Abstract

We have performed terahertz time-domain spectroscopy measurements on three types of polystyrene foam. We find that between 0.2 and 4 THz, the extinction of this material is low and that it has a remarkably low refractive index of 1.017 to 1.022 in this range, with little variation as a function of frequency. In foam produced with HCFC 142b gas (1-chloro-1,1-difluoroethane) as the blowing agent, we find an additional absorption band at 0.5 THz caused by rotational transitions in this gas. The low extinction and refractive index make polystyrene foam a very suitable material to be used as a dichroic filter that blocks the near-IR and transmits THz radiation with small losses of less than 1.5cm-1 for frequencies of <4 THz, and as a substrate for THz imaging.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
    [CrossRef]
  2. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
    [CrossRef]
  3. H. Harde, R. A. Cheville, and D. Grischkowsky, “Terahertz studies of collision-broadened rotational lines,” J. Phys. Chem. A 101, 3646–3660 (1997).
    [CrossRef]
  4. M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Technol. 38, 1684–1691 (1990).
    [CrossRef]
  5. C. Weiss, R. Wallenstein, and R. Beigang, “Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces,” Appl. Phys. Lett. 77, 4160–4162 (2000).
    [CrossRef]
  6. A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
    [CrossRef]
  7. R. A. Cheville and D. Grischkowsky, “Time-domain terahertz impulse ranging studies,” Appl. Phys. Lett. 67, 1960–1962 (1995).
    [CrossRef]
  8. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
    [CrossRef]
  9. S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
    [CrossRef]
  10. P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, and W. T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B 18, 313–317 (2001).
    [CrossRef]
  11. The material’s brand name is Styrodur and it is manufactured by BASF, Germany. It is primarily used for thermal isolation.
  12. L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2, 739 (1996).
    [CrossRef]
  13. O. I. Baskakov, V. V. Ilyushin, E. A. Alekseev, H. Bürger, and G. Pawelke, “High-resolution infrared study of the ν7, ν8, and ν15 bands and millimeter-wave investigation of the ν8=1 state of CF2Cl−CH3,” J. Mol. Spectrosc. 202, 285–292 (2000).
    [CrossRef] [PubMed]
  14. J. R. Birch, “The far-infrared optical constants of polypropylene, ptfe and polystyrene,” Infrared Phys. 33, 33–38 (1992).
    [CrossRef]

2001

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
[CrossRef]

P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, and W. T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B 18, 313–317 (2001).
[CrossRef]

2000

O. I. Baskakov, V. V. Ilyushin, E. A. Alekseev, H. Bürger, and G. Pawelke, “High-resolution infrared study of the ν7, ν8, and ν15 bands and millimeter-wave investigation of the ν8=1 state of CF2Cl−CH3,” J. Mol. Spectrosc. 202, 285–292 (2000).
[CrossRef] [PubMed]

C. Weiss, R. Wallenstein, and R. Beigang, “Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces,” Appl. Phys. Lett. 77, 4160–4162 (2000).
[CrossRef]

1998

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

1997

H. Harde, R. A. Cheville, and D. Grischkowsky, “Terahertz studies of collision-broadened rotational lines,” J. Phys. Chem. A 101, 3646–3660 (1997).
[CrossRef]

1996

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2, 739 (1996).
[CrossRef]

1995

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

R. A. Cheville and D. Grischkowsky, “Time-domain terahertz impulse ranging studies,” Appl. Phys. Lett. 67, 1960–1962 (1995).
[CrossRef]

1992

J. R. Birch, “The far-infrared optical constants of polypropylene, ptfe and polystyrene,” Infrared Phys. 33, 33–38 (1992).
[CrossRef]

1990

M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Technol. 38, 1684–1691 (1990).
[CrossRef]

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
[CrossRef]

Alekseev, E. A.

O. I. Baskakov, V. V. Ilyushin, E. A. Alekseev, H. Bürger, and G. Pawelke, “High-resolution infrared study of the ν7, ν8, and ν15 bands and millimeter-wave investigation of the ν8=1 state of CF2Cl−CH3,” J. Mol. Spectrosc. 202, 285–292 (2000).
[CrossRef] [PubMed]

Bakker, H. J.

Baskakov, O. I.

O. I. Baskakov, V. V. Ilyushin, E. A. Alekseev, H. Bürger, and G. Pawelke, “High-resolution infrared study of the ν7, ν8, and ν15 bands and millimeter-wave investigation of the ν8=1 state of CF2Cl−CH3,” J. Mol. Spectrosc. 202, 285–292 (2000).
[CrossRef] [PubMed]

Beigang, R.

C. Weiss, R. Wallenstein, and R. Beigang, “Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces,” Appl. Phys. Lett. 77, 4160–4162 (2000).
[CrossRef]

Birch, J. R.

J. R. Birch, “The far-infrared optical constants of polypropylene, ptfe and polystyrene,” Infrared Phys. 33, 33–38 (1992).
[CrossRef]

Bonvalet, A.

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

Brener, I.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

Bürger, H.

O. I. Baskakov, V. V. Ilyushin, E. A. Alekseev, H. Bürger, and G. Pawelke, “High-resolution infrared study of the ν7, ν8, and ν15 bands and millimeter-wave investigation of the ν8=1 state of CF2Cl−CH3,” J. Mol. Spectrosc. 202, 285–292 (2000).
[CrossRef] [PubMed]

Cheville, R. A.

H. Harde, R. A. Cheville, and D. Grischkowsky, “Terahertz studies of collision-broadened rotational lines,” J. Phys. Chem. A 101, 3646–3660 (1997).
[CrossRef]

R. A. Cheville and D. Grischkowsky, “Time-domain terahertz impulse ranging studies,” Appl. Phys. Lett. 67, 1960–1962 (1995).
[CrossRef]

Coutaz, J.-L.

L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2, 739 (1996).
[CrossRef]

Duvillaret, L.

L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2, 739 (1996).
[CrossRef]

Fattinger, Ch.

Garet, F.

L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2, 739 (1996).
[CrossRef]

Grischkowsky, D.

H. Harde, R. A. Cheville, and D. Grischkowsky, “Terahertz studies of collision-broadened rotational lines,” J. Phys. Chem. A 101, 3646–3660 (1997).
[CrossRef]

R. A. Cheville and D. Grischkowsky, “Time-domain terahertz impulse ranging studies,” Appl. Phys. Lett. 67, 1960–1962 (1995).
[CrossRef]

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
[CrossRef]

Grischkowsky, D. R.

M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Technol. 38, 1684–1691 (1990).
[CrossRef]

Han, P. Y.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
[CrossRef]

Harde, H.

H. Harde, R. A. Cheville, and D. Grischkowsky, “Terahertz studies of collision-broadened rotational lines,” J. Phys. Chem. A 101, 3646–3660 (1997).
[CrossRef]

Hunsche, S.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

Ilyushin, V. V.

O. I. Baskakov, V. V. Ilyushin, E. A. Alekseev, H. Bürger, and G. Pawelke, “High-resolution infrared study of the ν7, ν8, and ν15 bands and millimeter-wave investigation of the ν8=1 state of CF2Cl−CH3,” J. Mol. Spectrosc. 202, 285–292 (2000).
[CrossRef] [PubMed]

Jacobsen, R. H.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

Joffre, M.

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

Keiding, S.

Kersting, R.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
[CrossRef]

Koch, M.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

Kono, S.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
[CrossRef]

Martin, J. L.

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

Migus, A.

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

Mittleman, D. M.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

Nienhuys, H.-K.

Nuss, M. C.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

Pawelke, G.

O. I. Baskakov, V. V. Ilyushin, E. A. Alekseev, H. Bürger, and G. Pawelke, “High-resolution infrared study of the ν7, ν8, and ν15 bands and millimeter-wave investigation of the ν8=1 state of CF2Cl−CH3,” J. Mol. Spectrosc. 202, 285–292 (2000).
[CrossRef] [PubMed]

Planken, P. C. M.

Tani, M.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
[CrossRef]

Usami, M.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
[CrossRef]

van Exter, M.

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
[CrossRef]

M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Technol. 38, 1684–1691 (1990).
[CrossRef]

Wallenstein, R.

C. Weiss, R. Wallenstein, and R. Beigang, “Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces,” Appl. Phys. Lett. 77, 4160–4162 (2000).
[CrossRef]

Weiss, C.

C. Weiss, R. Wallenstein, and R. Beigang, “Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces,” Appl. Phys. Lett. 77, 4160–4162 (2000).
[CrossRef]

Wenckebach, W. T.

Zhang, X.-C.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
[CrossRef]

Appl. Phys. Lett.

C. Weiss, R. Wallenstein, and R. Beigang, “Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces,” Appl. Phys. Lett. 77, 4160–4162 (2000).
[CrossRef]

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

R. A. Cheville and D. Grischkowsky, “Time-domain terahertz impulse ranging studies,” Appl. Phys. Lett. 67, 1960–1962 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2, 739 (1996).
[CrossRef]

IEEE Trans. Microwave Theory Technol.

M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Technol. 38, 1684–1691 (1990).
[CrossRef]

Infrared Phys.

J. R. Birch, “The far-infrared optical constants of polypropylene, ptfe and polystyrene,” Infrared Phys. 33, 33–38 (1992).
[CrossRef]

J. Appl. Phys.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
[CrossRef]

J. Mol. Spectrosc.

O. I. Baskakov, V. V. Ilyushin, E. A. Alekseev, H. Bürger, and G. Pawelke, “High-resolution infrared study of the ν7, ν8, and ν15 bands and millimeter-wave investigation of the ν8=1 state of CF2Cl−CH3,” J. Mol. Spectrosc. 202, 285–292 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

J. Phys. Chem. A

H. Harde, R. A. Cheville, and D. Grischkowsky, “Terahertz studies of collision-broadened rotational lines,” J. Phys. Chem. A 101, 3646–3660 (1997).
[CrossRef]

Opt. Commun.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

Other

The material’s brand name is Styrodur and it is manufactured by BASF, Germany. It is primarily used for thermal isolation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Measured THz electric fields of the reference pulse (top) and of sample C, a polystyrene foam produced with CO2 as the blowing agent (bottom). The inset in the top panel shows the noise floor of this measurement.

Fig. 2
Fig. 2

THz frequency dependence of the refractive index of three types of polystyrene foam and 0.4 bar of HCFC 142b gas, calculated from the electric fields shown in Fig. 1 for sample C and from similar measurements for samples A and B and the gas sample. Note the break in the vertical axis. The error bars give an estimate of the uncertainty in the calculated values.

Fig. 3
Fig. 3

THz frequency dependence of the extinction coefficient of polystyrene samples A, B and C and for 0.4 bar of HCFC 142b gas, calculated from measured electric fields such as the one shown in Fig. 1. The absorption feature at ∼0.5 THz in sample A is most probably caused by rotational transitions of the molecular gas (HCFC 142 b) contained by the foam. The error bars indicate the estimated uncertainty in the calculated values. The estimated uncertainty in the measured peak value of the extinction coefficient of the molecular gas is less than 5%.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Es(d, ω)Er(d, ω)=exp iks(ω)-ωcd exp[-ks(ω)d].

Metrics