Abstract

We present a cw single-frequency laser source with what is to our knowledge the largest emission range ever demonstrated, from the green to the mid-IR range. It employs a cw optical parametric oscillator with subsequent resonant frequency doubling. Typical output powers are 30–500 mW, with 160 mW at 580 nm. Mode-hop-free oscillation, high absolute frequency stability, 20-kHz-signal linewidth, and up to 38-GHz continuous tuning are demonstrated. Both PPLN and PPKTP are used as nonlinear materials, and their performance is compared.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Schneider, P. Kramper, S. Schiller, and J. Mlynek, “Toward an optical synthesizer: a single-frequency parametric oscillator using periodically poled LiNbO3,” Opt. Lett. 22, 1293–1295 (1997).
    [Crossref]
  2. M. E. Klein, C. K. Laue, D.-H. Lee, K.-J. Boller, and R. Wallenstein, “Diode-pumped singly resonant continuous-wave optical parametric oscillator with wide continuous tuning of the near-infrared idler wave,” Opt. Lett. 25, 490–492 (2000).
    [Crossref]
  3. A. Douillet, J.-J. Zondy, A. Yelisseyev, S. Lobanov, and L. Isaenko, “Stability and frequency tuning of thermally loaded continuous-wave AgGaS2 optical parametric oscillators,” J. Opt. Soc. Am. B 16, 1481–1498 (1999).
    [Crossref]
  4. F. G. Colville, A. J. Henderson, M. J. Padgett, J. Zhang, and M. H. Dunn, “Continuous-wave parametric oscillation in lithium triborate,” Opt. Lett. 18, 205–207 (1993).
    [Crossref] [PubMed]
  5. K. Schneider and S. Schiller, “Narrow-linewidth, pump-enhanced singly-resonant parametric oscillator pumped at 532 nm,” Appl. Phys. B 65, 775–777 (1997).
    [Crossref]
  6. M. Tsunekane, S. Kimura, N. Taguchi, and H. Inaba, “Broadband tuning of a continuous-wave doubly resonant, lithium triborate optical parametric oscillator from 791 to 1620 nm,” Appl. Opt. 37, 6459–6462 (1998).
    [Crossref]
  7. U. Strössner, A. Peters, J. Mlynek, S. Schiller, J.-P. Meyn, and R. Wallenstein, “Single-frequency continuous-wave radiation from 0.77 to 1.73 µm generated by a green-pumped optical parametric oscillator with periodically poled LiTaO3,” Opt. Lett. 24, 1602–1604 (1999).
    [Crossref]
  8. D. R. Weise, U. Strössner, A. Peters, J. Mlynek, S. Schiller, A. Arie, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Commun. 184, 329–333 (2000).
    [Crossref]
  9. T. Petelski, R. Conroy, K. Bencheikh, J. Mlynek, and S. Schiller, “All-solid-state, tunable, single-frequency source of yellow light for high-resolution spectroscopy,” Opt. Lett. 26, 1013–1015 (2001).
    [Crossref]
  10. S. T. Yang, R. C. Eckardt, and R. L. Byer, “1.9-W cw ring-cavity KTP singly resonant optical parametric oscillator,” Opt. Lett. 19, 475–477 (1994).
    [Crossref] [PubMed]
  11. M. E. Klein, D.-H. Lee, J.-P. Meyn, K.-J. Boller, and R. Wallenstein, “Singly resonant continuous-wave optical parametric oscillator pumped by a diode laser,” Opt. Lett. 24, 1142–1144 (1999).
    [Crossref]
  12. P. E. Powers, T. J. Kulp, and S. E. Bisson, “Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett. 23, 159–161 (1998).
    [Crossref]
  13. G. Rosenman, A. Skliar, D. Eger, M. Oron, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 3650–3652 (1998).
    [Crossref]
  14. P. Urenski and G. Rosenman, “Pyroelectric effect in KTiOPO4 and family crystals with monodomain and domain patterned structures,” J. Phys. D 33, 2069–2073 (2000).
    [Crossref]
  15. L. E. Myers, R. C. Eckhard, M. M. Fejer, R. L. Byer, E. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [Crossref]
  16. S. Guha, “Focusing dependence of the efficiency of a singly resonant optical parametric oscillator,” Appl. Phys. B 66, 663–675 (1998).
    [Crossref]
  17. K. Drühl, “Diffractive effects in singly resonant continuous-wave parametric oscillators,” Appl. Phys. B 66, 677–683 (1998).
    [Crossref]
  18. S. Schiller, K. Schneider, and J. Mlynek, “Theory of an optical parametric oscillator with resonant pump and signal,” J. Opt. Soc. Am. B 16, 1512–1524 (1999).
    [Crossref]
  19. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
    [Crossref]
  20. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373 (1984).
    [Crossref]
  21. K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
    [Crossref]
  22. K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 2723 (1999), Erratum.
    [Crossref]
  23. W. Wiechmann, S. Kubota, T. Fukui, and H. Masuda, “Refractive-index temperature derivatives of potassium titanyl phosphate,” Opt. Lett. 18, 1208–1210 (1993).
    [Crossref] [PubMed]
  24. K. Kato, “Temperature insensitive SHG at 0.5321 µm in KTP,” IEEE J. Quantum Electron. 28, 1974–1976 (1992).
    [Crossref]
  25. B. Boulanger, J. P. Feve, and Y. Guillien, “Thermo-optical effect and saturation of nonlinear absorption induced by gray tracking in a 532-nm-pumped KTP optical parametric oscillator,” Opt. Lett. 25, 484–486 (2000).
    [Crossref]
  26. A. Hecker, C. Braxmaier, U. Stroß̈ner, M. Havenith, and A. Peters, “High resolution Doppler-free spectroscopy of molecular iodine using a continuous-wave optical parametric oscillator,” manuscript in preparation.

2001 (1)

2000 (4)

M. E. Klein, C. K. Laue, D.-H. Lee, K.-J. Boller, and R. Wallenstein, “Diode-pumped singly resonant continuous-wave optical parametric oscillator with wide continuous tuning of the near-infrared idler wave,” Opt. Lett. 25, 490–492 (2000).
[Crossref]

P. Urenski and G. Rosenman, “Pyroelectric effect in KTiOPO4 and family crystals with monodomain and domain patterned structures,” J. Phys. D 33, 2069–2073 (2000).
[Crossref]

D. R. Weise, U. Strössner, A. Peters, J. Mlynek, S. Schiller, A. Arie, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Commun. 184, 329–333 (2000).
[Crossref]

B. Boulanger, J. P. Feve, and Y. Guillien, “Thermo-optical effect and saturation of nonlinear absorption induced by gray tracking in a 532-nm-pumped KTP optical parametric oscillator,” Opt. Lett. 25, 484–486 (2000).
[Crossref]

1999 (6)

1998 (5)

M. Tsunekane, S. Kimura, N. Taguchi, and H. Inaba, “Broadband tuning of a continuous-wave doubly resonant, lithium triborate optical parametric oscillator from 791 to 1620 nm,” Appl. Opt. 37, 6459–6462 (1998).
[Crossref]

S. Guha, “Focusing dependence of the efficiency of a singly resonant optical parametric oscillator,” Appl. Phys. B 66, 663–675 (1998).
[Crossref]

K. Drühl, “Diffractive effects in singly resonant continuous-wave parametric oscillators,” Appl. Phys. B 66, 677–683 (1998).
[Crossref]

P. E. Powers, T. J. Kulp, and S. E. Bisson, “Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett. 23, 159–161 (1998).
[Crossref]

G. Rosenman, A. Skliar, D. Eger, M. Oron, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 3650–3652 (1998).
[Crossref]

1997 (3)

1995 (1)

1994 (1)

1993 (2)

1992 (1)

K. Kato, “Temperature insensitive SHG at 0.5321 µm in KTP,” IEEE J. Quantum Electron. 28, 1974–1976 (1992).
[Crossref]

1984 (1)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373 (1984).
[Crossref]

Arie, A.

D. R. Weise, U. Strössner, A. Peters, J. Mlynek, S. Schiller, A. Arie, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Commun. 184, 329–333 (2000).
[Crossref]

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[Crossref]

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 2723 (1999), Erratum.
[Crossref]

Bencheikh, K.

Bisson, S. E.

Boller, K.-J.

Bosenberg, E. R.

Boulanger, B.

Braxmaier, C.

A. Hecker, C. Braxmaier, U. Stroß̈ner, M. Havenith, and A. Peters, “High resolution Doppler-free spectroscopy of molecular iodine using a continuous-wave optical parametric oscillator,” manuscript in preparation.

Byer, R. L.

Colville, F. G.

Conroy, R.

Douillet, A.

Drühl, K.

K. Drühl, “Diffractive effects in singly resonant continuous-wave parametric oscillators,” Appl. Phys. B 66, 677–683 (1998).
[Crossref]

Dunn, M. H.

Eckardt, R. C.

Eckhard, R. C.

Edwards, G. J.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373 (1984).
[Crossref]

Eger, D.

G. Rosenman, A. Skliar, D. Eger, M. Oron, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 3650–3652 (1998).
[Crossref]

Fejer, M. M.

Feve, J. P.

Fradkin, K.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[Crossref]

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 2723 (1999), Erratum.
[Crossref]

Fukui, T.

Guha, S.

S. Guha, “Focusing dependence of the efficiency of a singly resonant optical parametric oscillator,” Appl. Phys. B 66, 663–675 (1998).
[Crossref]

Guillien, Y.

Havenith, M.

A. Hecker, C. Braxmaier, U. Stroß̈ner, M. Havenith, and A. Peters, “High resolution Doppler-free spectroscopy of molecular iodine using a continuous-wave optical parametric oscillator,” manuscript in preparation.

Hecker, A.

A. Hecker, C. Braxmaier, U. Stroß̈ner, M. Havenith, and A. Peters, “High resolution Doppler-free spectroscopy of molecular iodine using a continuous-wave optical parametric oscillator,” manuscript in preparation.

Henderson, A. J.

Inaba, H.

Isaenko, L.

Jundt, D. H.

Kato, K.

K. Kato, “Temperature insensitive SHG at 0.5321 µm in KTP,” IEEE J. Quantum Electron. 28, 1974–1976 (1992).
[Crossref]

Katz, M.

G. Rosenman, A. Skliar, D. Eger, M. Oron, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 3650–3652 (1998).
[Crossref]

Kimura, S.

Klein, M. E.

Kramper, P.

Kubota, S.

Kulp, T. J.

Laue, C. K.

Lawrence, M.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373 (1984).
[Crossref]

Lee, D.-H.

Lobanov, S.

Masuda, H.

Meyn, J.-P.

Mlynek, J.

Myers, L. E.

Oron, M.

G. Rosenman, A. Skliar, D. Eger, M. Oron, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 3650–3652 (1998).
[Crossref]

Padgett, M. J.

Petelski, T.

Peters, A.

D. R. Weise, U. Strössner, A. Peters, J. Mlynek, S. Schiller, A. Arie, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Commun. 184, 329–333 (2000).
[Crossref]

U. Strössner, A. Peters, J. Mlynek, S. Schiller, J.-P. Meyn, and R. Wallenstein, “Single-frequency continuous-wave radiation from 0.77 to 1.73 µm generated by a green-pumped optical parametric oscillator with periodically poled LiTaO3,” Opt. Lett. 24, 1602–1604 (1999).
[Crossref]

A. Hecker, C. Braxmaier, U. Stroß̈ner, M. Havenith, and A. Peters, “High resolution Doppler-free spectroscopy of molecular iodine using a continuous-wave optical parametric oscillator,” manuscript in preparation.

Pierce, J. W.

Powers, P. E.

Rosenman, G.

P. Urenski and G. Rosenman, “Pyroelectric effect in KTiOPO4 and family crystals with monodomain and domain patterned structures,” J. Phys. D 33, 2069–2073 (2000).
[Crossref]

D. R. Weise, U. Strössner, A. Peters, J. Mlynek, S. Schiller, A. Arie, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Commun. 184, 329–333 (2000).
[Crossref]

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[Crossref]

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 2723 (1999), Erratum.
[Crossref]

G. Rosenman, A. Skliar, D. Eger, M. Oron, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 3650–3652 (1998).
[Crossref]

Schiller, S.

Schneider, K.

Skliar, A.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 2723 (1999), Erratum.
[Crossref]

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[Crossref]

G. Rosenman, A. Skliar, D. Eger, M. Oron, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 3650–3652 (1998).
[Crossref]

Stroߨner, U.

A. Hecker, C. Braxmaier, U. Stroß̈ner, M. Havenith, and A. Peters, “High resolution Doppler-free spectroscopy of molecular iodine using a continuous-wave optical parametric oscillator,” manuscript in preparation.

Strössner, U.

D. R. Weise, U. Strössner, A. Peters, J. Mlynek, S. Schiller, A. Arie, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Commun. 184, 329–333 (2000).
[Crossref]

U. Strössner, A. Peters, J. Mlynek, S. Schiller, J.-P. Meyn, and R. Wallenstein, “Single-frequency continuous-wave radiation from 0.77 to 1.73 µm generated by a green-pumped optical parametric oscillator with periodically poled LiTaO3,” Opt. Lett. 24, 1602–1604 (1999).
[Crossref]

Taguchi, N.

Tsunekane, M.

Urenski, P.

P. Urenski and G. Rosenman, “Pyroelectric effect in KTiOPO4 and family crystals with monodomain and domain patterned structures,” J. Phys. D 33, 2069–2073 (2000).
[Crossref]

Wallenstein, R.

Weise, D. R.

D. R. Weise, U. Strössner, A. Peters, J. Mlynek, S. Schiller, A. Arie, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Commun. 184, 329–333 (2000).
[Crossref]

Wiechmann, W.

Yang, S. T.

Yelisseyev, A.

Zhang, J.

Zondy, J.-J.

Appl. Opt. (1)

Appl. Phys. B (3)

S. Guha, “Focusing dependence of the efficiency of a singly resonant optical parametric oscillator,” Appl. Phys. B 66, 663–675 (1998).
[Crossref]

K. Drühl, “Diffractive effects in singly resonant continuous-wave parametric oscillators,” Appl. Phys. B 66, 677–683 (1998).
[Crossref]

K. Schneider and S. Schiller, “Narrow-linewidth, pump-enhanced singly-resonant parametric oscillator pumped at 532 nm,” Appl. Phys. B 65, 775–777 (1997).
[Crossref]

Appl. Phys. Lett. (3)

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[Crossref]

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 2723 (1999), Erratum.
[Crossref]

G. Rosenman, A. Skliar, D. Eger, M. Oron, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 3650–3652 (1998).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Kato, “Temperature insensitive SHG at 0.5321 µm in KTP,” IEEE J. Quantum Electron. 28, 1974–1976 (1992).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. D (1)

P. Urenski and G. Rosenman, “Pyroelectric effect in KTiOPO4 and family crystals with monodomain and domain patterned structures,” J. Phys. D 33, 2069–2073 (2000).
[Crossref]

Opt. Commun. (1)

D. R. Weise, U. Strössner, A. Peters, J. Mlynek, S. Schiller, A. Arie, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Commun. 184, 329–333 (2000).
[Crossref]

Opt. Lett. (11)

T. Petelski, R. Conroy, K. Bencheikh, J. Mlynek, and S. Schiller, “All-solid-state, tunable, single-frequency source of yellow light for high-resolution spectroscopy,” Opt. Lett. 26, 1013–1015 (2001).
[Crossref]

S. T. Yang, R. C. Eckardt, and R. L. Byer, “1.9-W cw ring-cavity KTP singly resonant optical parametric oscillator,” Opt. Lett. 19, 475–477 (1994).
[Crossref] [PubMed]

M. E. Klein, D.-H. Lee, J.-P. Meyn, K.-J. Boller, and R. Wallenstein, “Singly resonant continuous-wave optical parametric oscillator pumped by a diode laser,” Opt. Lett. 24, 1142–1144 (1999).
[Crossref]

P. E. Powers, T. J. Kulp, and S. E. Bisson, “Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett. 23, 159–161 (1998).
[Crossref]

F. G. Colville, A. J. Henderson, M. J. Padgett, J. Zhang, and M. H. Dunn, “Continuous-wave parametric oscillation in lithium triborate,” Opt. Lett. 18, 205–207 (1993).
[Crossref] [PubMed]

K. Schneider, P. Kramper, S. Schiller, and J. Mlynek, “Toward an optical synthesizer: a single-frequency parametric oscillator using periodically poled LiNbO3,” Opt. Lett. 22, 1293–1295 (1997).
[Crossref]

M. E. Klein, C. K. Laue, D.-H. Lee, K.-J. Boller, and R. Wallenstein, “Diode-pumped singly resonant continuous-wave optical parametric oscillator with wide continuous tuning of the near-infrared idler wave,” Opt. Lett. 25, 490–492 (2000).
[Crossref]

U. Strössner, A. Peters, J. Mlynek, S. Schiller, J.-P. Meyn, and R. Wallenstein, “Single-frequency continuous-wave radiation from 0.77 to 1.73 µm generated by a green-pumped optical parametric oscillator with periodically poled LiTaO3,” Opt. Lett. 24, 1602–1604 (1999).
[Crossref]

D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
[Crossref]

W. Wiechmann, S. Kubota, T. Fukui, and H. Masuda, “Refractive-index temperature derivatives of potassium titanyl phosphate,” Opt. Lett. 18, 1208–1210 (1993).
[Crossref] [PubMed]

B. Boulanger, J. P. Feve, and Y. Guillien, “Thermo-optical effect and saturation of nonlinear absorption induced by gray tracking in a 532-nm-pumped KTP optical parametric oscillator,” Opt. Lett. 25, 484–486 (2000).
[Crossref]

Opt. Quantum Electron. (1)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373 (1984).
[Crossref]

Other (1)

A. Hecker, C. Braxmaier, U. Stroß̈ner, M. Havenith, and A. Peters, “High resolution Doppler-free spectroscopy of molecular iodine using a continuous-wave optical parametric oscillator,” manuscript in preparation.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

OPO and second-harmonic-generation setup. EOM, electro-optic modulator. Pump laser, optical isolator, ovens, and lock electronics are not shown. The total area of the setup including pump laser and beam analysis is 1.1 m2.

Fig. 2
Fig. 2

(a) Frequency-doubled idler, (b) signal, and (c) idler power versus wavelength. Left, PPLN with and without etalon; right, PPKTP without etalon. Shaded areas, measured powers; curves, conservative estimates of the signal and doubled idler power expected for optimized outcoupling and incoupling mirrors.

Fig. 3
Fig. 3

Jitter of the free-running OPO. Each point corresponds to a 100-µs frequency measurement.

Fig. 4
Fig. 4

Spectrum of the beat signal between the OPO signal wave and a 946-nm Nd:YAG laser. The OPO cavity is locked to the laser with a bandwidth of 4 kHz. The sampling time is 50 ms.

Fig. 5
Fig. 5

Continuous tuning of the PPKTP OPO with fixed pump wavelength by changing the cavity length and using closed-loop control of etalon tilt; measured with a high-resolution wavemeter. Occasional spikes in the upper curve are most likely due to wavemeter malfunction.

Fig. 6
Fig. 6

Frequency measured with a high-resolution wavemeter and power stability of the PPLN OPO with 0.5-mm etalon and 1.6 W of pump power. The OPO cavity length is locked to the pump laser frequency. Also shown is the output power of the frequency doubler.

Metrics