonlinearities and ultrafast charge transport in all-binary InAs/GaAs strained hetero n-i-p-i’s,” J. Appl. Phys. 70, 6891–6897 (1991).
[CrossRef]

Huang, X. R.

D. S. McCallum, X. R. Huang, M. D. Dawson, T. F. Boggess, A. L. Smirl, T. C. Hasenberg, and A. Kost, “Optical nonlinearities and ultrafast charge transport in all-binary InAs/GaAs strained hetero n-i-p-i’s,” J. Appl. Phys. 70, 6891–6897 (1991).
[CrossRef]

Ishida, S.

K. Yamanaka, K. Suzuki, S. Ishida, and Y. Arakawa, “Light emission from individual self-assembled InAs/GaAs quantum dots excited by tunneling current injection,” Appl. Phys. Lett. 73, 1460–1462 (1998).
[CrossRef]

Jeon, T. I.

T. I. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett. 78, 1106–1109 (1997).
[CrossRef]

Jiang, H.

T. S. Sosnowski, T. B. Norris, H. Jiang, J. Singh, K. Kamath, and P. Bhattacharya, “Rapid carrier relaxation in In0.4Ga0.6As/GaAs quantum dots characterized by differential transmission spectroscopy,” Phys. Rev. B 57, R9423–R9426 (1998).
[CrossRef]

Kamath, K.

T. S. Sosnowski, T. B. Norris, H. Jiang, J. Singh, K. Kamath, and P. Bhattacharya, “Rapid carrier relaxation in In0.4Ga0.6As/GaAs quantum dots characterized by differential transmission spectroscopy,” Phys. Rev. B 57, R9423–R9426 (1998).
[CrossRef]

Kost, A.

D. S. McCallum, X. R. Huang, M. D. Dawson, T. F. Boggess, A. L. Smirl, T. C. Hasenberg, and A. Kost, “Optical nonlinearities and ultrafast charge transport in all-binary InAs/GaAs strained hetero n-i-p-i’s,” J. Appl. Phys. 70, 6891–6897 (1991).
[CrossRef]

Lester, L. F.

T. C. Newell, D. J. Bossert, A. Stintz, B. A. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Tech. Lett. 11, 1527–1529 (1999).
[CrossRef]

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[CrossRef]

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35, 1163–1165 (1999).
[CrossRef]

Li, H.

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35, 1163–1165 (1999).
[CrossRef]

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[CrossRef]

Li, Q.

Q. Li, Z. Y. Xu, and W. K. Ge, “Carrier capture into InAs/GaAs quantum dots detected by a simple degenerate pump-probe technique,” Solid State Commun. 115, 105–108 (2000).
[CrossRef]

Liu, G. T.

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35, 1163–1165 (1999).
[CrossRef]

Lobad, A. I.

R. D. Averitt, G. Rodriguez, A. I. Lobad, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, “Nonequilibrium superconductivity and quasiparticle dynamics in YBa2Cu3O7−Δ,” Phys. Rev. B 63, 140502/1–4 (2001).
[CrossRef]

Malloy, K. J.

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35, 1163–1165 (1999).
[CrossRef]

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[CrossRef]

T. C. Newell, D. J. Bossert, A. Stintz, B. A. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Tech. Lett. 11, 1527–1529 (1999).
[CrossRef]

McCallum, D. S.

D. S. McCallum, X. R. Huang, M. D. Dawson, T. F. Boggess, A. L. Smirl, T. C. Hasenberg, and A. Kost, “Optical nonlinearities and ultrafast charge transport in all-binary InAs/GaAs strained hetero n-i-p-i’s,” J. Appl. Phys. 70, 6891–6897 (1991).
[CrossRef]

McInerney, J.

A. V. Uskov, J. McInerney, F. Adler, H. Schweizer, and M. H. Pilkuhn, “Auger carrier capture kinetics in self-assembled quantum dot structures,” Appl. Phys. Lett. 72, 58–60 (1998).
[CrossRef]

Miller, D.

S. Schmitt-Rink, D. Miller, and D. Chemla, “Theory of the linear and nonlinear optical properties of semiconductor microcrystallites,” Phys. Rev. B 35, 8113–8125 (1987).
[CrossRef]

Morris, D.

D. Morris and N. Perret, “Carrier energy relaxation by means of Auger processes in InAs/GaAs self-assembled quantum dots,” Appl. Phys. Lett. 75, 3593–3595 (1999).
[CrossRef]

Newell, T. C.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[CrossRef]

T. C. Newell, D. J. Bossert, A. Stintz, B. A. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Tech. Lett. 11, 1527–1529 (1999).
[CrossRef]

Norris, T. B.

T. S. Sosnowski, T. B. Norris, H. Jiang, J. Singh, K. Kamath, and P. Bhattacharya, “Rapid carrier relaxation in In0.4Ga0.6As/GaAs quantum dots characterized by differential transmission spectroscopy,” Phys. Rev. B 57, R9423–R9426 (1998).
[CrossRef]

Nunes, G.

G. Nunes and M. R. Freeman, “Picosecond resolution in scanning tunneling microscopy,” Science 262, 1029–1032 (1993).
[CrossRef] [PubMed]

Ogletree, D. F.

S. Weiss, D. F. Ogletree, D. Botkin, M. Salmeron, and D. S. Chemla, “Ultrafast scanning probe microscopy,” Appl. Phys. Lett. 63, 2567–2569 (1993).
[CrossRef]

Ohnesorge, B.

F. Adler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge, and A. Forchel, “Optical transitions and carrier relaxation in self-assembled InAs/GaAs quantum dots,” J. Appl. Phys. 80, 4019–4026 (1996).
[CrossRef]

Pease, E. A.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[CrossRef]

Perret, N.

D. Morris and N. Perret, “Carrier energy relaxation by means of Auger processes in InAs/GaAs self-assembled quantum dots,” Appl. Phys. Lett. 75, 3593–3595 (1999).
[CrossRef]

Pilkuhn, M. H.

A. V. Uskov, J. McInerney, F. Adler, H. Schweizer, and M. H. Pilkuhn, “Auger carrier capture kinetics in self-assembled quantum dot structures,” Appl. Phys. Lett. 72, 58–60 (1998).
[CrossRef]

F. Adler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge, and A. Forchel, “Optical transitions and carrier relaxation in self-assembled InAs/GaAs quantum dots,” J. Appl. Phys. 80, 4019–4026 (1996).
[CrossRef]

Rodriguez, G.

Salmeron, M.

S. Weiss, D. F. Ogletree, D. Botkin, M. Salmeron, and D. S. Chemla, “Ultrafast scanning probe microscopy,” Appl. Phys. Lett. 63, 2567–2569 (1993).
[CrossRef]

Schmitt-Rink, S.

S. Schmitt-Rink, D. Miller, and D. Chemla, “Theory of the linear and nonlinear optical properties of semiconductor microcrystallites,” Phys. Rev. B 35, 8113–8125 (1987).
[CrossRef]

Scholz, F.

F. Adler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge, and A. Forchel, “Optical transitions and carrier relaxation in self-assembled InAs/GaAs quantum dots,” J. Appl. Phys. 80, 4019–4026 (1996).
[CrossRef]

Schweizer, H.

A. V. Uskov, J. McInerney, F. Adler, H. Schweizer, and M. H. Pilkuhn, “Auger carrier capture kinetics in self-assembled quantum dot structures,” Appl. Phys. Lett. 72, 58–60 (1998).
[CrossRef]

F. Adler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge, and A. Forchel, “Optical transitions and carrier relaxation in self-assembled InAs/GaAs quantum dots,” J. Appl. Phys. 80, 4019–4026 (1996).
[CrossRef]

Siders, J. L. W.

R. D. Averitt, G. Rodriguez, A. I. Lobad, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, “Nonequilibrium superconductivity and quasiparticle dynamics in YBa2Cu3O7−Δ,” Phys. Rev. B 63, 140502/1–4 (2001).
[CrossRef]

R. D. Averitt, G. Rodriguez, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, “Conductivity artifacts in optical-pump THz-probe measurements of YBa2Cu3O7,” J. Opt. Soc. Am. B 17, 327–331 (2000).
[CrossRef]

Singh, J.

T. S. Sosnowski, T. B. Norris, H. Jiang, J. Singh, K. Kamath, and P. Bhattacharya, “Rapid carrier relaxation in In0.4Ga0.6As/GaAs quantum dots characterized by differential transmission spectroscopy,” Phys. Rev. B 57, R9423–R9426 (1998).
[CrossRef]

Smirl, A. L.

D. S. McCallum, X. R. Huang, M. D. Dawson, T. F. Boggess, A. L. Smirl, T. C. Hasenberg, and A. Kost, “Optical nonlinearities and ultrafast charge transport in all-binary InAs/GaAs strained hetero n-i-p-i’s,” J. Appl. Phys. 70, 6891–6897 (1991).
[CrossRef]

Sosnowski, T. S.

T. S. Sosnowski, T. B. Norris, H. Jiang, J. Singh, K. Kamath, and P. Bhattacharya, “Rapid carrier relaxation in In0.4Ga0.6As/GaAs quantum dots characterized by differential transmission spectroscopy,” Phys. Rev. B 57, R9423–R9426 (1998).
[CrossRef]

Stier, O.

M. Grundmann, O. Stier, and D. Bimberg, “InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure,” Phys. Rev. B 52, 11969–11981 (1995).
[CrossRef]

Stintz, A.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[CrossRef]

T. C. Newell, D. J. Bossert, A. Stintz, B. A. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Tech. Lett. 11, 1527–1529 (1999).
[CrossRef]

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35, 1163–1165 (1999).
[CrossRef]

Suzuki, K.

K. Yamanaka, K. Suzuki, S. Ishida, and Y. Arakawa, “Light emission from individual self-assembled InAs/GaAs quantum dots excited by tunneling current injection,” Appl. Phys. Lett. 73, 1460–1462 (1998).
[CrossRef]

Taylor, A. J.

Trugman, S. A.

R. D. Averitt, G. Rodriguez, A. I. Lobad, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, “Nonequilibrium superconductivity and quasiparticle dynamics in YBa2Cu3O7−Δ,” Phys. Rev. B 63, 140502/1–4 (2001).
[CrossRef]

R. D. Averitt, G. Rodriguez, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, “Conductivity artifacts in optical-pump THz-probe measurements of YBa2Cu3O7,” J. Opt. Soc. Am. B 17, 327–331 (2000).
[CrossRef]

Uskov, A. V.

A. V. Uskov, J. McInerney, F. Adler, H. Schweizer, and M. H. Pilkuhn, “Auger carrier capture kinetics in self-assembled quantum dot structures,” Appl. Phys. Lett. 72, 58–60 (1998).
[CrossRef]

van Kempen, H.

R. H. M. Groeneveld and H. van Kempen, “The capacitive origin of the picosecond electrical transients detected by a photoconductively gated scanning tunneling microscope,” Appl. Phys. Lett. 69, 2294–2296 (1996).
[CrossRef]

Weiss, S.

S. Weiss, D. F. Ogletree, D. Botkin, M. Salmeron, and D. S. Chemla, “Ultrafast scanning probe microscopy,” Appl. Phys. Lett. 63, 2567–2569 (1993).
[CrossRef]

Xu, Z. Y.

Q. Li, Z. Y. Xu, and W. K. Ge, “Carrier capture into InAs/GaAs quantum dots detected by a simple degenerate pump-probe technique,” Solid State Commun. 115, 105–108 (2000).
[CrossRef]

Yamanaka, K.

K. Yamanaka, K. Suzuki, S. Ishida, and Y. Arakawa, “Light emission from individual self-assembled InAs/GaAs quantum dots excited by tunneling current injection,” Appl. Phys. Lett. 73, 1460–1462 (1998).
[CrossRef]

Appl. Phys. Lett. (5)

S. Weiss, D. F. Ogletree, D. Botkin, M. Salmeron, and D. S. Chemla, “Ultrafast scanning probe microscopy,” Appl. Phys. Lett. 63, 2567–2569 (1993).
[CrossRef]

D. Morris and N. Perret, “Carrier energy relaxation by means of Auger processes in InAs/GaAs self-assembled quantum dots,” Appl. Phys. Lett. 75, 3593–3595 (1999).
[CrossRef]

K. Yamanaka, K. Suzuki, S. Ishida, and Y. Arakawa, “Light emission from individual self-assembled InAs/GaAs quantum dots excited by tunneling current injection,” Appl. Phys. Lett. 73, 1460–1462 (1998).
[CrossRef]

A. V. Uskov, J. McInerney, F. Adler, H. Schweizer, and M. H. Pilkuhn, “Auger carrier capture kinetics in self-assembled quantum dot structures,” Appl. Phys. Lett. 72, 58–60 (1998).
[CrossRef]

R. H. M. Groeneveld and H. van Kempen, “The capacitive origin of the picosecond electrical transients detected by a photoconductively gated scanning tunneling microscope,” Appl. Phys. Lett. 69, 2294–2296 (1996).
[CrossRef]

C.R. Acad. Sci., Ser. IIb: Mec. Phys. Chim. Astron. (1)

R. Ferreira and G. Bastard, “Intra-dot Auger relaxation in quantum dots,” C.R. Acad. Sci., Ser. IIb: Mec. Phys. Chim. Astron. 327, 901–906 (1999).

Electron. Lett. (1)

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35, 1163–1165 (1999).
[CrossRef]

IEEE Photon. Tech. Lett. (1)

T. C. Newell, D. J. Bossert, A. Stintz, B. A. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Tech. Lett. 11, 1527–1529 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[CrossRef]

J. Appl. Phys. (2)

F. Adler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge, and A. Forchel, “Optical transitions and carrier relaxation in self-assembled InAs/GaAs quantum dots,” J. Appl. Phys. 80, 4019–4026 (1996).
[CrossRef]

D. S. McCallum, X. R. Huang, M. D. Dawson, T. F. Boggess, A. L. Smirl, T. C. Hasenberg, and A. Kost, “Optical nonlinearities and ultrafast charge transport in all-binary InAs/GaAs strained hetero n-i-p-i’s,” J. Appl. Phys. 70, 6891–6897 (1991).
[CrossRef]

J. Opt. Soc. Am. B (2)

Phys. Rev. B (4)

R. D. Averitt, G. Rodriguez, A. I. Lobad, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, “Nonequilibrium superconductivity and quasiparticle dynamics in YBa2Cu3O7−Δ,” Phys. Rev. B 63, 140502/1–4 (2001).
[CrossRef]

T. S. Sosnowski, T. B. Norris, H. Jiang, J. Singh, K. Kamath, and P. Bhattacharya, “Rapid carrier relaxation in In0.4Ga0.6As/GaAs quantum dots characterized by differential transmission spectroscopy,” Phys. Rev. B 57, R9423–R9426 (1998).
[CrossRef]

M. Grundmann, O. Stier, and D. Bimberg, “InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure,” Phys. Rev. B 52, 11969–11981 (1995).
[CrossRef]

S. Schmitt-Rink, D. Miller, and D. Chemla, “Theory of the linear and nonlinear optical properties of semiconductor microcrystallites,” Phys. Rev. B 35, 8113–8125 (1987).
[CrossRef]

Phys. Rev. Lett. (1)

T. I. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett. 78, 1106–1109 (1997).
[CrossRef]

Science (1)

G. Nunes and M. R. Freeman, “Picosecond resolution in scanning tunneling microscopy,” Science 262, 1029–1032 (1993).
[CrossRef] [PubMed]

Solid State Commun. (1)

Q. Li, Z. Y. Xu, and W. K. Ge, “Carrier capture into InAs/GaAs quantum dots detected by a simple degenerate pump-probe technique,” Solid State Commun. 115, 105–108 (2000).
[CrossRef]

Other (2)

M. C. Nuss and J. Orenstein, “Terahertz time-domain spectroscopy,” in Millimeter and Submillimeter Wave Spectroscopy of Solids, G. Gruner, ed. (Springer-Verlag, Berlin, 1998), pp. 7–50.

J. Shah, “Ultrafast spectroscopy of semiconductors and semiconductor nanostructures,” (Springer, Berlin, 1995), p. 133.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for photoconductively-gated scanning tunneling microscopy of the InAs/GaAs self-assembled quantum dots.

Fig. 2
Fig. 2

(a) Differential reflectance signals for the InAs SAQD (dashed curve) and for the bare GaAs substrate (solid curve) at 300 K. The inset emphasizes the initial dynamics of these materials at the energy fluence of 40 mJ/cm2. (b) Differential reflectance spectra for the InAs SAQD taken at different laser wavelengths.

Fig. 3
Fig. 3

Dependence of the capture time on the pump–probe wavelength, obtained by fitting the curves presented in Fig. 2(b).

Fig. 4
Fig. 4

(a) Transient tunneling signals from the InAs SAQD (open triangles) and InAs WL (solid squares) taken at Ub=3 V and It=1 nA. (b) Transient tunneling signal from the InAs SAQD taken at Vb=3 V and It=1 nA (open triangles) is plotted together with the differential reflectance signal at 800 nm (solid squares).

Fig. 5
Fig. 5

Lateral potential of the InAs SAQD structure at T=300 K. Close to the edges of the QD, a barrier is present for holes due to the strong influence of the strain on the hole system.18

Fig. 6
Fig. 6

Differential terahertz transmission through the InAs/GaAs SAQD excited with pump fluences of (1) 10 µJ/cm2, (2) 1 µJ/cm2, and (3) 0.1 µJ/cm2. Curve (2) is multiplied by 4 and curve (3) is multiplied by 20.

Metrics