Abstract

Based on realistic numerical simulations of atomic hydrogen interacting with high-frequency ultraintense laser pulses, we show an optimized laser scheme for an experiment on atomic stabilization. A single traveling wave does not constitute an appropriate experimental arrangement, provided that the magnetic drift (the radiation pressure) plays a fundamental role in governing the dynamics of the wave packet in this range of laser parameters. There is, however, a possible experiment where this undesired effect of the magnetic field can be eliminated: our proposal is that the incoming field has to be split into two counterpropagating fields with certain polarization conditions.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Kramers, Collected Scientific Papers (North-Holland, Amsterdam, 1956).
  2. W. C. Henneberger, “Perturbation method for atoms in intense light beams,” Phys. Rev. Lett. 21, 838–841 (1968).
    [CrossRef]
  3. M. Gavrila, “Atomic structure and decay in high-frequency fields,” in Atoms in Intense Laser Fields, M. Gavrila, ed. (Academic, New York, 1992), pp. 435–510.
  4. K. C. Kulander, K. J. Schafer, and J. L. Krause, “Time-dependent studies of multiphoton processes,” in Atoms in Intense Laser Fields, M. Gavrila, ed. (Academic, New York, 1992), pp. 247–300.
  5. J. H. Eberly, R. Grobe, C. K. Law, and Q. Su, “Numerical experiments in strong and superstrong fields,” in Atoms in Intense Laser Fields, M. Gavrila, ed. (Academic, New York, 1992), pp. 301–334.
  6. M. Protopapas, C. H. Keitel, and P. L. Knight, “Atomic physics with super-high intensity lasers,” Rep. Prog. Phys. 60, 389–486 (1997).
    [CrossRef]
  7. A. Bugacov, M. Pont, and R. Shakeshaft, “Possibility of breakdown of atomic stabilization in an intense high-frequency field,” Phys. Rev. A 48, R4027–R4030 (1993).
    [CrossRef]
  8. J. R. Vázquez de Aldana and L. Roso, “Magnetic-field effect in atomic ionization by intense laser fields,” Opt. Express 5, 144–148 (1999).
    [CrossRef] [PubMed]
  9. J. H. Eberly, “Interaction of very intense light with free electrons,” Prog. Opt. 7, 359–415 (1969).
    [CrossRef]
  10. E. S. Sarachik and G. T. Schappert, “Classical theory of the scattering of intense laser radiation by free electrons,” Phys. Rev. D 1, 2738–2753 (1970).
    [CrossRef]
  11. C. H. Keitel and P. L. Knight, “Monte Carlo classical simulations of ionization and harmonic generation in the relativistic regime,” Phys. Rev. A 51, 1420–1430 (1995).
    [CrossRef] [PubMed]
  12. J. Andruszkow, “First observation of self-amplified spontaneous emission in a free-electron laser at 109 nm wavelength,” Phys. Rev. Lett. 85, 3825–3829 (2000).
    [CrossRef]
  13. J. Bauer, L. Pluciński, B. Piraux, R. Potvliege, M. Gajda, and J. Krzywiński, “Ionization of hydrogen atoms by intense vacuum ultraviolet radiation,” J. Phys. B 34, 2245–2254 (2001).
    [CrossRef]
  14. J. R. Vázquez de Aldana and L. Roso, “Nonrelativistic numerical study of atomic ionization by strong laser fields without the dipole approximation in a flat-atom model,” Phys. Rev. A 61, 043403 (2000).
    [CrossRef]
  15. N. J. Kylstra, R. A. Worthington, A. Patel, P. L. Knight, J. R. Vázquez de Aldana, and L. Roso, “Breakdown of stabilization of atoms interacting with intense, high-frequency laser pulses,” Phys. Rev. Lett. 85, 1835–1838 (2000).
    [CrossRef] [PubMed]
  16. J. R. Vázquez de Aldana, N. J. Kylstra, L. Roso, P. L. Knight, A. Patel, and R. A. Worthington, “Atoms interacting with intense, high-frequency laser pulses: effect of the magnetic-field component on atomic stabilization,” Phys. Rev. A 64, 013411 1–11 (2001).
  17. A. Patel, M. Protopapas, D. G. Lappas, and P. L. Knight, “Stabilization with arbitrary laser polarizations,” Phys. Rev. A 58, R2652–R2655 (1998).
    [CrossRef]
  18. M. Yu Ryabikin and A. M. Sergeev, “Stabilization window and attosecond pulse train production at atom ionization in superintense laser field,” Opt. Express 7, 417–426 (2000).
    [CrossRef] [PubMed]

2001 (2)

J. Bauer, L. Pluciński, B. Piraux, R. Potvliege, M. Gajda, and J. Krzywiński, “Ionization of hydrogen atoms by intense vacuum ultraviolet radiation,” J. Phys. B 34, 2245–2254 (2001).
[CrossRef]

J. R. Vázquez de Aldana, N. J. Kylstra, L. Roso, P. L. Knight, A. Patel, and R. A. Worthington, “Atoms interacting with intense, high-frequency laser pulses: effect of the magnetic-field component on atomic stabilization,” Phys. Rev. A 64, 013411 1–11 (2001).

2000 (4)

J. R. Vázquez de Aldana and L. Roso, “Nonrelativistic numerical study of atomic ionization by strong laser fields without the dipole approximation in a flat-atom model,” Phys. Rev. A 61, 043403 (2000).
[CrossRef]

N. J. Kylstra, R. A. Worthington, A. Patel, P. L. Knight, J. R. Vázquez de Aldana, and L. Roso, “Breakdown of stabilization of atoms interacting with intense, high-frequency laser pulses,” Phys. Rev. Lett. 85, 1835–1838 (2000).
[CrossRef] [PubMed]

J. Andruszkow, “First observation of self-amplified spontaneous emission in a free-electron laser at 109 nm wavelength,” Phys. Rev. Lett. 85, 3825–3829 (2000).
[CrossRef]

M. Yu Ryabikin and A. M. Sergeev, “Stabilization window and attosecond pulse train production at atom ionization in superintense laser field,” Opt. Express 7, 417–426 (2000).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

A. Patel, M. Protopapas, D. G. Lappas, and P. L. Knight, “Stabilization with arbitrary laser polarizations,” Phys. Rev. A 58, R2652–R2655 (1998).
[CrossRef]

1997 (1)

M. Protopapas, C. H. Keitel, and P. L. Knight, “Atomic physics with super-high intensity lasers,” Rep. Prog. Phys. 60, 389–486 (1997).
[CrossRef]

1995 (1)

C. H. Keitel and P. L. Knight, “Monte Carlo classical simulations of ionization and harmonic generation in the relativistic regime,” Phys. Rev. A 51, 1420–1430 (1995).
[CrossRef] [PubMed]

1993 (1)

A. Bugacov, M. Pont, and R. Shakeshaft, “Possibility of breakdown of atomic stabilization in an intense high-frequency field,” Phys. Rev. A 48, R4027–R4030 (1993).
[CrossRef]

1970 (1)

E. S. Sarachik and G. T. Schappert, “Classical theory of the scattering of intense laser radiation by free electrons,” Phys. Rev. D 1, 2738–2753 (1970).
[CrossRef]

1969 (1)

J. H. Eberly, “Interaction of very intense light with free electrons,” Prog. Opt. 7, 359–415 (1969).
[CrossRef]

1968 (1)

W. C. Henneberger, “Perturbation method for atoms in intense light beams,” Phys. Rev. Lett. 21, 838–841 (1968).
[CrossRef]

Andruszkow, J.

J. Andruszkow, “First observation of self-amplified spontaneous emission in a free-electron laser at 109 nm wavelength,” Phys. Rev. Lett. 85, 3825–3829 (2000).
[CrossRef]

Bauer, J.

J. Bauer, L. Pluciński, B. Piraux, R. Potvliege, M. Gajda, and J. Krzywiński, “Ionization of hydrogen atoms by intense vacuum ultraviolet radiation,” J. Phys. B 34, 2245–2254 (2001).
[CrossRef]

Bugacov, A.

A. Bugacov, M. Pont, and R. Shakeshaft, “Possibility of breakdown of atomic stabilization in an intense high-frequency field,” Phys. Rev. A 48, R4027–R4030 (1993).
[CrossRef]

Eberly, J. H.

J. H. Eberly, “Interaction of very intense light with free electrons,” Prog. Opt. 7, 359–415 (1969).
[CrossRef]

Gajda, M.

J. Bauer, L. Pluciński, B. Piraux, R. Potvliege, M. Gajda, and J. Krzywiński, “Ionization of hydrogen atoms by intense vacuum ultraviolet radiation,” J. Phys. B 34, 2245–2254 (2001).
[CrossRef]

Henneberger, W. C.

W. C. Henneberger, “Perturbation method for atoms in intense light beams,” Phys. Rev. Lett. 21, 838–841 (1968).
[CrossRef]

Keitel, C. H.

M. Protopapas, C. H. Keitel, and P. L. Knight, “Atomic physics with super-high intensity lasers,” Rep. Prog. Phys. 60, 389–486 (1997).
[CrossRef]

C. H. Keitel and P. L. Knight, “Monte Carlo classical simulations of ionization and harmonic generation in the relativistic regime,” Phys. Rev. A 51, 1420–1430 (1995).
[CrossRef] [PubMed]

Knight, P. L.

J. R. Vázquez de Aldana, N. J. Kylstra, L. Roso, P. L. Knight, A. Patel, and R. A. Worthington, “Atoms interacting with intense, high-frequency laser pulses: effect of the magnetic-field component on atomic stabilization,” Phys. Rev. A 64, 013411 1–11 (2001).

N. J. Kylstra, R. A. Worthington, A. Patel, P. L. Knight, J. R. Vázquez de Aldana, and L. Roso, “Breakdown of stabilization of atoms interacting with intense, high-frequency laser pulses,” Phys. Rev. Lett. 85, 1835–1838 (2000).
[CrossRef] [PubMed]

A. Patel, M. Protopapas, D. G. Lappas, and P. L. Knight, “Stabilization with arbitrary laser polarizations,” Phys. Rev. A 58, R2652–R2655 (1998).
[CrossRef]

M. Protopapas, C. H. Keitel, and P. L. Knight, “Atomic physics with super-high intensity lasers,” Rep. Prog. Phys. 60, 389–486 (1997).
[CrossRef]

C. H. Keitel and P. L. Knight, “Monte Carlo classical simulations of ionization and harmonic generation in the relativistic regime,” Phys. Rev. A 51, 1420–1430 (1995).
[CrossRef] [PubMed]

Krzywinski, J.

J. Bauer, L. Pluciński, B. Piraux, R. Potvliege, M. Gajda, and J. Krzywiński, “Ionization of hydrogen atoms by intense vacuum ultraviolet radiation,” J. Phys. B 34, 2245–2254 (2001).
[CrossRef]

Kylstra, N. J.

J. R. Vázquez de Aldana, N. J. Kylstra, L. Roso, P. L. Knight, A. Patel, and R. A. Worthington, “Atoms interacting with intense, high-frequency laser pulses: effect of the magnetic-field component on atomic stabilization,” Phys. Rev. A 64, 013411 1–11 (2001).

N. J. Kylstra, R. A. Worthington, A. Patel, P. L. Knight, J. R. Vázquez de Aldana, and L. Roso, “Breakdown of stabilization of atoms interacting with intense, high-frequency laser pulses,” Phys. Rev. Lett. 85, 1835–1838 (2000).
[CrossRef] [PubMed]

Lappas, D. G.

A. Patel, M. Protopapas, D. G. Lappas, and P. L. Knight, “Stabilization with arbitrary laser polarizations,” Phys. Rev. A 58, R2652–R2655 (1998).
[CrossRef]

Patel, A.

J. R. Vázquez de Aldana, N. J. Kylstra, L. Roso, P. L. Knight, A. Patel, and R. A. Worthington, “Atoms interacting with intense, high-frequency laser pulses: effect of the magnetic-field component on atomic stabilization,” Phys. Rev. A 64, 013411 1–11 (2001).

N. J. Kylstra, R. A. Worthington, A. Patel, P. L. Knight, J. R. Vázquez de Aldana, and L. Roso, “Breakdown of stabilization of atoms interacting with intense, high-frequency laser pulses,” Phys. Rev. Lett. 85, 1835–1838 (2000).
[CrossRef] [PubMed]

A. Patel, M. Protopapas, D. G. Lappas, and P. L. Knight, “Stabilization with arbitrary laser polarizations,” Phys. Rev. A 58, R2652–R2655 (1998).
[CrossRef]

Piraux, B.

J. Bauer, L. Pluciński, B. Piraux, R. Potvliege, M. Gajda, and J. Krzywiński, “Ionization of hydrogen atoms by intense vacuum ultraviolet radiation,” J. Phys. B 34, 2245–2254 (2001).
[CrossRef]

Plucinski, L.

J. Bauer, L. Pluciński, B. Piraux, R. Potvliege, M. Gajda, and J. Krzywiński, “Ionization of hydrogen atoms by intense vacuum ultraviolet radiation,” J. Phys. B 34, 2245–2254 (2001).
[CrossRef]

Pont, M.

A. Bugacov, M. Pont, and R. Shakeshaft, “Possibility of breakdown of atomic stabilization in an intense high-frequency field,” Phys. Rev. A 48, R4027–R4030 (1993).
[CrossRef]

Potvliege, R.

J. Bauer, L. Pluciński, B. Piraux, R. Potvliege, M. Gajda, and J. Krzywiński, “Ionization of hydrogen atoms by intense vacuum ultraviolet radiation,” J. Phys. B 34, 2245–2254 (2001).
[CrossRef]

Protopapas, M.

A. Patel, M. Protopapas, D. G. Lappas, and P. L. Knight, “Stabilization with arbitrary laser polarizations,” Phys. Rev. A 58, R2652–R2655 (1998).
[CrossRef]

M. Protopapas, C. H. Keitel, and P. L. Knight, “Atomic physics with super-high intensity lasers,” Rep. Prog. Phys. 60, 389–486 (1997).
[CrossRef]

Roso, L.

J. R. Vázquez de Aldana, N. J. Kylstra, L. Roso, P. L. Knight, A. Patel, and R. A. Worthington, “Atoms interacting with intense, high-frequency laser pulses: effect of the magnetic-field component on atomic stabilization,” Phys. Rev. A 64, 013411 1–11 (2001).

J. R. Vázquez de Aldana and L. Roso, “Nonrelativistic numerical study of atomic ionization by strong laser fields without the dipole approximation in a flat-atom model,” Phys. Rev. A 61, 043403 (2000).
[CrossRef]

N. J. Kylstra, R. A. Worthington, A. Patel, P. L. Knight, J. R. Vázquez de Aldana, and L. Roso, “Breakdown of stabilization of atoms interacting with intense, high-frequency laser pulses,” Phys. Rev. Lett. 85, 1835–1838 (2000).
[CrossRef] [PubMed]

J. R. Vázquez de Aldana and L. Roso, “Magnetic-field effect in atomic ionization by intense laser fields,” Opt. Express 5, 144–148 (1999).
[CrossRef] [PubMed]

Ryabikin, M. Yu

Sarachik, E. S.

E. S. Sarachik and G. T. Schappert, “Classical theory of the scattering of intense laser radiation by free electrons,” Phys. Rev. D 1, 2738–2753 (1970).
[CrossRef]

Schappert, G. T.

E. S. Sarachik and G. T. Schappert, “Classical theory of the scattering of intense laser radiation by free electrons,” Phys. Rev. D 1, 2738–2753 (1970).
[CrossRef]

Sergeev, A. M.

Shakeshaft, R.

A. Bugacov, M. Pont, and R. Shakeshaft, “Possibility of breakdown of atomic stabilization in an intense high-frequency field,” Phys. Rev. A 48, R4027–R4030 (1993).
[CrossRef]

Vázquez de Aldana, J. R.

J. R. Vázquez de Aldana, N. J. Kylstra, L. Roso, P. L. Knight, A. Patel, and R. A. Worthington, “Atoms interacting with intense, high-frequency laser pulses: effect of the magnetic-field component on atomic stabilization,” Phys. Rev. A 64, 013411 1–11 (2001).

J. R. Vázquez de Aldana and L. Roso, “Nonrelativistic numerical study of atomic ionization by strong laser fields without the dipole approximation in a flat-atom model,” Phys. Rev. A 61, 043403 (2000).
[CrossRef]

N. J. Kylstra, R. A. Worthington, A. Patel, P. L. Knight, J. R. Vázquez de Aldana, and L. Roso, “Breakdown of stabilization of atoms interacting with intense, high-frequency laser pulses,” Phys. Rev. Lett. 85, 1835–1838 (2000).
[CrossRef] [PubMed]

J. R. Vázquez de Aldana and L. Roso, “Magnetic-field effect in atomic ionization by intense laser fields,” Opt. Express 5, 144–148 (1999).
[CrossRef] [PubMed]

Worthington, R. A.

J. R. Vázquez de Aldana, N. J. Kylstra, L. Roso, P. L. Knight, A. Patel, and R. A. Worthington, “Atoms interacting with intense, high-frequency laser pulses: effect of the magnetic-field component on atomic stabilization,” Phys. Rev. A 64, 013411 1–11 (2001).

N. J. Kylstra, R. A. Worthington, A. Patel, P. L. Knight, J. R. Vázquez de Aldana, and L. Roso, “Breakdown of stabilization of atoms interacting with intense, high-frequency laser pulses,” Phys. Rev. Lett. 85, 1835–1838 (2000).
[CrossRef] [PubMed]

J. Phys. B (1)

J. Bauer, L. Pluciński, B. Piraux, R. Potvliege, M. Gajda, and J. Krzywiński, “Ionization of hydrogen atoms by intense vacuum ultraviolet radiation,” J. Phys. B 34, 2245–2254 (2001).
[CrossRef]

Opt. Express (2)

Phys. Rev. A (5)

J. R. Vázquez de Aldana, N. J. Kylstra, L. Roso, P. L. Knight, A. Patel, and R. A. Worthington, “Atoms interacting with intense, high-frequency laser pulses: effect of the magnetic-field component on atomic stabilization,” Phys. Rev. A 64, 013411 1–11 (2001).

A. Patel, M. Protopapas, D. G. Lappas, and P. L. Knight, “Stabilization with arbitrary laser polarizations,” Phys. Rev. A 58, R2652–R2655 (1998).
[CrossRef]

J. R. Vázquez de Aldana and L. Roso, “Nonrelativistic numerical study of atomic ionization by strong laser fields without the dipole approximation in a flat-atom model,” Phys. Rev. A 61, 043403 (2000).
[CrossRef]

C. H. Keitel and P. L. Knight, “Monte Carlo classical simulations of ionization and harmonic generation in the relativistic regime,” Phys. Rev. A 51, 1420–1430 (1995).
[CrossRef] [PubMed]

A. Bugacov, M. Pont, and R. Shakeshaft, “Possibility of breakdown of atomic stabilization in an intense high-frequency field,” Phys. Rev. A 48, R4027–R4030 (1993).
[CrossRef]

Phys. Rev. D (1)

E. S. Sarachik and G. T. Schappert, “Classical theory of the scattering of intense laser radiation by free electrons,” Phys. Rev. D 1, 2738–2753 (1970).
[CrossRef]

Phys. Rev. Lett. (3)

W. C. Henneberger, “Perturbation method for atoms in intense light beams,” Phys. Rev. Lett. 21, 838–841 (1968).
[CrossRef]

J. Andruszkow, “First observation of self-amplified spontaneous emission in a free-electron laser at 109 nm wavelength,” Phys. Rev. Lett. 85, 3825–3829 (2000).
[CrossRef]

N. J. Kylstra, R. A. Worthington, A. Patel, P. L. Knight, J. R. Vázquez de Aldana, and L. Roso, “Breakdown of stabilization of atoms interacting with intense, high-frequency laser pulses,” Phys. Rev. Lett. 85, 1835–1838 (2000).
[CrossRef] [PubMed]

Prog. Opt. (1)

J. H. Eberly, “Interaction of very intense light with free electrons,” Prog. Opt. 7, 359–415 (1969).
[CrossRef]

Rep. Prog. Phys. (1)

M. Protopapas, C. H. Keitel, and P. L. Knight, “Atomic physics with super-high intensity lasers,” Rep. Prog. Phys. 60, 389–486 (1997).
[CrossRef]

Other (4)

H. A. Kramers, Collected Scientific Papers (North-Holland, Amsterdam, 1956).

M. Gavrila, “Atomic structure and decay in high-frequency fields,” in Atoms in Intense Laser Fields, M. Gavrila, ed. (Academic, New York, 1992), pp. 435–510.

K. C. Kulander, K. J. Schafer, and J. L. Krause, “Time-dependent studies of multiphoton processes,” in Atoms in Intense Laser Fields, M. Gavrila, ed. (Academic, New York, 1992), pp. 247–300.

J. H. Eberly, R. Grobe, C. K. Law, and Q. Su, “Numerical experiments in strong and superstrong fields,” in Atoms in Intense Laser Fields, M. Gavrila, ed. (Academic, New York, 1992), pp. 301–334.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic representation of the counterpropagating pulses geometry. At some points of space the superposition of both waves gives rise to linearly polarized electric and magnetic fields. At any other point the polarization of the fields is elliptical. Here, we focus our attention on the structure that appears in the two extreme drawings (right and left) where both fields are parallel.

Fig. 2
Fig. 2

Contour plots of the projection of the electronic density onto the three coordinate planes. The upper row corresponds to the projection on the xy plane, the middle row is the projection on the xz plane, and the lower row is the projection in the yz plane. All the figures correspond to a laser pulse of frequency ω=1 a.u. with a trapezoidal pulse shape (with four cycles of turn-on plus six cycles of constant amplitude). The left column presents the results for the traveling-wave case with E0=15 a.u. The column on the right is the same for the two copropagating pulses, here with amplitudes E0=15/2 a.u. such that the resulting amplitude along the ezey direction is 15 a.u. Contour lines are in linear scale.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E+(x, t)=E0f+(x, t)sin(kx-ωt)ey,
E-(x, t)=E0f-(x, t)cos(kx+ωt+ϕ0)ez.
B+(x, t)=E0f+(x, t)sin(kx-ωt)ez,
B-(x, t)=E0f-(x, t)cos(kx+ωt+ϕ0)ey.
E(x=0, t)=E0f+(x=0, t)sin(ωt)(ez-ey),
B(x=0, t)=E0f+(x=0, t)sin(ωt)(ey-ez).
itΨ(r, t)
=-122-ic A(r, t)·+12c2A2(r, t)+V(r)Ψ(r, t).
A(r, t)=A(x, t)=-c0t[E+(x, t)+E-(x, t)]dt.

Metrics