Abstract

We present a cw single-frequency laser source with what is to our knowledge the largest emission range ever demonstrated, from the green to the mid-IR range. It employs a cw optical parametric oscillator with subsequent resonant frequency doubling. Typical output powers are 30–500 mW, with 160 mW at 580 nm. Mode-hop-free oscillation, high absolute frequency stability, 20-kHz-signal linewidth, and up to 38-GHz continuous tuning are demonstrated. Both PPLN and PPKTP are used as nonlinear materials, and their performance is compared.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Schneider, P. Kramper, S. Schiller, and J. Mlynek, “Toward an optical synthesizer: a single-frequency parametric oscillator using periodically poled LiNbO3,” Opt. Lett. 22, 1293–1295 (1997).
    [CrossRef]
  2. M. E. Klein, C. K. Laue, D.-H. Lee, K.-J. Boller, and R. Wallenstein, “Diode-pumped singly resonant continuous-wave optical parametric oscillator with wide continuous tuning of the near-infrared idler wave,” Opt. Lett. 25, 490–492 (2000).
    [CrossRef]
  3. A. Douillet, J.-J. Zondy, A. Yelisseyev, S. Lobanov, and L. Isaenko, “Stability and frequency tuning of thermally loaded continuous-wave AgGaS2 optical parametric oscillators,” J. Opt. Soc. Am. B 16, 1481–1498 (1999).
    [CrossRef]
  4. F. G. Colville, A. J. Henderson, M. J. Padgett, J. Zhang, and M. H. Dunn, “Continuous-wave parametric oscillation in lithium triborate,” Opt. Lett. 18, 205–207 (1993).
    [CrossRef] [PubMed]
  5. K. Schneider and S. Schiller, “Narrow-linewidth, pump-enhanced singly-resonant parametric oscillator pumped at 532 nm,” Appl. Phys. B 65, 775–777 (1997).
    [CrossRef]
  6. M. Tsunekane, S. Kimura, N. Taguchi, and H. Inaba, “Broadband tuning of a continuous-wave doubly resonant, lithium triborate optical parametric oscillator from 791 to 1620 nm,” Appl. Opt. 37, 6459–6462 (1998).
    [CrossRef]
  7. U. Strössner, A. Peters, J. Mlynek, S. Schiller, J.-P. Meyn, and R. Wallenstein, “Single-frequency continuous-wave radiation from 0.77 to 1.73 μm generated by a green-pumped optical parametric oscillator with periodically poled LiTaO3,” Opt. Lett. 24, 1602–1604 (1999).
    [CrossRef]
  8. D. R. Weise, U. Strössner, A. Peters, J. Mlynek, S. Schiller, A. Arie, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Commun. 184, 329–333 (2000).
    [CrossRef]
  9. T. Petelski, R. Conroy, K. Bencheikh, J. Mlynek, and S. Schiller, “All-solid-state, tunable, single-frequency source of yellow light for high-resolution spectroscopy,” Opt. Lett. 26, 1013–1015 (2001).
    [CrossRef]
  10. S. T. Yang, R. C. Eckardt, and R. L. Byer, “1.9-W cw ring-cavity KTP singly resonant optical parametric oscillator,” Opt. Lett. 19, 475–477 (1994).
    [CrossRef] [PubMed]
  11. M. E. Klein, D.-H. Lee, J.-P. Meyn, K.-J. Boller, and R. Wallenstein, “Singly resonant continuous-wave optical parametric oscillator pumped by a diode laser,” Opt. Lett. 24, 1142–1144 (1999).
    [CrossRef]
  12. P. E. Powers, T. J. Kulp, and S. E. Bisson, “Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett. 23, 159–161 (1998).
    [CrossRef]
  13. G. Rosenman, A. Skliar, D. Eger, M. Oron, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 3650–3652 (1998).
    [CrossRef]
  14. P. Urenski and G. Rosenman, “Pyroelectric effect in KTiOPO4 and family crystals with monodomain and domain patterned structures,” J. Phys. D 33, 2069–2073 (2000).
    [CrossRef]
  15. L. E. Myers, R. C. Eckhard, M. M. Fejer, R. L. Byer, E. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [CrossRef]
  16. S. Guha, “Focusing dependence of the efficiency of a singly resonant optical parametric oscillator,” Appl. Phys. B 66, 663–675 (1998).
    [CrossRef]
  17. K. Drühl, “Diffractive effects in singly resonant continuous-wave parametric oscillators,” Appl. Phys. B 66, 677–683 (1998).
    [CrossRef]
  18. S. Schiller, K. Schneider, and J. Mlynek, “Theory of an optical parametric oscillator with resonant pump and signal,” J. Opt. Soc. Am. B 16, 1512–1524 (1999).
    [CrossRef]
  19. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
    [CrossRef]
  20. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373 (1984).
    [CrossRef]
  21. K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
    [CrossRef]
  22. K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 2723 (1999), Erratum.
    [CrossRef]
  23. W. Wiechmann, S. Kubota, T. Fukui, and H. Masuda, “Refractive-index temperature derivatives of potassium titanyl phosphate,” Opt. Lett. 18, 1208–1210 (1993).
    [CrossRef] [PubMed]
  24. K. Kato, “Temperature insensitive SHG at 0.5321 μm in KTP,” IEEE J. Quantum Electron. 28, 1974–1976 (1992).
    [CrossRef]
  25. B. Boulanger, J. P. Feve, and Y. Guillien, “Thermo-optical effect and saturation of nonlinear absorption induced by gray tracking in a 532-nm-pumped KTP optical parametric oscillator,” Opt. Lett. 25, 484–486 (2000).
    [CrossRef]
  26. A. Hecker, C. Braxmaier, U. Strößner, M. Havenith, and A. Peters, “High resolution Doppler-free spectroscopy of molecular iodine using a continuous-wave optical parametric oscillator,” manuscript in preparation.

2001 (1)

2000 (4)

D. R. Weise, U. Strössner, A. Peters, J. Mlynek, S. Schiller, A. Arie, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Commun. 184, 329–333 (2000).
[CrossRef]

P. Urenski and G. Rosenman, “Pyroelectric effect in KTiOPO4 and family crystals with monodomain and domain patterned structures,” J. Phys. D 33, 2069–2073 (2000).
[CrossRef]

B. Boulanger, J. P. Feve, and Y. Guillien, “Thermo-optical effect and saturation of nonlinear absorption induced by gray tracking in a 532-nm-pumped KTP optical parametric oscillator,” Opt. Lett. 25, 484–486 (2000).
[CrossRef]

M. E. Klein, C. K. Laue, D.-H. Lee, K.-J. Boller, and R. Wallenstein, “Diode-pumped singly resonant continuous-wave optical parametric oscillator with wide continuous tuning of the near-infrared idler wave,” Opt. Lett. 25, 490–492 (2000).
[CrossRef]

1999 (6)

1998 (5)

M. Tsunekane, S. Kimura, N. Taguchi, and H. Inaba, “Broadband tuning of a continuous-wave doubly resonant, lithium triborate optical parametric oscillator from 791 to 1620 nm,” Appl. Opt. 37, 6459–6462 (1998).
[CrossRef]

P. E. Powers, T. J. Kulp, and S. E. Bisson, “Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett. 23, 159–161 (1998).
[CrossRef]

G. Rosenman, A. Skliar, D. Eger, M. Oron, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 3650–3652 (1998).
[CrossRef]

S. Guha, “Focusing dependence of the efficiency of a singly resonant optical parametric oscillator,” Appl. Phys. B 66, 663–675 (1998).
[CrossRef]

K. Drühl, “Diffractive effects in singly resonant continuous-wave parametric oscillators,” Appl. Phys. B 66, 677–683 (1998).
[CrossRef]

1997 (3)

1995 (1)

1994 (1)

1993 (2)

1992 (1)

K. Kato, “Temperature insensitive SHG at 0.5321 μm in KTP,” IEEE J. Quantum Electron. 28, 1974–1976 (1992).
[CrossRef]

1984 (1)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Arie, A.

D. R. Weise, U. Strössner, A. Peters, J. Mlynek, S. Schiller, A. Arie, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Commun. 184, 329–333 (2000).
[CrossRef]

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 2723 (1999), Erratum.
[CrossRef]

Bencheikh, K.

Bisson, S. E.

Boller, K.-J.

Bosenberg, E. R.

Boulanger, B.

Byer, R. L.

Colville, F. G.

Conroy, R.

Douillet, A.

Drühl, K.

K. Drühl, “Diffractive effects in singly resonant continuous-wave parametric oscillators,” Appl. Phys. B 66, 677–683 (1998).
[CrossRef]

Dunn, M. H.

Eckardt, R. C.

Eckhard, R. C.

Edwards, G. J.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Eger, D.

G. Rosenman, A. Skliar, D. Eger, M. Oron, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 3650–3652 (1998).
[CrossRef]

Fejer, M. M.

Feve, J. P.

Fradkin, K.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 2723 (1999), Erratum.
[CrossRef]

Fukui, T.

Guha, S.

S. Guha, “Focusing dependence of the efficiency of a singly resonant optical parametric oscillator,” Appl. Phys. B 66, 663–675 (1998).
[CrossRef]

Guillien, Y.

Henderson, A. J.

Inaba, H.

Isaenko, L.

Jundt, D. H.

Kato, K.

K. Kato, “Temperature insensitive SHG at 0.5321 μm in KTP,” IEEE J. Quantum Electron. 28, 1974–1976 (1992).
[CrossRef]

Katz, M.

G. Rosenman, A. Skliar, D. Eger, M. Oron, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 3650–3652 (1998).
[CrossRef]

Kimura, S.

Klein, M. E.

Kramper, P.

Kubota, S.

Kulp, T. J.

Laue, C. K.

Lawrence, M.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Lee, D.-H.

Lobanov, S.

Masuda, H.

Meyn, J.-P.

Mlynek, J.

Myers, L. E.

Oron, M.

G. Rosenman, A. Skliar, D. Eger, M. Oron, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 3650–3652 (1998).
[CrossRef]

Padgett, M. J.

Petelski, T.

Peters, A.

D. R. Weise, U. Strössner, A. Peters, J. Mlynek, S. Schiller, A. Arie, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Commun. 184, 329–333 (2000).
[CrossRef]

U. Strössner, A. Peters, J. Mlynek, S. Schiller, J.-P. Meyn, and R. Wallenstein, “Single-frequency continuous-wave radiation from 0.77 to 1.73 μm generated by a green-pumped optical parametric oscillator with periodically poled LiTaO3,” Opt. Lett. 24, 1602–1604 (1999).
[CrossRef]

Pierce, J. W.

Powers, P. E.

Rosenman, G.

D. R. Weise, U. Strössner, A. Peters, J. Mlynek, S. Schiller, A. Arie, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Commun. 184, 329–333 (2000).
[CrossRef]

P. Urenski and G. Rosenman, “Pyroelectric effect in KTiOPO4 and family crystals with monodomain and domain patterned structures,” J. Phys. D 33, 2069–2073 (2000).
[CrossRef]

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 2723 (1999), Erratum.
[CrossRef]

G. Rosenman, A. Skliar, D. Eger, M. Oron, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 3650–3652 (1998).
[CrossRef]

Schiller, S.

Schneider, K.

Skliar, A.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 2723 (1999), Erratum.
[CrossRef]

G. Rosenman, A. Skliar, D. Eger, M. Oron, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 3650–3652 (1998).
[CrossRef]

Strössner, U.

D. R. Weise, U. Strössner, A. Peters, J. Mlynek, S. Schiller, A. Arie, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Commun. 184, 329–333 (2000).
[CrossRef]

U. Strössner, A. Peters, J. Mlynek, S. Schiller, J.-P. Meyn, and R. Wallenstein, “Single-frequency continuous-wave radiation from 0.77 to 1.73 μm generated by a green-pumped optical parametric oscillator with periodically poled LiTaO3,” Opt. Lett. 24, 1602–1604 (1999).
[CrossRef]

Taguchi, N.

Tsunekane, M.

Urenski, P.

P. Urenski and G. Rosenman, “Pyroelectric effect in KTiOPO4 and family crystals with monodomain and domain patterned structures,” J. Phys. D 33, 2069–2073 (2000).
[CrossRef]

Wallenstein, R.

Weise, D. R.

D. R. Weise, U. Strössner, A. Peters, J. Mlynek, S. Schiller, A. Arie, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Commun. 184, 329–333 (2000).
[CrossRef]

Wiechmann, W.

Yang, S. T.

Yelisseyev, A.

Zhang, J.

Zondy, J.-J.

Appl. Opt. (1)

Appl. Phys. B (3)

K. Schneider and S. Schiller, “Narrow-linewidth, pump-enhanced singly-resonant parametric oscillator pumped at 532 nm,” Appl. Phys. B 65, 775–777 (1997).
[CrossRef]

S. Guha, “Focusing dependence of the efficiency of a singly resonant optical parametric oscillator,” Appl. Phys. B 66, 663–675 (1998).
[CrossRef]

K. Drühl, “Diffractive effects in singly resonant continuous-wave parametric oscillators,” Appl. Phys. B 66, 677–683 (1998).
[CrossRef]

Appl. Phys. Lett. (3)

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 2723 (1999), Erratum.
[CrossRef]

G. Rosenman, A. Skliar, D. Eger, M. Oron, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 3650–3652 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Kato, “Temperature insensitive SHG at 0.5321 μm in KTP,” IEEE J. Quantum Electron. 28, 1974–1976 (1992).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. D (1)

P. Urenski and G. Rosenman, “Pyroelectric effect in KTiOPO4 and family crystals with monodomain and domain patterned structures,” J. Phys. D 33, 2069–2073 (2000).
[CrossRef]

Opt. Commun. (1)

D. R. Weise, U. Strössner, A. Peters, J. Mlynek, S. Schiller, A. Arie, and G. Rosenman, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4,” Opt. Commun. 184, 329–333 (2000).
[CrossRef]

Opt. Lett. (11)

K. Schneider, P. Kramper, S. Schiller, and J. Mlynek, “Toward an optical synthesizer: a single-frequency parametric oscillator using periodically poled LiNbO3,” Opt. Lett. 22, 1293–1295 (1997).
[CrossRef]

D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
[CrossRef]

P. E. Powers, T. J. Kulp, and S. E. Bisson, “Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett. 23, 159–161 (1998).
[CrossRef]

M. E. Klein, D.-H. Lee, J.-P. Meyn, K.-J. Boller, and R. Wallenstein, “Singly resonant continuous-wave optical parametric oscillator pumped by a diode laser,” Opt. Lett. 24, 1142–1144 (1999).
[CrossRef]

U. Strössner, A. Peters, J. Mlynek, S. Schiller, J.-P. Meyn, and R. Wallenstein, “Single-frequency continuous-wave radiation from 0.77 to 1.73 μm generated by a green-pumped optical parametric oscillator with periodically poled LiTaO3,” Opt. Lett. 24, 1602–1604 (1999).
[CrossRef]

T. Petelski, R. Conroy, K. Bencheikh, J. Mlynek, and S. Schiller, “All-solid-state, tunable, single-frequency source of yellow light for high-resolution spectroscopy,” Opt. Lett. 26, 1013–1015 (2001).
[CrossRef]

B. Boulanger, J. P. Feve, and Y. Guillien, “Thermo-optical effect and saturation of nonlinear absorption induced by gray tracking in a 532-nm-pumped KTP optical parametric oscillator,” Opt. Lett. 25, 484–486 (2000).
[CrossRef]

M. E. Klein, C. K. Laue, D.-H. Lee, K.-J. Boller, and R. Wallenstein, “Diode-pumped singly resonant continuous-wave optical parametric oscillator with wide continuous tuning of the near-infrared idler wave,” Opt. Lett. 25, 490–492 (2000).
[CrossRef]

F. G. Colville, A. J. Henderson, M. J. Padgett, J. Zhang, and M. H. Dunn, “Continuous-wave parametric oscillation in lithium triborate,” Opt. Lett. 18, 205–207 (1993).
[CrossRef] [PubMed]

W. Wiechmann, S. Kubota, T. Fukui, and H. Masuda, “Refractive-index temperature derivatives of potassium titanyl phosphate,” Opt. Lett. 18, 1208–1210 (1993).
[CrossRef] [PubMed]

S. T. Yang, R. C. Eckardt, and R. L. Byer, “1.9-W cw ring-cavity KTP singly resonant optical parametric oscillator,” Opt. Lett. 19, 475–477 (1994).
[CrossRef] [PubMed]

Opt. Quantum Electron. (1)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Other (1)

A. Hecker, C. Braxmaier, U. Strößner, M. Havenith, and A. Peters, “High resolution Doppler-free spectroscopy of molecular iodine using a continuous-wave optical parametric oscillator,” manuscript in preparation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

OPO and second-harmonic-generation setup. EOM, electro-optic modulator. Pump laser, optical isolator, ovens, and lock electronics are not shown. The total area of the setup including pump laser and beam analysis is 1.1 m2.

Fig. 2
Fig. 2

(a) Frequency-doubled idler, (b) signal, and (c) idler power versus wavelength. Left, PPLN with and without etalon; right, PPKTP without etalon. Shaded areas, measured powers; curves, conservative estimates of the signal and doubled idler power expected for optimized outcoupling and incoupling mirrors.

Fig. 3
Fig. 3

Jitter of the free-running OPO. Each point corresponds to a 100-µs frequency measurement.

Fig. 4
Fig. 4

Spectrum of the beat signal between the OPO signal wave and a 946-nm Nd:YAG laser. The OPO cavity is locked to the laser with a bandwidth of 4 kHz. The sampling time is 50 ms.

Fig. 5
Fig. 5

Continuous tuning of the PPKTP OPO with fixed pump wavelength by changing the cavity length and using closed-loop control of etalon tilt; measured with a high-resolution wavemeter. Occasional spikes in the upper curve are most likely due to wavemeter malfunction.

Fig. 6
Fig. 6

Frequency measured with a high-resolution wavemeter and power stability of the PPLN OPO with 0.5-mm etalon and 1.6 W of pump power. The OPO cavity length is locked to the pump laser frequency. Also shown is the output power of the frequency doubler.

Metrics