Abstract

Based on realistic numerical simulations of atomic hydrogen interacting with high-frequency ultraintense laser pulses, we show an optimized laser scheme for an experiment on atomic stabilization. A single traveling wave does not constitute an appropriate experimental arrangement, provided that the magnetic drift (the radiation pressure) plays a fundamental role in governing the dynamics of the wave packet in this range of laser parameters. There is, however, a possible experiment where this undesired effect of the magnetic field can be eliminated: our proposal is that the incoming field has to be split into two counterpropagating fields with certain polarization conditions.

© 2002 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stabilization window and attosecond pulse train production at atom ionization in superintense laser field

M. Yu. Ryabikin and A. M. Sergeev
Opt. Express 7(12) 417-426 (2000)

Magnetic-field effect in atomic ionization by intense laser fields

J.R. Vàzquez de Aldana and Luis Roso
Opt. Express 5(7) 144-148 (1999)

Dependence on frequency of strong-field atomic stabilization

H. R. Reiss
Opt. Express 8(2) 99-105 (2001)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription