Abstract

The dynamical response of an optical Fabry–Perot cavity is investigated experimentally. We observe oscillations in the transmitted and the reflected light intensity if the frequency of the incoupled light field is rapidly changed. In addition, the decay of a cavity-stored light field is accelerated if the phase and the intensity of the incoupled light are switched in an appropriate way. The theoretical model by M. J. Lawrence et al. [J. Opt. Soc. Am. B 16, 523 (1999)] agrees with our observations.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-decahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
    [CrossRef] [PubMed]
  2. B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
    [CrossRef]
  3. Q. Turchette, C. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995).
    [CrossRef] [PubMed]
  4. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity-QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
    [CrossRef]
  5. H. C. Nägerl, D. Leibfried, F. Schmidt-Kaler, J. Eschner, R. Blatt, M. Brune, J. M. Raimond, and S. Haroche, “Cavity QED experiments: atoms in cavities and trapped ions,” in The Physics of Quantum Information, D. Bouwmeester, A. Ekert, and A. Zeilinger, eds. (Springer, New York, 2000), Chap. 5.2, pp. 133–162.
  6. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
    [CrossRef]
  7. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
    [CrossRef]
  8. R. Blatt and D. Leibfried, “Ion cavity QED, control and measurement of coherent systems,” application for the Austrian Science Foundation SFB12-P2 (Innsbruck, Austria, 1998) pp. 53–76.
  9. A. Mundt, A. Kreuter, C. Becher, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Coupling a single atomic quantum bit to a high finesse optical cavity,” arXiv.org e-print archive quant-ph/0202112 (2002).
  10. P. W. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
    [CrossRef] [PubMed]
  11. C. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, “The atom cavity microscope: single atoms bound in orbit by single photons,” Science 287, 1447–1453 (2000).
    [CrossRef] [PubMed]
  12. H. Mabuchi, J. Ye, and H. J. Kimble, “Full observation of single-atom dynamics in cavity QED,” Appl. Phys. B 68, 1095–1108 (1999).
    [CrossRef]
  13. P. W. H. Pinkse, T. Fischer, P. Maunz, T. Puppe, and G. Rempe, “How to catch an atom with single photons,” J. Mod. Opt. 47, 2769–2787 (2000).
    [CrossRef]
  14. P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical kaleidoscope using a single atom,” Phys. Rev. Lett. 88, 043601 (2002).
    [CrossRef] [PubMed]
  15. G. R. Guthöhrlein, M. Keller, K. Hayasaka, W. Lange, and H. Walther, “A single ion as a nanoscopic probe of an optical field,” Nature 414, 49–51 (2001).
    [CrossRef] [PubMed]
  16. J. Eschner, Ch. Raab, F. Schmidt-Kaler, and R. Blatt, “Light interference from single atoms and their mirror images,” Nature 413, 495 (2001).
    [CrossRef] [PubMed]
  17. M. J. Lawrence, B. Willke, M. E. Husman, E. K. Gustafson, and R. L. Byer, “Dynamic response of a Fabry–Perot interferometer,” J. Opt. Soc. Am. B 16, 523–532 (1999).
    [CrossRef]
  18. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [CrossRef]
  19. A. Schenzle, R. DeVoe, and R. Brewer, “Phase-modulation laser spectroscopy,” Phys. Rev. A 25, 2606–2621 (1982).
    [CrossRef]
  20. F. Schmidt-Kaler, Ch. Roos, H. C. Nägerl, H. Rohde, S. Gulde, A. Mundt, M. Lederbauer, G. Thalhammer, Th. Zeiger, P. Barton, L. Hornekaer, G. Reymond, D. Leibfried, J. Eschner, and R. Blatt, “Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps,” J. Mod. Opt. 47, 2573–2582 (2000).
    [CrossRef]
  21. For the frequency stabilization of the Ti:sapphire laser, the error signal is distributed to several frequency tuning elements inside the laser cavity. For the regulation of the slow-frequency components (≤20 kHz) we use a piezo-driven mirror and a galvo plate, which are standard components in the Coherent ring lasers (CR-866). Fast-frequency components up to 2 MHz are fed to an intracavity electro-optic modulator (PM-25, Linos).
  22. H. Rhode, “Experimente zur Quanteninformationsverarbeitung in einer linearen Ionenfalle,” Ph.D. dissertation (University of Innsbruck, Innsbruck, 2001).
  23. We measured a frequency drift of ~10 Hz/s on a cavity of similar spacer material and construction.

2002

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical kaleidoscope using a single atom,” Phys. Rev. Lett. 88, 043601 (2002).
[CrossRef] [PubMed]

2001

G. R. Guthöhrlein, M. Keller, K. Hayasaka, W. Lange, and H. Walther, “A single ion as a nanoscopic probe of an optical field,” Nature 414, 49–51 (2001).
[CrossRef] [PubMed]

J. Eschner, Ch. Raab, F. Schmidt-Kaler, and R. Blatt, “Light interference from single atoms and their mirror images,” Nature 413, 495 (2001).
[CrossRef] [PubMed]

2000

F. Schmidt-Kaler, Ch. Roos, H. C. Nägerl, H. Rohde, S. Gulde, A. Mundt, M. Lederbauer, G. Thalhammer, Th. Zeiger, P. Barton, L. Hornekaer, G. Reymond, D. Leibfried, J. Eschner, and R. Blatt, “Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps,” J. Mod. Opt. 47, 2573–2582 (2000).
[CrossRef]

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-decahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[CrossRef] [PubMed]

P. W. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[CrossRef] [PubMed]

C. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, “The atom cavity microscope: single atoms bound in orbit by single photons,” Science 287, 1447–1453 (2000).
[CrossRef] [PubMed]

P. W. H. Pinkse, T. Fischer, P. Maunz, T. Puppe, and G. Rempe, “How to catch an atom with single photons,” J. Mod. Opt. 47, 2769–2787 (2000).
[CrossRef]

1999

H. Mabuchi, J. Ye, and H. J. Kimble, “Full observation of single-atom dynamics in cavity QED,” Appl. Phys. B 68, 1095–1108 (1999).
[CrossRef]

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity-QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
[CrossRef]

M. J. Lawrence, B. Willke, M. E. Husman, E. K. Gustafson, and R. L. Byer, “Dynamic response of a Fabry–Perot interferometer,” J. Opt. Soc. Am. B 16, 523–532 (1999).
[CrossRef]

1998

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

1997

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[CrossRef]

1995

Q. Turchette, C. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995).
[CrossRef] [PubMed]

1983

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

1982

A. Schenzle, R. DeVoe, and R. Brewer, “Phase-modulation laser spectroscopy,” Phys. Rev. A 25, 2606–2621 (1982).
[CrossRef]

Barton, P.

F. Schmidt-Kaler, Ch. Roos, H. C. Nägerl, H. Rohde, S. Gulde, A. Mundt, M. Lederbauer, G. Thalhammer, Th. Zeiger, P. Barton, L. Hornekaer, G. Reymond, D. Leibfried, J. Eschner, and R. Blatt, “Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps,” J. Mod. Opt. 47, 2573–2582 (2000).
[CrossRef]

Beall, J. A.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-decahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[CrossRef] [PubMed]

Bergquist, J. C.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-decahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[CrossRef] [PubMed]

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

Bertet, P.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity-QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
[CrossRef]

Blatt, R.

J. Eschner, Ch. Raab, F. Schmidt-Kaler, and R. Blatt, “Light interference from single atoms and their mirror images,” Nature 413, 495 (2001).
[CrossRef] [PubMed]

F. Schmidt-Kaler, Ch. Roos, H. C. Nägerl, H. Rohde, S. Gulde, A. Mundt, M. Lederbauer, G. Thalhammer, Th. Zeiger, P. Barton, L. Hornekaer, G. Reymond, D. Leibfried, J. Eschner, and R. Blatt, “Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps,” J. Mod. Opt. 47, 2573–2582 (2000).
[CrossRef]

Brewer, R.

A. Schenzle, R. DeVoe, and R. Brewer, “Phase-modulation laser spectroscopy,” Phys. Rev. A 25, 2606–2621 (1982).
[CrossRef]

Briegel, H.-J.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

Brune, M.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity-QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
[CrossRef]

Byer, R. L.

Cirac, J. I.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[CrossRef]

Cruz, F. C.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

DeVoe, R.

A. Schenzle, R. DeVoe, and R. Brewer, “Phase-modulation laser spectroscopy,” Phys. Rev. A 25, 2606–2621 (1982).
[CrossRef]

Doherty, A. C.

C. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, “The atom cavity microscope: single atoms bound in orbit by single photons,” Science 287, 1447–1453 (2000).
[CrossRef] [PubMed]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Dür, W.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

Eschner, J.

J. Eschner, Ch. Raab, F. Schmidt-Kaler, and R. Blatt, “Light interference from single atoms and their mirror images,” Nature 413, 495 (2001).
[CrossRef] [PubMed]

F. Schmidt-Kaler, Ch. Roos, H. C. Nägerl, H. Rohde, S. Gulde, A. Mundt, M. Lederbauer, G. Thalhammer, Th. Zeiger, P. Barton, L. Hornekaer, G. Reymond, D. Leibfried, J. Eschner, and R. Blatt, “Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps,” J. Mod. Opt. 47, 2573–2582 (2000).
[CrossRef]

Fischer, T.

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical kaleidoscope using a single atom,” Phys. Rev. Lett. 88, 043601 (2002).
[CrossRef] [PubMed]

P. W. H. Pinkse, T. Fischer, P. Maunz, T. Puppe, and G. Rempe, “How to catch an atom with single photons,” J. Mod. Opt. 47, 2769–2787 (2000).
[CrossRef]

P. W. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[CrossRef] [PubMed]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Gulde, S.

F. Schmidt-Kaler, Ch. Roos, H. C. Nägerl, H. Rohde, S. Gulde, A. Mundt, M. Lederbauer, G. Thalhammer, Th. Zeiger, P. Barton, L. Hornekaer, G. Reymond, D. Leibfried, J. Eschner, and R. Blatt, “Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps,” J. Mod. Opt. 47, 2573–2582 (2000).
[CrossRef]

Gustafson, E. K.

Guthöhrlein, G. R.

G. R. Guthöhrlein, M. Keller, K. Hayasaka, W. Lange, and H. Walther, “A single ion as a nanoscopic probe of an optical field,” Nature 414, 49–51 (2001).
[CrossRef] [PubMed]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Haroche, S.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity-QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
[CrossRef]

Hayasaka, K.

G. R. Guthöhrlein, M. Keller, K. Hayasaka, W. Lange, and H. Walther, “A single ion as a nanoscopic probe of an optical field,” Nature 414, 49–51 (2001).
[CrossRef] [PubMed]

Hood, C.

C. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, “The atom cavity microscope: single atoms bound in orbit by single photons,” Science 287, 1447–1453 (2000).
[CrossRef] [PubMed]

Q. Turchette, C. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995).
[CrossRef] [PubMed]

Horak, P.

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical kaleidoscope using a single atom,” Phys. Rev. Lett. 88, 043601 (2002).
[CrossRef] [PubMed]

Hornekaer, L.

F. Schmidt-Kaler, Ch. Roos, H. C. Nägerl, H. Rohde, S. Gulde, A. Mundt, M. Lederbauer, G. Thalhammer, Th. Zeiger, P. Barton, L. Hornekaer, G. Reymond, D. Leibfried, J. Eschner, and R. Blatt, “Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps,” J. Mod. Opt. 47, 2573–2582 (2000).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Husman, M. E.

Itano, W. M.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-decahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[CrossRef] [PubMed]

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

Keller, M.

G. R. Guthöhrlein, M. Keller, K. Hayasaka, W. Lange, and H. Walther, “A single ion as a nanoscopic probe of an optical field,” Nature 414, 49–51 (2001).
[CrossRef] [PubMed]

Kimble, H. J.

C. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, “The atom cavity microscope: single atoms bound in orbit by single photons,” Science 287, 1447–1453 (2000).
[CrossRef] [PubMed]

H. Mabuchi, J. Ye, and H. J. Kimble, “Full observation of single-atom dynamics in cavity QED,” Appl. Phys. B 68, 1095–1108 (1999).
[CrossRef]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[CrossRef]

Q. Turchette, C. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995).
[CrossRef] [PubMed]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Lange, W.

G. R. Guthöhrlein, M. Keller, K. Hayasaka, W. Lange, and H. Walther, “A single ion as a nanoscopic probe of an optical field,” Nature 414, 49–51 (2001).
[CrossRef] [PubMed]

Q. Turchette, C. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995).
[CrossRef] [PubMed]

Lawrence, M. J.

Lederbauer, M.

F. Schmidt-Kaler, Ch. Roos, H. C. Nägerl, H. Rohde, S. Gulde, A. Mundt, M. Lederbauer, G. Thalhammer, Th. Zeiger, P. Barton, L. Hornekaer, G. Reymond, D. Leibfried, J. Eschner, and R. Blatt, “Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps,” J. Mod. Opt. 47, 2573–2582 (2000).
[CrossRef]

Leibfried, D.

F. Schmidt-Kaler, Ch. Roos, H. C. Nägerl, H. Rohde, S. Gulde, A. Mundt, M. Lederbauer, G. Thalhammer, Th. Zeiger, P. Barton, L. Hornekaer, G. Reymond, D. Leibfried, J. Eschner, and R. Blatt, “Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps,” J. Mod. Opt. 47, 2573–2582 (2000).
[CrossRef]

Lynn, T. W.

C. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, “The atom cavity microscope: single atoms bound in orbit by single photons,” Science 287, 1447–1453 (2000).
[CrossRef] [PubMed]

Mabuchi, H.

H. Mabuchi, J. Ye, and H. J. Kimble, “Full observation of single-atom dynamics in cavity QED,” Appl. Phys. B 68, 1095–1108 (1999).
[CrossRef]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[CrossRef]

Q. Turchette, C. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995).
[CrossRef] [PubMed]

Maunz, P.

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical kaleidoscope using a single atom,” Phys. Rev. Lett. 88, 043601 (2002).
[CrossRef] [PubMed]

P. W. H. Pinkse, T. Fischer, P. Maunz, T. Puppe, and G. Rempe, “How to catch an atom with single photons,” J. Mod. Opt. 47, 2769–2787 (2000).
[CrossRef]

P. W. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[CrossRef] [PubMed]

Mundt, A.

F. Schmidt-Kaler, Ch. Roos, H. C. Nägerl, H. Rohde, S. Gulde, A. Mundt, M. Lederbauer, G. Thalhammer, Th. Zeiger, P. Barton, L. Hornekaer, G. Reymond, D. Leibfried, J. Eschner, and R. Blatt, “Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps,” J. Mod. Opt. 47, 2573–2582 (2000).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Nägerl, H. C.

F. Schmidt-Kaler, Ch. Roos, H. C. Nägerl, H. Rohde, S. Gulde, A. Mundt, M. Lederbauer, G. Thalhammer, Th. Zeiger, P. Barton, L. Hornekaer, G. Reymond, D. Leibfried, J. Eschner, and R. Blatt, “Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps,” J. Mod. Opt. 47, 2573–2582 (2000).
[CrossRef]

Nogues, G.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity-QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
[CrossRef]

Osnaghi, S.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity-QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
[CrossRef]

Parkins, A. S.

C. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, “The atom cavity microscope: single atoms bound in orbit by single photons,” Science 287, 1447–1453 (2000).
[CrossRef] [PubMed]

Pinkse, P. W.

P. W. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[CrossRef] [PubMed]

Pinkse, P. W. H.

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical kaleidoscope using a single atom,” Phys. Rev. Lett. 88, 043601 (2002).
[CrossRef] [PubMed]

P. W. H. Pinkse, T. Fischer, P. Maunz, T. Puppe, and G. Rempe, “How to catch an atom with single photons,” J. Mod. Opt. 47, 2769–2787 (2000).
[CrossRef]

Puppe, T.

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical kaleidoscope using a single atom,” Phys. Rev. Lett. 88, 043601 (2002).
[CrossRef] [PubMed]

P. W. H. Pinkse, T. Fischer, P. Maunz, T. Puppe, and G. Rempe, “How to catch an atom with single photons,” J. Mod. Opt. 47, 2769–2787 (2000).
[CrossRef]

Raab, Ch.

J. Eschner, Ch. Raab, F. Schmidt-Kaler, and R. Blatt, “Light interference from single atoms and their mirror images,” Nature 413, 495 (2001).
[CrossRef] [PubMed]

Rafac, R. J.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-decahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[CrossRef] [PubMed]

Raimond, J. M.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity-QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
[CrossRef]

Rauschenbeutel, A.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity-QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
[CrossRef]

Rempe, G.

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical kaleidoscope using a single atom,” Phys. Rev. Lett. 88, 043601 (2002).
[CrossRef] [PubMed]

P. W. H. Pinkse, T. Fischer, P. Maunz, T. Puppe, and G. Rempe, “How to catch an atom with single photons,” J. Mod. Opt. 47, 2769–2787 (2000).
[CrossRef]

P. W. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[CrossRef] [PubMed]

Reymond, G.

F. Schmidt-Kaler, Ch. Roos, H. C. Nägerl, H. Rohde, S. Gulde, A. Mundt, M. Lederbauer, G. Thalhammer, Th. Zeiger, P. Barton, L. Hornekaer, G. Reymond, D. Leibfried, J. Eschner, and R. Blatt, “Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps,” J. Mod. Opt. 47, 2573–2582 (2000).
[CrossRef]

Ritsch, H.

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical kaleidoscope using a single atom,” Phys. Rev. Lett. 88, 043601 (2002).
[CrossRef] [PubMed]

Rohde, H.

F. Schmidt-Kaler, Ch. Roos, H. C. Nägerl, H. Rohde, S. Gulde, A. Mundt, M. Lederbauer, G. Thalhammer, Th. Zeiger, P. Barton, L. Hornekaer, G. Reymond, D. Leibfried, J. Eschner, and R. Blatt, “Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps,” J. Mod. Opt. 47, 2573–2582 (2000).
[CrossRef]

Roos, Ch.

F. Schmidt-Kaler, Ch. Roos, H. C. Nägerl, H. Rohde, S. Gulde, A. Mundt, M. Lederbauer, G. Thalhammer, Th. Zeiger, P. Barton, L. Hornekaer, G. Reymond, D. Leibfried, J. Eschner, and R. Blatt, “Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps,” J. Mod. Opt. 47, 2573–2582 (2000).
[CrossRef]

Schenzle, A.

A. Schenzle, R. DeVoe, and R. Brewer, “Phase-modulation laser spectroscopy,” Phys. Rev. A 25, 2606–2621 (1982).
[CrossRef]

Schmidt-Kaler, F.

J. Eschner, Ch. Raab, F. Schmidt-Kaler, and R. Blatt, “Light interference from single atoms and their mirror images,” Nature 413, 495 (2001).
[CrossRef] [PubMed]

F. Schmidt-Kaler, Ch. Roos, H. C. Nägerl, H. Rohde, S. Gulde, A. Mundt, M. Lederbauer, G. Thalhammer, Th. Zeiger, P. Barton, L. Hornekaer, G. Reymond, D. Leibfried, J. Eschner, and R. Blatt, “Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps,” J. Mod. Opt. 47, 2573–2582 (2000).
[CrossRef]

Thalhammer, G.

F. Schmidt-Kaler, Ch. Roos, H. C. Nägerl, H. Rohde, S. Gulde, A. Mundt, M. Lederbauer, G. Thalhammer, Th. Zeiger, P. Barton, L. Hornekaer, G. Reymond, D. Leibfried, J. Eschner, and R. Blatt, “Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps,” J. Mod. Opt. 47, 2573–2582 (2000).
[CrossRef]

Turchette, Q.

Q. Turchette, C. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995).
[CrossRef] [PubMed]

Walther, H.

G. R. Guthöhrlein, M. Keller, K. Hayasaka, W. Lange, and H. Walther, “A single ion as a nanoscopic probe of an optical field,” Nature 414, 49–51 (2001).
[CrossRef] [PubMed]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Willke, B.

Wineland, D. J.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-decahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[CrossRef] [PubMed]

Ye, J.

H. Mabuchi, J. Ye, and H. J. Kimble, “Full observation of single-atom dynamics in cavity QED,” Appl. Phys. B 68, 1095–1108 (1999).
[CrossRef]

Young, B. C.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-decahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[CrossRef] [PubMed]

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

Zeiger, Th.

F. Schmidt-Kaler, Ch. Roos, H. C. Nägerl, H. Rohde, S. Gulde, A. Mundt, M. Lederbauer, G. Thalhammer, Th. Zeiger, P. Barton, L. Hornekaer, G. Reymond, D. Leibfried, J. Eschner, and R. Blatt, “Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps,” J. Mod. Opt. 47, 2573–2582 (2000).
[CrossRef]

Zoller, P.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[CrossRef]

Appl. Phys. B

H. Mabuchi, J. Ye, and H. J. Kimble, “Full observation of single-atom dynamics in cavity QED,” Appl. Phys. B 68, 1095–1108 (1999).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

J. Mod. Opt.

P. W. H. Pinkse, T. Fischer, P. Maunz, T. Puppe, and G. Rempe, “How to catch an atom with single photons,” J. Mod. Opt. 47, 2769–2787 (2000).
[CrossRef]

F. Schmidt-Kaler, Ch. Roos, H. C. Nägerl, H. Rohde, S. Gulde, A. Mundt, M. Lederbauer, G. Thalhammer, Th. Zeiger, P. Barton, L. Hornekaer, G. Reymond, D. Leibfried, J. Eschner, and R. Blatt, “Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps,” J. Mod. Opt. 47, 2573–2582 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Nature

P. W. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[CrossRef] [PubMed]

G. R. Guthöhrlein, M. Keller, K. Hayasaka, W. Lange, and H. Walther, “A single ion as a nanoscopic probe of an optical field,” Nature 414, 49–51 (2001).
[CrossRef] [PubMed]

J. Eschner, Ch. Raab, F. Schmidt-Kaler, and R. Blatt, “Light interference from single atoms and their mirror images,” Nature 413, 495 (2001).
[CrossRef] [PubMed]

Phys. Rev. A

A. Schenzle, R. DeVoe, and R. Brewer, “Phase-modulation laser spectroscopy,” Phys. Rev. A 25, 2606–2621 (1982).
[CrossRef]

Phys. Rev. Lett.

P. Horak, H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe, “Optical kaleidoscope using a single atom,” Phys. Rev. Lett. 88, 043601 (2002).
[CrossRef] [PubMed]

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-decahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[CrossRef] [PubMed]

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

Q. Turchette, C. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995).
[CrossRef] [PubMed]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity-QED,” Phys. Rev. Lett. 83, 5166–5169 (1999).
[CrossRef]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[CrossRef]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

Science

C. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, “The atom cavity microscope: single atoms bound in orbit by single photons,” Science 287, 1447–1453 (2000).
[CrossRef] [PubMed]

Other

R. Blatt and D. Leibfried, “Ion cavity QED, control and measurement of coherent systems,” application for the Austrian Science Foundation SFB12-P2 (Innsbruck, Austria, 1998) pp. 53–76.

A. Mundt, A. Kreuter, C. Becher, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Coupling a single atomic quantum bit to a high finesse optical cavity,” arXiv.org e-print archive quant-ph/0202112 (2002).

H. C. Nägerl, D. Leibfried, F. Schmidt-Kaler, J. Eschner, R. Blatt, M. Brune, J. M. Raimond, and S. Haroche, “Cavity QED experiments: atoms in cavities and trapped ions,” in The Physics of Quantum Information, D. Bouwmeester, A. Ekert, and A. Zeilinger, eds. (Springer, New York, 2000), Chap. 5.2, pp. 133–162.

For the frequency stabilization of the Ti:sapphire laser, the error signal is distributed to several frequency tuning elements inside the laser cavity. For the regulation of the slow-frequency components (≤20 kHz) we use a piezo-driven mirror and a galvo plate, which are standard components in the Coherent ring lasers (CR-866). Fast-frequency components up to 2 MHz are fed to an intracavity electro-optic modulator (PM-25, Linos).

H. Rhode, “Experimente zur Quanteninformationsverarbeitung in einer linearen Ionenfalle,” Ph.D. dissertation (University of Innsbruck, Innsbruck, 2001).

We measured a frequency drift of ~10 Hz/s on a cavity of similar spacer material and construction.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical setup of the high-finesse Fabry–Perot cavity on the isolation platform: PBS, polarizing beam splitter; BS, beam splitter; PD, photodiode; λ/2, half-wave plate; AOM, acousto-optic modulator; EOM, electro-optic modulator. See text for further details.

Fig. 2
Fig. 2

(a) Decay of a stored cavity field as monitored in transmission (solid curve). (b) The cavity is filled with a resonant light field. We observe accelerated cavity decay (dashed curve) monitored in transmission, when the phase of the input light field is switched by 180° (near t=50 µs). Finally, the input light is switched off (near t=100 µs). The ratio of both measured decay constants of 1.95(0.05) agrees with the expected factor of 2.

Fig. 3
Fig. 3

(a) Simulation of the cavity intensity transmission, when the input frequency is varied over the resonance. We plot |Ecav|2 of Eq. (1). The scan rate νω is chosen as 0.1 for the lowest trace and increased by 133% each step in 20 steps, as indicated at the right-hand side of the plot (for clarity, the curves are shifted upward with increasing νω). As the calculation shows, for high νω, the point of highest transmission is shifted toward higher optical frequency detuning, and the transmission level is lowered. (b) Simulated PDH error signal, Re(Ecav), obtained by Eq. (8) in Ref. 11 for different values of νω.

Fig. 4
Fig. 4

Cavity transmission as measured (solid curve) and calculated (dashed) for νω=1.35.

Fig. 5
Fig. 5

PDH error signal as measured for different νω of 0.01 and 1.35 (experiment, solid curve; simulation; dotted curve).

Fig. 6
Fig. 6

Cavity is filled at resonance; then at t=0 the input frequency is switched by 46 kHz.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ecav(0)=iTE0 exp(-iω0t).
Ecav(1)=ρ exp[-iω0(t-τ)]+iTE0 exp(-iωττ)exp[-iωτ(t-τ)].
dEcav/dt˜=-(1-iνωt)Ecav+i(TF/π)E0,

Metrics