Abstract

A simple theoretical model of the ultraviolet laser radiation generated by self-frequency sum mixing in a single argon-pumped Nd3+-doped nonlinear crystal is proposed. Self-absorption by both absorption edge and Nd3+ bands lying in the ultraviolet range is taken into account. The model is then applied to Nd3+:YAl3(BO3)4, Nd3+:GdCa4O(BO3)3, and Nd3+:YCa4O(BO3)3 borate laser crystals. The crystal length, pump wavelength, and Nd3 concentration that optimize the pump to ultraviolet efficiency are determined for each case. The ultraviolet output power is found to be tens of milliwatts for a pump power of 2 W.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Lien, R. A. John, M. Angelopoulos, K. E. Lee, H. Takano, K. Tajima, and A. Takenaka, “UV modification of surface pretilt of alignment layers for multidomain liquid crystal displays,” Appl. Phys. Lett. 67, 3108–3110 (1995).
    [CrossRef]
  2. J. Holtz, R. W. Bormett, C. Zhenhuan, C. Namjun, X. G. Chen, V. Pajcini, S. A. Asher, L. Spinelli, P. Owen, and M. Arrigoni, “Applications of a new 206.5-nm continuous-wave laser source: UV Raman determination of protein secondary structure and CVD diamond material properties,” Appl. Spectrosc. 50, 1459–1568 (1996).
    [CrossRef]
  3. M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995).
    [CrossRef] [PubMed]
  4. M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, and S. Kubota, “Deep UV mastering using an all-solid-state 266 nm laser for an over 20 Gbytes/layer capacity disk,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
    [CrossRef]
  5. T. Makino, N. T. Tuan, H. D. Sun, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Temperature dependence of near ultraviolet photoluminescence in ZnO/(MgO, Zn)O multiple quantum wells,” Appl. Phys. Lett. 78, 1979–1981 (2001).
    [CrossRef]
  6. Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakumura, “Dynamics of optical gain in InxGa1−xN multi-quantum-well-based laser diodes,” Appl. Phys. Lett. 77, 2151–2153 (2000).
    [CrossRef]
  7. S. Bidnyk, J. B. Lam, D. Little, Y. H. Kwon, J. J. Song, G. E. Bulman, H. S. Kong, and T. J. Schmidt, “Mechanism of efficient ultraviolet lasing in GaN/AlGaN separate-confinement heterostructures,” Appl. Phys. Lett. 75, 3905–3907 (1999).
    [CrossRef]
  8. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).
  9. T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. 30, 1–54 (2000).
    [CrossRef]
  10. Y. Kaneda and S. Kubota, “Continuous wave 355-nm laser source based on doubly resonant sum-frequency mixing in an external resonator,” Opt. Lett. 20, 2204–2206 (1995).
    [CrossRef]
  11. M. Watanabe, K. Hayasaka, H. Imajo, R. Ohmukai, and S. Urabe, “Sum frequency generation near 194 nm with an external cavity by simultaneous enhancement of frequency-stabilized fundamental lasers,” Jpn. J. Appl. Phys. 33, 1599–1602 (1994).
    [CrossRef]
  12. Y. Kaneda and S. Kubota, “Continuous wave 355 nm all solid state laser,” in Conference on Lasers and Electro Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 236–242.
  13. Y. Kaneda, S. Kubota, H. Yamatsu, M. Furuki, K. Kurokawa, and T. Kashiwagi, “Disk mastering processes with an all-solid-state ultraviolet laser,” Jpn. J. Appl. Phys. 37, 2125–2129 (1998).
    [CrossRef]
  14. S. Sayama and M. Ohtsu, “Tunable UV cw generation by frequency tripling of a Ti:sapphire laser,” Opt. Commun. 137, 295–298 (1997).
    [CrossRef]
  15. F. Huang, Q. Luo, T. Lou, T. Yu, J. Dong, B. Lei, and Y. Wei, “Tunable solid state UV laser,” Opt. Laser Technol. 33, 111–115 (2001).
    [CrossRef]
  16. S. Sayama and M. Ohtsu, “Tunable UV cw generation at 276 nm wavelength by frequency conversion of laser diodes,” Opt. Commun. 145, 95–97 (1998).
    [CrossRef]
  17. J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76, 1234–1236 (2000).
    [CrossRef]
  18. A. A. Kaminskii, Laser Crystals (Springer-Verlag, Berlin, 1981).
  19. D. Jaque, J. Capmany, F. Molero, and J. García Solé, “Blue light laser source by frequency sum in Nd:YAB,” Appl. Phys. Lett. 73, 3659–3661 (1998).
    [CrossRef]
  20. D. Jaque, J. Capmany, and J. García Solé, “Red, green and blue laser light from a single NYAB crystal based on laser oscillation at 1.3 μm,” Appl. Phys. Lett. 75, 325–327 (1999).
    [CrossRef]
  21. D. Jaque, J. Capmany, and J. García Solé, “Continuous wave laser radiation at 669 nm from a self-frequency-doubled laser of YAl3(BO3)4:Nd,” Appl. Phys. Lett. 74, 1788–1791 (1999).
    [CrossRef]
  22. A. Brenier and G. Boulon, “Self-frequency summing NYAB laser for tunable UV generation,” J. Lumin. 86, 125–128 (2000).
    [CrossRef]
  23. F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, “Cw blue laser generation by self-sum frequency mixing in Nd:Ca4GdO(BO3)3 (Nd:GdCOB) single crystal,” Opt. Mater. 13, 293–297 (1999).
    [CrossRef]
  24. F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
    [CrossRef]
  25. J. Lu, G. Li, J. Liu, S. Zhang, H. Chen, M. Jiang, and Z. Shao, “Second harmonic generation and self frequency doubling performance in Nd:GdCa4O(BO3)3 crystal,” Opt. Commun. 168, 405–408 (1999).
    [CrossRef]
  26. Q. Ye, L. Shah, J. Eichenholz, D. Hammons, R. Peale, M. Richardson, A. Chin, and B. H. T. Chai, “Investigation of diode-pumped, self-frequency doubled RGB lasers from Nd:YCOB crystals,” Opt. Commun. 164, 33–37 (1997).
    [CrossRef]
  27. D. Jaque and J. J. Romero, “Continuous wave ultraviolet laser source based on self-frequency-sum-mixing in Nd3+:YAl3(BO3)4,” J. Appl. Phys. 90, 1070–1072 (2001).
    [CrossRef]
  28. Z. D. Luo, “Features and applications of a new self-frequency-doubling laser crystals-NYAB,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals, J. T. Lin, ed., Proc. SPIE 1104, 132–137 (1989).
    [CrossRef]
  29. D. Jaque, J. Capmany, J. García Solé, Z. D. Luo, and A. D. Jiang, “Cw laser properties of NYAB self-frequency-doubling laser crystal,” J. Opt. Soc. Am. B 15, 1656–1662 (1998).
    [CrossRef]
  30. Q. Ye and B. H. T. Chai, “Crystal growth of YCa4O(BO3)3 and its orientation,” J. Cryst. Growth 197, 228–235 (1999).
    [CrossRef]
  31. G. Aka, F. Mougel, F. Auge, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloys Comp. 303, 401–408 (2000).
    [CrossRef]
  32. B.-S. Lu, J. Wang, H.-F. Pan, M.-H. Jiang, E. Q. Liu, and X. Y. Hou, “Laser self-doubling in neodymium yttrium aluminum borate,” J. Appl. Phys. 66, 6052–6054 (1989).
    [CrossRef]
  33. G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. L. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14, 2238–2247 (1997).
    [CrossRef]
  34. F. Mougel, G. Aka, F. Salin, D. Pelenc, B. Ferrand, A. Kahan-Harari, and D. Vivien, “Accurate second harmonic generation phase matching angles prediction and evaluation of nonlinear coefficients of YCOB crystal,” in Advanced Solid State Lasers, Vol. 26 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1999), pp. 709–714.
  35. T. Ukachi, R. J. Lane, W. R. Bosenberg, and C. L. Tang, “Measurements of noncritically phase-matched second-harmonic generation in a LiB3O5 crystal,” Appl. Phys. Lett. 57, 980–982 (1990).
    [CrossRef]
  36. A. Brenier, G. Boulon, D. Jaque, and J. García Solé, “Self frequency summing NYAB laser for tunable blue generation,” Opt. Mater. 13, 311–317 (1999).
    [CrossRef]
  37. X. Y. Chen, Z. D. Luo, and Y. D. Huang, “Modelling of the self sum-frequency-mixing laser,” Chin. Phys. Lett. 18, 230–232 (2001).
    [CrossRef]
  38. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412–1423 (1988).
    [CrossRef]
  39. N. Hodgson and H. Weber, Optical Resonators: Fundamentals, Advanced Concepts and Applications (Springer-Verlag, Berlin, 1997).
  40. Z. D. Luo, “Determination of optimum neodymium concentration in NYAB self frequency doubling laser,” Prog. Natural Sci. 4, 504–507 (1994).
  41. D. Vivien, F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, P. Aschehoug, J. M. Benitez, N. L. Nain, and M. Jacquet, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16, 213–220 (2001).
    [CrossRef]

2001 (5)

T. Makino, N. T. Tuan, H. D. Sun, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Temperature dependence of near ultraviolet photoluminescence in ZnO/(MgO, Zn)O multiple quantum wells,” Appl. Phys. Lett. 78, 1979–1981 (2001).
[CrossRef]

F. Huang, Q. Luo, T. Lou, T. Yu, J. Dong, B. Lei, and Y. Wei, “Tunable solid state UV laser,” Opt. Laser Technol. 33, 111–115 (2001).
[CrossRef]

D. Jaque and J. J. Romero, “Continuous wave ultraviolet laser source based on self-frequency-sum-mixing in Nd3+:YAl3(BO3)4,” J. Appl. Phys. 90, 1070–1072 (2001).
[CrossRef]

X. Y. Chen, Z. D. Luo, and Y. D. Huang, “Modelling of the self sum-frequency-mixing laser,” Chin. Phys. Lett. 18, 230–232 (2001).
[CrossRef]

D. Vivien, F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, P. Aschehoug, J. M. Benitez, N. L. Nain, and M. Jacquet, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16, 213–220 (2001).
[CrossRef]

2000 (5)

G. Aka, F. Mougel, F. Auge, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloys Comp. 303, 401–408 (2000).
[CrossRef]

A. Brenier and G. Boulon, “Self-frequency summing NYAB laser for tunable UV generation,” J. Lumin. 86, 125–128 (2000).
[CrossRef]

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76, 1234–1236 (2000).
[CrossRef]

Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakumura, “Dynamics of optical gain in InxGa1−xN multi-quantum-well-based laser diodes,” Appl. Phys. Lett. 77, 2151–2153 (2000).
[CrossRef]

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. 30, 1–54 (2000).
[CrossRef]

1999 (8)

S. Bidnyk, J. B. Lam, D. Little, Y. H. Kwon, J. J. Song, G. E. Bulman, H. S. Kong, and T. J. Schmidt, “Mechanism of efficient ultraviolet lasing in GaN/AlGaN separate-confinement heterostructures,” Appl. Phys. Lett. 75, 3905–3907 (1999).
[CrossRef]

M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, and S. Kubota, “Deep UV mastering using an all-solid-state 266 nm laser for an over 20 Gbytes/layer capacity disk,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
[CrossRef]

D. Jaque, J. Capmany, and J. García Solé, “Red, green and blue laser light from a single NYAB crystal based on laser oscillation at 1.3 μm,” Appl. Phys. Lett. 75, 325–327 (1999).
[CrossRef]

D. Jaque, J. Capmany, and J. García Solé, “Continuous wave laser radiation at 669 nm from a self-frequency-doubled laser of YAl3(BO3)4:Nd,” Appl. Phys. Lett. 74, 1788–1791 (1999).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, “Cw blue laser generation by self-sum frequency mixing in Nd:Ca4GdO(BO3)3 (Nd:GdCOB) single crystal,” Opt. Mater. 13, 293–297 (1999).
[CrossRef]

J. Lu, G. Li, J. Liu, S. Zhang, H. Chen, M. Jiang, and Z. Shao, “Second harmonic generation and self frequency doubling performance in Nd:GdCa4O(BO3)3 crystal,” Opt. Commun. 168, 405–408 (1999).
[CrossRef]

Q. Ye and B. H. T. Chai, “Crystal growth of YCa4O(BO3)3 and its orientation,” J. Cryst. Growth 197, 228–235 (1999).
[CrossRef]

A. Brenier, G. Boulon, D. Jaque, and J. García Solé, “Self frequency summing NYAB laser for tunable blue generation,” Opt. Mater. 13, 311–317 (1999).
[CrossRef]

1998 (4)

D. Jaque, J. Capmany, J. García Solé, Z. D. Luo, and A. D. Jiang, “Cw laser properties of NYAB self-frequency-doubling laser crystal,” J. Opt. Soc. Am. B 15, 1656–1662 (1998).
[CrossRef]

D. Jaque, J. Capmany, F. Molero, and J. García Solé, “Blue light laser source by frequency sum in Nd:YAB,” Appl. Phys. Lett. 73, 3659–3661 (1998).
[CrossRef]

S. Sayama and M. Ohtsu, “Tunable UV cw generation at 276 nm wavelength by frequency conversion of laser diodes,” Opt. Commun. 145, 95–97 (1998).
[CrossRef]

Y. Kaneda, S. Kubota, H. Yamatsu, M. Furuki, K. Kurokawa, and T. Kashiwagi, “Disk mastering processes with an all-solid-state ultraviolet laser,” Jpn. J. Appl. Phys. 37, 2125–2129 (1998).
[CrossRef]

1997 (4)

S. Sayama and M. Ohtsu, “Tunable UV cw generation by frequency tripling of a Ti:sapphire laser,” Opt. Commun. 137, 295–298 (1997).
[CrossRef]

Q. Ye, L. Shah, J. Eichenholz, D. Hammons, R. Peale, M. Richardson, A. Chin, and B. H. T. Chai, “Investigation of diode-pumped, self-frequency doubled RGB lasers from Nd:YCOB crystals,” Opt. Commun. 164, 33–37 (1997).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. L. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14, 2238–2247 (1997).
[CrossRef]

1996 (1)

1995 (3)

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995).
[CrossRef] [PubMed]

A. Lien, R. A. John, M. Angelopoulos, K. E. Lee, H. Takano, K. Tajima, and A. Takenaka, “UV modification of surface pretilt of alignment layers for multidomain liquid crystal displays,” Appl. Phys. Lett. 67, 3108–3110 (1995).
[CrossRef]

Y. Kaneda and S. Kubota, “Continuous wave 355-nm laser source based on doubly resonant sum-frequency mixing in an external resonator,” Opt. Lett. 20, 2204–2206 (1995).
[CrossRef]

1994 (2)

M. Watanabe, K. Hayasaka, H. Imajo, R. Ohmukai, and S. Urabe, “Sum frequency generation near 194 nm with an external cavity by simultaneous enhancement of frequency-stabilized fundamental lasers,” Jpn. J. Appl. Phys. 33, 1599–1602 (1994).
[CrossRef]

Z. D. Luo, “Determination of optimum neodymium concentration in NYAB self frequency doubling laser,” Prog. Natural Sci. 4, 504–507 (1994).

1990 (1)

T. Ukachi, R. J. Lane, W. R. Bosenberg, and C. L. Tang, “Measurements of noncritically phase-matched second-harmonic generation in a LiB3O5 crystal,” Appl. Phys. Lett. 57, 980–982 (1990).
[CrossRef]

1989 (2)

B.-S. Lu, J. Wang, H.-F. Pan, M.-H. Jiang, E. Q. Liu, and X. Y. Hou, “Laser self-doubling in neodymium yttrium aluminum borate,” J. Appl. Phys. 66, 6052–6054 (1989).
[CrossRef]

Z. D. Luo, “Features and applications of a new self-frequency-doubling laser crystals-NYAB,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals, J. T. Lin, ed., Proc. SPIE 1104, 132–137 (1989).
[CrossRef]

1988 (1)

Aka, G.

D. Vivien, F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, P. Aschehoug, J. M. Benitez, N. L. Nain, and M. Jacquet, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16, 213–220 (2001).
[CrossRef]

G. Aka, F. Mougel, F. Auge, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloys Comp. 303, 401–408 (2000).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, “Cw blue laser generation by self-sum frequency mixing in Nd:Ca4GdO(BO3)3 (Nd:GdCOB) single crystal,” Opt. Mater. 13, 293–297 (1999).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. L. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14, 2238–2247 (1997).
[CrossRef]

Aki, Y.

M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, and S. Kubota, “Deep UV mastering using an all-solid-state 266 nm laser for an over 20 Gbytes/layer capacity disk,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
[CrossRef]

Alnis, J.

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76, 1234–1236 (2000).
[CrossRef]

Anderson, D. Z.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995).
[CrossRef] [PubMed]

Angelopoulos, M.

A. Lien, R. A. John, M. Angelopoulos, K. E. Lee, H. Takano, K. Tajima, and A. Takenaka, “UV modification of surface pretilt of alignment layers for multidomain liquid crystal displays,” Appl. Phys. Lett. 67, 3108–3110 (1995).
[CrossRef]

Arrigoni, M.

Aschehoug, P.

D. Vivien, F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, P. Aschehoug, J. M. Benitez, N. L. Nain, and M. Jacquet, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16, 213–220 (2001).
[CrossRef]

Asher, S. A.

Auge, F.

D. Vivien, F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, P. Aschehoug, J. M. Benitez, N. L. Nain, and M. Jacquet, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16, 213–220 (2001).
[CrossRef]

G. Aka, F. Mougel, F. Auge, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloys Comp. 303, 401–408 (2000).
[CrossRef]

Balembois, F.

D. Vivien, F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, P. Aschehoug, J. M. Benitez, N. L. Nain, and M. Jacquet, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16, 213–220 (2001).
[CrossRef]

G. Aka, F. Mougel, F. Auge, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloys Comp. 303, 401–408 (2000).
[CrossRef]

Benitez, J. M.

D. Vivien, F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, P. Aschehoug, J. M. Benitez, N. L. Nain, and M. Jacquet, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16, 213–220 (2001).
[CrossRef]

G. Aka, F. Mougel, F. Auge, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloys Comp. 303, 401–408 (2000).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

Bidnyk, S.

S. Bidnyk, J. B. Lam, D. Little, Y. H. Kwon, J. J. Song, G. E. Bulman, H. S. Kong, and T. J. Schmidt, “Mechanism of efficient ultraviolet lasing in GaN/AlGaN separate-confinement heterostructures,” Appl. Phys. Lett. 75, 3905–3907 (1999).
[CrossRef]

Bormett, R. W.

Bosenberg, W. R.

T. Ukachi, R. J. Lane, W. R. Bosenberg, and C. L. Tang, “Measurements of noncritically phase-matched second-harmonic generation in a LiB3O5 crystal,” Appl. Phys. Lett. 57, 980–982 (1990).
[CrossRef]

Boulon, G.

A. Brenier and G. Boulon, “Self-frequency summing NYAB laser for tunable UV generation,” J. Lumin. 86, 125–128 (2000).
[CrossRef]

A. Brenier, G. Boulon, D. Jaque, and J. García Solé, “Self frequency summing NYAB laser for tunable blue generation,” Opt. Mater. 13, 311–317 (1999).
[CrossRef]

Brenier, A.

A. Brenier and G. Boulon, “Self-frequency summing NYAB laser for tunable UV generation,” J. Lumin. 86, 125–128 (2000).
[CrossRef]

A. Brenier, G. Boulon, D. Jaque, and J. García Solé, “Self frequency summing NYAB laser for tunable blue generation,” Opt. Mater. 13, 311–317 (1999).
[CrossRef]

Brun, A.

D. Vivien, F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, P. Aschehoug, J. M. Benitez, N. L. Nain, and M. Jacquet, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16, 213–220 (2001).
[CrossRef]

G. Aka, F. Mougel, F. Auge, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloys Comp. 303, 401–408 (2000).
[CrossRef]

Bulman, G. E.

S. Bidnyk, J. B. Lam, D. Little, Y. H. Kwon, J. J. Song, G. E. Bulman, H. S. Kong, and T. J. Schmidt, “Mechanism of efficient ultraviolet lasing in GaN/AlGaN separate-confinement heterostructures,” Appl. Phys. Lett. 75, 3905–3907 (1999).
[CrossRef]

Capmany, J.

D. Jaque, J. Capmany, and J. García Solé, “Red, green and blue laser light from a single NYAB crystal based on laser oscillation at 1.3 μm,” Appl. Phys. Lett. 75, 325–327 (1999).
[CrossRef]

D. Jaque, J. Capmany, and J. García Solé, “Continuous wave laser radiation at 669 nm from a self-frequency-doubled laser of YAl3(BO3)4:Nd,” Appl. Phys. Lett. 74, 1788–1791 (1999).
[CrossRef]

D. Jaque, J. Capmany, F. Molero, and J. García Solé, “Blue light laser source by frequency sum in Nd:YAB,” Appl. Phys. Lett. 73, 3659–3661 (1998).
[CrossRef]

D. Jaque, J. Capmany, J. García Solé, Z. D. Luo, and A. D. Jiang, “Cw laser properties of NYAB self-frequency-doubling laser crystal,” J. Opt. Soc. Am. B 15, 1656–1662 (1998).
[CrossRef]

Chai, B. H. T.

Q. Ye and B. H. T. Chai, “Crystal growth of YCa4O(BO3)3 and its orientation,” J. Cryst. Growth 197, 228–235 (1999).
[CrossRef]

Q. Ye, L. Shah, J. Eichenholz, D. Hammons, R. Peale, M. Richardson, A. Chin, and B. H. T. Chai, “Investigation of diode-pumped, self-frequency doubled RGB lasers from Nd:YCOB crystals,” Opt. Commun. 164, 33–37 (1997).
[CrossRef]

Chen, H.

J. Lu, G. Li, J. Liu, S. Zhang, H. Chen, M. Jiang, and Z. Shao, “Second harmonic generation and self frequency doubling performance in Nd:GdCa4O(BO3)3 crystal,” Opt. Commun. 168, 405–408 (1999).
[CrossRef]

Chen, X. G.

Chen, X. Y.

X. Y. Chen, Z. D. Luo, and Y. D. Huang, “Modelling of the self sum-frequency-mixing laser,” Chin. Phys. Lett. 18, 230–232 (2001).
[CrossRef]

Chia, C. H.

T. Makino, N. T. Tuan, H. D. Sun, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Temperature dependence of near ultraviolet photoluminescence in ZnO/(MgO, Zn)O multiple quantum wells,” Appl. Phys. Lett. 78, 1979–1981 (2001).
[CrossRef]

Chin, A.

Q. Ye, L. Shah, J. Eichenholz, D. Hammons, R. Peale, M. Richardson, A. Chin, and B. H. T. Chai, “Investigation of diode-pumped, self-frequency doubled RGB lasers from Nd:YCOB crystals,” Opt. Commun. 164, 33–37 (1997).
[CrossRef]

Colin, P.

Coquelin, P.

Cornell, E. A.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995).
[CrossRef] [PubMed]

Damelet, J. L.

Dong, J.

F. Huang, Q. Luo, T. Lou, T. Yu, J. Dong, B. Lei, and Y. Wei, “Tunable solid state UV laser,” Opt. Laser Technol. 33, 111–115 (2001).
[CrossRef]

Eichenholz, J.

Q. Ye, L. Shah, J. Eichenholz, D. Hammons, R. Peale, M. Richardson, A. Chin, and B. H. T. Chai, “Investigation of diode-pumped, self-frequency doubled RGB lasers from Nd:YCOB crystals,” Opt. Commun. 164, 33–37 (1997).
[CrossRef]

Fujita, S.

Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakumura, “Dynamics of optical gain in InxGa1−xN multi-quantum-well-based laser diodes,” Appl. Phys. Lett. 77, 2151–2153 (2000).
[CrossRef]

Furuki, M.

M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, and S. Kubota, “Deep UV mastering using an all-solid-state 266 nm laser for an over 20 Gbytes/layer capacity disk,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
[CrossRef]

Y. Kaneda, S. Kubota, H. Yamatsu, M. Furuki, K. Kurokawa, and T. Kashiwagi, “Disk mastering processes with an all-solid-state ultraviolet laser,” Jpn. J. Appl. Phys. 37, 2125–2129 (1998).
[CrossRef]

García Solé, J.

D. Jaque, J. Capmany, and J. García Solé, “Continuous wave laser radiation at 669 nm from a self-frequency-doubled laser of YAl3(BO3)4:Nd,” Appl. Phys. Lett. 74, 1788–1791 (1999).
[CrossRef]

D. Jaque, J. Capmany, and J. García Solé, “Red, green and blue laser light from a single NYAB crystal based on laser oscillation at 1.3 μm,” Appl. Phys. Lett. 75, 325–327 (1999).
[CrossRef]

A. Brenier, G. Boulon, D. Jaque, and J. García Solé, “Self frequency summing NYAB laser for tunable blue generation,” Opt. Mater. 13, 311–317 (1999).
[CrossRef]

D. Jaque, J. Capmany, F. Molero, and J. García Solé, “Blue light laser source by frequency sum in Nd:YAB,” Appl. Phys. Lett. 73, 3659–3661 (1998).
[CrossRef]

D. Jaque, J. Capmany, J. García Solé, Z. D. Luo, and A. D. Jiang, “Cw laser properties of NYAB self-frequency-doubling laser crystal,” J. Opt. Soc. Am. B 15, 1656–1662 (1998).
[CrossRef]

Georges, P.

D. Vivien, F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, P. Aschehoug, J. M. Benitez, N. L. Nain, and M. Jacquet, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16, 213–220 (2001).
[CrossRef]

G. Aka, F. Mougel, F. Auge, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloys Comp. 303, 401–408 (2000).
[CrossRef]

Gustafsson, U.

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76, 1234–1236 (2000).
[CrossRef]

Hammons, D.

Q. Ye, L. Shah, J. Eichenholz, D. Hammons, R. Peale, M. Richardson, A. Chin, and B. H. T. Chai, “Investigation of diode-pumped, self-frequency doubled RGB lasers from Nd:YCOB crystals,” Opt. Commun. 164, 33–37 (1997).
[CrossRef]

Hayasaka, K.

M. Watanabe, K. Hayasaka, H. Imajo, R. Ohmukai, and S. Urabe, “Sum frequency generation near 194 nm with an external cavity by simultaneous enhancement of frequency-stabilized fundamental lasers,” Jpn. J. Appl. Phys. 33, 1599–1602 (1994).
[CrossRef]

Holtz, J.

Hou, X. Y.

B.-S. Lu, J. Wang, H.-F. Pan, M.-H. Jiang, E. Q. Liu, and X. Y. Hou, “Laser self-doubling in neodymium yttrium aluminum borate,” J. Appl. Phys. 66, 6052–6054 (1989).
[CrossRef]

Huang, F.

F. Huang, Q. Luo, T. Lou, T. Yu, J. Dong, B. Lei, and Y. Wei, “Tunable solid state UV laser,” Opt. Laser Technol. 33, 111–115 (2001).
[CrossRef]

Huang, Y. D.

X. Y. Chen, Z. D. Luo, and Y. D. Huang, “Modelling of the self sum-frequency-mixing laser,” Chin. Phys. Lett. 18, 230–232 (2001).
[CrossRef]

Hubert, H.

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

Imajo, H.

M. Watanabe, K. Hayasaka, H. Imajo, R. Ohmukai, and S. Urabe, “Sum frequency generation near 194 nm with an external cavity by simultaneous enhancement of frequency-stabilized fundamental lasers,” Jpn. J. Appl. Phys. 33, 1599–1602 (1994).
[CrossRef]

Jacquet, M.

D. Vivien, F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, P. Aschehoug, J. M. Benitez, N. L. Nain, and M. Jacquet, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16, 213–220 (2001).
[CrossRef]

G. Aka, F. Mougel, F. Auge, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloys Comp. 303, 401–408 (2000).
[CrossRef]

Jaque, D.

D. Jaque and J. J. Romero, “Continuous wave ultraviolet laser source based on self-frequency-sum-mixing in Nd3+:YAl3(BO3)4,” J. Appl. Phys. 90, 1070–1072 (2001).
[CrossRef]

D. Jaque, J. Capmany, and J. García Solé, “Red, green and blue laser light from a single NYAB crystal based on laser oscillation at 1.3 μm,” Appl. Phys. Lett. 75, 325–327 (1999).
[CrossRef]

D. Jaque, J. Capmany, and J. García Solé, “Continuous wave laser radiation at 669 nm from a self-frequency-doubled laser of YAl3(BO3)4:Nd,” Appl. Phys. Lett. 74, 1788–1791 (1999).
[CrossRef]

A. Brenier, G. Boulon, D. Jaque, and J. García Solé, “Self frequency summing NYAB laser for tunable blue generation,” Opt. Mater. 13, 311–317 (1999).
[CrossRef]

D. Jaque, J. Capmany, F. Molero, and J. García Solé, “Blue light laser source by frequency sum in Nd:YAB,” Appl. Phys. Lett. 73, 3659–3661 (1998).
[CrossRef]

D. Jaque, J. Capmany, J. García Solé, Z. D. Luo, and A. D. Jiang, “Cw laser properties of NYAB self-frequency-doubling laser crystal,” J. Opt. Soc. Am. B 15, 1656–1662 (1998).
[CrossRef]

Jiang, A. D.

Jiang, M.

J. Lu, G. Li, J. Liu, S. Zhang, H. Chen, M. Jiang, and Z. Shao, “Second harmonic generation and self frequency doubling performance in Nd:GdCa4O(BO3)3 crystal,” Opt. Commun. 168, 405–408 (1999).
[CrossRef]

Jiang, M.-H.

B.-S. Lu, J. Wang, H.-F. Pan, M.-H. Jiang, E. Q. Liu, and X. Y. Hou, “Laser self-doubling in neodymium yttrium aluminum borate,” J. Appl. Phys. 66, 6052–6054 (1989).
[CrossRef]

John, R. A.

A. Lien, R. A. John, M. Angelopoulos, K. E. Lee, H. Takano, K. Tajima, and A. Takenaka, “UV modification of surface pretilt of alignment layers for multidomain liquid crystal displays,” Appl. Phys. Lett. 67, 3108–3110 (1995).
[CrossRef]

Kahn-Harari, A.

D. Vivien, F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, P. Aschehoug, J. M. Benitez, N. L. Nain, and M. Jacquet, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16, 213–220 (2001).
[CrossRef]

G. Aka, F. Mougel, F. Auge, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloys Comp. 303, 401–408 (2000).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, “Cw blue laser generation by self-sum frequency mixing in Nd:Ca4GdO(BO3)3 (Nd:GdCOB) single crystal,” Opt. Mater. 13, 293–297 (1999).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. L. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14, 2238–2247 (1997).
[CrossRef]

Kamimura, T.

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. 30, 1–54 (2000).
[CrossRef]

Kaneda, Y.

Y. Kaneda, S. Kubota, H. Yamatsu, M. Furuki, K. Kurokawa, and T. Kashiwagi, “Disk mastering processes with an all-solid-state ultraviolet laser,” Jpn. J. Appl. Phys. 37, 2125–2129 (1998).
[CrossRef]

Y. Kaneda and S. Kubota, “Continuous wave 355-nm laser source based on doubly resonant sum-frequency mixing in an external resonator,” Opt. Lett. 20, 2204–2206 (1995).
[CrossRef]

Kashiwagi, T.

M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, and S. Kubota, “Deep UV mastering using an all-solid-state 266 nm laser for an over 20 Gbytes/layer capacity disk,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
[CrossRef]

Y. Kaneda, S. Kubota, H. Yamatsu, M. Furuki, K. Kurokawa, and T. Kashiwagi, “Disk mastering processes with an all-solid-state ultraviolet laser,” Jpn. J. Appl. Phys. 37, 2125–2129 (1998).
[CrossRef]

Kawakami, Y.

Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakumura, “Dynamics of optical gain in InxGa1−xN multi-quantum-well-based laser diodes,” Appl. Phys. Lett. 77, 2151–2153 (2000).
[CrossRef]

Kawasaki, M.

T. Makino, N. T. Tuan, H. D. Sun, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Temperature dependence of near ultraviolet photoluminescence in ZnO/(MgO, Zn)O multiple quantum wells,” Appl. Phys. Lett. 78, 1979–1981 (2001).
[CrossRef]

Koinuma, H.

T. Makino, N. T. Tuan, H. D. Sun, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Temperature dependence of near ultraviolet photoluminescence in ZnO/(MgO, Zn)O multiple quantum wells,” Appl. Phys. Lett. 78, 1979–1981 (2001).
[CrossRef]

Kondo, K.

M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, and S. Kubota, “Deep UV mastering using an all-solid-state 266 nm laser for an over 20 Gbytes/layer capacity disk,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
[CrossRef]

Kong, H. S.

S. Bidnyk, J. B. Lam, D. Little, Y. H. Kwon, J. J. Song, G. E. Bulman, H. S. Kong, and T. J. Schmidt, “Mechanism of efficient ultraviolet lasing in GaN/AlGaN separate-confinement heterostructures,” Appl. Phys. Lett. 75, 3905–3907 (1999).
[CrossRef]

Kubota, S.

M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, and S. Kubota, “Deep UV mastering using an all-solid-state 266 nm laser for an over 20 Gbytes/layer capacity disk,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
[CrossRef]

Y. Kaneda, S. Kubota, H. Yamatsu, M. Furuki, K. Kurokawa, and T. Kashiwagi, “Disk mastering processes with an all-solid-state ultraviolet laser,” Jpn. J. Appl. Phys. 37, 2125–2129 (1998).
[CrossRef]

Y. Kaneda and S. Kubota, “Continuous wave 355-nm laser source based on doubly resonant sum-frequency mixing in an external resonator,” Opt. Lett. 20, 2204–2206 (1995).
[CrossRef]

Kurokawa, K.

Y. Kaneda, S. Kubota, H. Yamatsu, M. Furuki, K. Kurokawa, and T. Kashiwagi, “Disk mastering processes with an all-solid-state ultraviolet laser,” Jpn. J. Appl. Phys. 37, 2125–2129 (1998).
[CrossRef]

Kwon, Y. H.

S. Bidnyk, J. B. Lam, D. Little, Y. H. Kwon, J. J. Song, G. E. Bulman, H. S. Kong, and T. J. Schmidt, “Mechanism of efficient ultraviolet lasing in GaN/AlGaN separate-confinement heterostructures,” Appl. Phys. Lett. 75, 3905–3907 (1999).
[CrossRef]

Lam, J. B.

S. Bidnyk, J. B. Lam, D. Little, Y. H. Kwon, J. J. Song, G. E. Bulman, H. S. Kong, and T. J. Schmidt, “Mechanism of efficient ultraviolet lasing in GaN/AlGaN separate-confinement heterostructures,” Appl. Phys. Lett. 75, 3905–3907 (1999).
[CrossRef]

Lane, R. J.

T. Ukachi, R. J. Lane, W. R. Bosenberg, and C. L. Tang, “Measurements of noncritically phase-matched second-harmonic generation in a LiB3O5 crystal,” Appl. Phys. Lett. 57, 980–982 (1990).
[CrossRef]

Le Nain, N.

G. Aka, F. Mougel, F. Auge, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloys Comp. 303, 401–408 (2000).
[CrossRef]

Lee, K. E.

A. Lien, R. A. John, M. Angelopoulos, K. E. Lee, H. Takano, K. Tajima, and A. Takenaka, “UV modification of surface pretilt of alignment layers for multidomain liquid crystal displays,” Appl. Phys. Lett. 67, 3108–3110 (1995).
[CrossRef]

Lei, B.

F. Huang, Q. Luo, T. Lou, T. Yu, J. Dong, B. Lei, and Y. Wei, “Tunable solid state UV laser,” Opt. Laser Technol. 33, 111–115 (2001).
[CrossRef]

Li, G.

J. Lu, G. Li, J. Liu, S. Zhang, H. Chen, M. Jiang, and Z. Shao, “Second harmonic generation and self frequency doubling performance in Nd:GdCa4O(BO3)3 crystal,” Opt. Commun. 168, 405–408 (1999).
[CrossRef]

Lien, A.

A. Lien, R. A. John, M. Angelopoulos, K. E. Lee, H. Takano, K. Tajima, and A. Takenaka, “UV modification of surface pretilt of alignment layers for multidomain liquid crystal displays,” Appl. Phys. Lett. 67, 3108–3110 (1995).
[CrossRef]

Little, D.

S. Bidnyk, J. B. Lam, D. Little, Y. H. Kwon, J. J. Song, G. E. Bulman, H. S. Kong, and T. J. Schmidt, “Mechanism of efficient ultraviolet lasing in GaN/AlGaN separate-confinement heterostructures,” Appl. Phys. Lett. 75, 3905–3907 (1999).
[CrossRef]

Liu, E. Q.

B.-S. Lu, J. Wang, H.-F. Pan, M.-H. Jiang, E. Q. Liu, and X. Y. Hou, “Laser self-doubling in neodymium yttrium aluminum borate,” J. Appl. Phys. 66, 6052–6054 (1989).
[CrossRef]

Liu, J.

J. Lu, G. Li, J. Liu, S. Zhang, H. Chen, M. Jiang, and Z. Shao, “Second harmonic generation and self frequency doubling performance in Nd:GdCa4O(BO3)3 crystal,” Opt. Commun. 168, 405–408 (1999).
[CrossRef]

Lou, T.

F. Huang, Q. Luo, T. Lou, T. Yu, J. Dong, B. Lei, and Y. Wei, “Tunable solid state UV laser,” Opt. Laser Technol. 33, 111–115 (2001).
[CrossRef]

Lu, B.-S.

B.-S. Lu, J. Wang, H.-F. Pan, M.-H. Jiang, E. Q. Liu, and X. Y. Hou, “Laser self-doubling in neodymium yttrium aluminum borate,” J. Appl. Phys. 66, 6052–6054 (1989).
[CrossRef]

Lu, J.

J. Lu, G. Li, J. Liu, S. Zhang, H. Chen, M. Jiang, and Z. Shao, “Second harmonic generation and self frequency doubling performance in Nd:GdCa4O(BO3)3 crystal,” Opt. Commun. 168, 405–408 (1999).
[CrossRef]

Lucas-Leclin, G.

D. Vivien, F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, P. Aschehoug, J. M. Benitez, N. L. Nain, and M. Jacquet, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16, 213–220 (2001).
[CrossRef]

Luo, Q.

F. Huang, Q. Luo, T. Lou, T. Yu, J. Dong, B. Lei, and Y. Wei, “Tunable solid state UV laser,” Opt. Laser Technol. 33, 111–115 (2001).
[CrossRef]

Luo, Z. D.

X. Y. Chen, Z. D. Luo, and Y. D. Huang, “Modelling of the self sum-frequency-mixing laser,” Chin. Phys. Lett. 18, 230–232 (2001).
[CrossRef]

D. Jaque, J. Capmany, J. García Solé, Z. D. Luo, and A. D. Jiang, “Cw laser properties of NYAB self-frequency-doubling laser crystal,” J. Opt. Soc. Am. B 15, 1656–1662 (1998).
[CrossRef]

Z. D. Luo, “Determination of optimum neodymium concentration in NYAB self frequency doubling laser,” Prog. Natural Sci. 4, 504–507 (1994).

Z. D. Luo, “Features and applications of a new self-frequency-doubling laser crystals-NYAB,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals, J. T. Lin, ed., Proc. SPIE 1104, 132–137 (1989).
[CrossRef]

Makino, T.

T. Makino, N. T. Tuan, H. D. Sun, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Temperature dependence of near ultraviolet photoluminescence in ZnO/(MgO, Zn)O multiple quantum wells,” Appl. Phys. Lett. 78, 1979–1981 (2001).
[CrossRef]

Molero, F.

D. Jaque, J. Capmany, F. Molero, and J. García Solé, “Blue light laser source by frequency sum in Nd:YAB,” Appl. Phys. Lett. 73, 3659–3661 (1998).
[CrossRef]

Montgomery, D.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995).
[CrossRef] [PubMed]

Mori, Y.

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. 30, 1–54 (2000).
[CrossRef]

Mougel, F.

D. Vivien, F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, P. Aschehoug, J. M. Benitez, N. L. Nain, and M. Jacquet, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16, 213–220 (2001).
[CrossRef]

G. Aka, F. Mougel, F. Auge, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloys Comp. 303, 401–408 (2000).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, “Cw blue laser generation by self-sum frequency mixing in Nd:Ca4GdO(BO3)3 (Nd:GdCOB) single crystal,” Opt. Mater. 13, 293–297 (1999).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. L. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14, 2238–2247 (1997).
[CrossRef]

Nain, N. L.

D. Vivien, F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, P. Aschehoug, J. M. Benitez, N. L. Nain, and M. Jacquet, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16, 213–220 (2001).
[CrossRef]

Nakumura, S.

Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakumura, “Dynamics of optical gain in InxGa1−xN multi-quantum-well-based laser diodes,” Appl. Phys. Lett. 77, 2151–2153 (2000).
[CrossRef]

Namjun, C.

Narukawa, Y.

Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakumura, “Dynamics of optical gain in InxGa1−xN multi-quantum-well-based laser diodes,” Appl. Phys. Lett. 77, 2151–2153 (2000).
[CrossRef]

Ohmukai, R.

M. Watanabe, K. Hayasaka, H. Imajo, R. Ohmukai, and S. Urabe, “Sum frequency generation near 194 nm with an external cavity by simultaneous enhancement of frequency-stabilized fundamental lasers,” Jpn. J. Appl. Phys. 33, 1599–1602 (1994).
[CrossRef]

Ohtomo, A.

T. Makino, N. T. Tuan, H. D. Sun, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Temperature dependence of near ultraviolet photoluminescence in ZnO/(MgO, Zn)O multiple quantum wells,” Appl. Phys. Lett. 78, 1979–1981 (2001).
[CrossRef]

Ohtsu, M.

S. Sayama and M. Ohtsu, “Tunable UV cw generation at 276 nm wavelength by frequency conversion of laser diodes,” Opt. Commun. 145, 95–97 (1998).
[CrossRef]

S. Sayama and M. Ohtsu, “Tunable UV cw generation by frequency tripling of a Ti:sapphire laser,” Opt. Commun. 137, 295–298 (1997).
[CrossRef]

Oka, M.

M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, and S. Kubota, “Deep UV mastering using an all-solid-state 266 nm laser for an over 20 Gbytes/layer capacity disk,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
[CrossRef]

Omae, K.

Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakumura, “Dynamics of optical gain in InxGa1−xN multi-quantum-well-based laser diodes,” Appl. Phys. Lett. 77, 2151–2153 (2000).
[CrossRef]

Owen, P.

Pajcini, V.

Pan, H.-F.

B.-S. Lu, J. Wang, H.-F. Pan, M.-H. Jiang, E. Q. Liu, and X. Y. Hou, “Laser self-doubling in neodymium yttrium aluminum borate,” J. Appl. Phys. 66, 6052–6054 (1989).
[CrossRef]

Peale, R.

Q. Ye, L. Shah, J. Eichenholz, D. Hammons, R. Peale, M. Richardson, A. Chin, and B. H. T. Chai, “Investigation of diode-pumped, self-frequency doubled RGB lasers from Nd:YCOB crystals,” Opt. Commun. 164, 33–37 (1997).
[CrossRef]

Pelenc, D.

G. Aka, F. Mougel, F. Auge, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloys Comp. 303, 401–408 (2000).
[CrossRef]

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. L. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14, 2238–2247 (1997).
[CrossRef]

Renn, M. J.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995).
[CrossRef] [PubMed]

Richardson, M.

Q. Ye, L. Shah, J. Eichenholz, D. Hammons, R. Peale, M. Richardson, A. Chin, and B. H. T. Chai, “Investigation of diode-pumped, self-frequency doubled RGB lasers from Nd:YCOB crystals,” Opt. Commun. 164, 33–37 (1997).
[CrossRef]

Risk, W. P.

Romero, J. J.

D. Jaque and J. J. Romero, “Continuous wave ultraviolet laser source based on self-frequency-sum-mixing in Nd3+:YAl3(BO3)4,” J. Appl. Phys. 90, 1070–1072 (2001).
[CrossRef]

Salin, F.

G. Aka, F. Mougel, F. Auge, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloys Comp. 303, 401–408 (2000).
[CrossRef]

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. L. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14, 2238–2247 (1997).
[CrossRef]

Sasaki, T.

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. 30, 1–54 (2000).
[CrossRef]

Sayama, S.

S. Sayama and M. Ohtsu, “Tunable UV cw generation at 276 nm wavelength by frequency conversion of laser diodes,” Opt. Commun. 145, 95–97 (1998).
[CrossRef]

S. Sayama and M. Ohtsu, “Tunable UV cw generation by frequency tripling of a Ti:sapphire laser,” Opt. Commun. 137, 295–298 (1997).
[CrossRef]

Schmidt, T. J.

S. Bidnyk, J. B. Lam, D. Little, Y. H. Kwon, J. J. Song, G. E. Bulman, H. S. Kong, and T. J. Schmidt, “Mechanism of efficient ultraviolet lasing in GaN/AlGaN separate-confinement heterostructures,” Appl. Phys. Lett. 75, 3905–3907 (1999).
[CrossRef]

Segawa, Y.

T. Makino, N. T. Tuan, H. D. Sun, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Temperature dependence of near ultraviolet photoluminescence in ZnO/(MgO, Zn)O multiple quantum wells,” Appl. Phys. Lett. 78, 1979–1981 (2001).
[CrossRef]

Shah, L.

Q. Ye, L. Shah, J. Eichenholz, D. Hammons, R. Peale, M. Richardson, A. Chin, and B. H. T. Chai, “Investigation of diode-pumped, self-frequency doubled RGB lasers from Nd:YCOB crystals,” Opt. Commun. 164, 33–37 (1997).
[CrossRef]

Shao, Z.

J. Lu, G. Li, J. Liu, S. Zhang, H. Chen, M. Jiang, and Z. Shao, “Second harmonic generation and self frequency doubling performance in Nd:GdCa4O(BO3)3 crystal,” Opt. Commun. 168, 405–408 (1999).
[CrossRef]

Somesfalean, G.

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76, 1234–1236 (2000).
[CrossRef]

Song, J. J.

S. Bidnyk, J. B. Lam, D. Little, Y. H. Kwon, J. J. Song, G. E. Bulman, H. S. Kong, and T. J. Schmidt, “Mechanism of efficient ultraviolet lasing in GaN/AlGaN separate-confinement heterostructures,” Appl. Phys. Lett. 75, 3905–3907 (1999).
[CrossRef]

Spinelli, L.

Sun, H. D.

T. Makino, N. T. Tuan, H. D. Sun, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Temperature dependence of near ultraviolet photoluminescence in ZnO/(MgO, Zn)O multiple quantum wells,” Appl. Phys. Lett. 78, 1979–1981 (2001).
[CrossRef]

Suzuki, A.

M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, and S. Kubota, “Deep UV mastering using an all-solid-state 266 nm laser for an over 20 Gbytes/layer capacity disk,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
[CrossRef]

Svanberg, S.

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76, 1234–1236 (2000).
[CrossRef]

Tajima, K.

A. Lien, R. A. John, M. Angelopoulos, K. E. Lee, H. Takano, K. Tajima, and A. Takenaka, “UV modification of surface pretilt of alignment layers for multidomain liquid crystal displays,” Appl. Phys. Lett. 67, 3108–3110 (1995).
[CrossRef]

Takano, H.

A. Lien, R. A. John, M. Angelopoulos, K. E. Lee, H. Takano, K. Tajima, and A. Takenaka, “UV modification of surface pretilt of alignment layers for multidomain liquid crystal displays,” Appl. Phys. Lett. 67, 3108–3110 (1995).
[CrossRef]

Takeda, M.

M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, and S. Kubota, “Deep UV mastering using an all-solid-state 266 nm laser for an over 20 Gbytes/layer capacity disk,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
[CrossRef]

Takenaka, A.

A. Lien, R. A. John, M. Angelopoulos, K. E. Lee, H. Takano, K. Tajima, and A. Takenaka, “UV modification of surface pretilt of alignment layers for multidomain liquid crystal displays,” Appl. Phys. Lett. 67, 3108–3110 (1995).
[CrossRef]

Tamura, K.

T. Makino, N. T. Tuan, H. D. Sun, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Temperature dependence of near ultraviolet photoluminescence in ZnO/(MgO, Zn)O multiple quantum wells,” Appl. Phys. Lett. 78, 1979–1981 (2001).
[CrossRef]

Tang, C. L.

T. Ukachi, R. J. Lane, W. R. Bosenberg, and C. L. Tang, “Measurements of noncritically phase-matched second-harmonic generation in a LiB3O5 crystal,” Appl. Phys. Lett. 57, 980–982 (1990).
[CrossRef]

Tuan, N. T.

T. Makino, N. T. Tuan, H. D. Sun, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Temperature dependence of near ultraviolet photoluminescence in ZnO/(MgO, Zn)O multiple quantum wells,” Appl. Phys. Lett. 78, 1979–1981 (2001).
[CrossRef]

Ukachi, T.

T. Ukachi, R. J. Lane, W. R. Bosenberg, and C. L. Tang, “Measurements of noncritically phase-matched second-harmonic generation in a LiB3O5 crystal,” Appl. Phys. Lett. 57, 980–982 (1990).
[CrossRef]

Urabe, S.

M. Watanabe, K. Hayasaka, H. Imajo, R. Ohmukai, and S. Urabe, “Sum frequency generation near 194 nm with an external cavity by simultaneous enhancement of frequency-stabilized fundamental lasers,” Jpn. J. Appl. Phys. 33, 1599–1602 (1994).
[CrossRef]

Vdovin, O.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995).
[CrossRef] [PubMed]

Vivien, D.

D. Vivien, F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, P. Aschehoug, J. M. Benitez, N. L. Nain, and M. Jacquet, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16, 213–220 (2001).
[CrossRef]

G. Aka, F. Mougel, F. Auge, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloys Comp. 303, 401–408 (2000).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, “Cw blue laser generation by self-sum frequency mixing in Nd:Ca4GdO(BO3)3 (Nd:GdCOB) single crystal,” Opt. Mater. 13, 293–297 (1999).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. L. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14, 2238–2247 (1997).
[CrossRef]

Wang, J.

B.-S. Lu, J. Wang, H.-F. Pan, M.-H. Jiang, E. Q. Liu, and X. Y. Hou, “Laser self-doubling in neodymium yttrium aluminum borate,” J. Appl. Phys. 66, 6052–6054 (1989).
[CrossRef]

Watanabe, M.

M. Watanabe, K. Hayasaka, H. Imajo, R. Ohmukai, and S. Urabe, “Sum frequency generation near 194 nm with an external cavity by simultaneous enhancement of frequency-stabilized fundamental lasers,” Jpn. J. Appl. Phys. 33, 1599–1602 (1994).
[CrossRef]

Wei, Y.

F. Huang, Q. Luo, T. Lou, T. Yu, J. Dong, B. Lei, and Y. Wei, “Tunable solid state UV laser,” Opt. Laser Technol. 33, 111–115 (2001).
[CrossRef]

Wieman, C. E.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995).
[CrossRef] [PubMed]

Yamatsu, H.

M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, and S. Kubota, “Deep UV mastering using an all-solid-state 266 nm laser for an over 20 Gbytes/layer capacity disk,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
[CrossRef]

Y. Kaneda, S. Kubota, H. Yamatsu, M. Furuki, K. Kurokawa, and T. Kashiwagi, “Disk mastering processes with an all-solid-state ultraviolet laser,” Jpn. J. Appl. Phys. 37, 2125–2129 (1998).
[CrossRef]

Yap, Y. K.

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. 30, 1–54 (2000).
[CrossRef]

Ye, Q.

Q. Ye and B. H. T. Chai, “Crystal growth of YCa4O(BO3)3 and its orientation,” J. Cryst. Growth 197, 228–235 (1999).
[CrossRef]

Q. Ye, L. Shah, J. Eichenholz, D. Hammons, R. Peale, M. Richardson, A. Chin, and B. H. T. Chai, “Investigation of diode-pumped, self-frequency doubled RGB lasers from Nd:YCOB crystals,” Opt. Commun. 164, 33–37 (1997).
[CrossRef]

Yoshimura, M.

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. 30, 1–54 (2000).
[CrossRef]

Yu, T.

F. Huang, Q. Luo, T. Lou, T. Yu, J. Dong, B. Lei, and Y. Wei, “Tunable solid state UV laser,” Opt. Laser Technol. 33, 111–115 (2001).
[CrossRef]

Zhang, S.

J. Lu, G. Li, J. Liu, S. Zhang, H. Chen, M. Jiang, and Z. Shao, “Second harmonic generation and self frequency doubling performance in Nd:GdCa4O(BO3)3 crystal,” Opt. Commun. 168, 405–408 (1999).
[CrossRef]

Zhenhuan, C.

Appl. Phys. Lett. (9)

T. Makino, N. T. Tuan, H. D. Sun, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Temperature dependence of near ultraviolet photoluminescence in ZnO/(MgO, Zn)O multiple quantum wells,” Appl. Phys. Lett. 78, 1979–1981 (2001).
[CrossRef]

Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakumura, “Dynamics of optical gain in InxGa1−xN multi-quantum-well-based laser diodes,” Appl. Phys. Lett. 77, 2151–2153 (2000).
[CrossRef]

S. Bidnyk, J. B. Lam, D. Little, Y. H. Kwon, J. J. Song, G. E. Bulman, H. S. Kong, and T. J. Schmidt, “Mechanism of efficient ultraviolet lasing in GaN/AlGaN separate-confinement heterostructures,” Appl. Phys. Lett. 75, 3905–3907 (1999).
[CrossRef]

A. Lien, R. A. John, M. Angelopoulos, K. E. Lee, H. Takano, K. Tajima, and A. Takenaka, “UV modification of surface pretilt of alignment layers for multidomain liquid crystal displays,” Appl. Phys. Lett. 67, 3108–3110 (1995).
[CrossRef]

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76, 1234–1236 (2000).
[CrossRef]

D. Jaque, J. Capmany, F. Molero, and J. García Solé, “Blue light laser source by frequency sum in Nd:YAB,” Appl. Phys. Lett. 73, 3659–3661 (1998).
[CrossRef]

D. Jaque, J. Capmany, and J. García Solé, “Red, green and blue laser light from a single NYAB crystal based on laser oscillation at 1.3 μm,” Appl. Phys. Lett. 75, 325–327 (1999).
[CrossRef]

D. Jaque, J. Capmany, and J. García Solé, “Continuous wave laser radiation at 669 nm from a self-frequency-doubled laser of YAl3(BO3)4:Nd,” Appl. Phys. Lett. 74, 1788–1791 (1999).
[CrossRef]

T. Ukachi, R. J. Lane, W. R. Bosenberg, and C. L. Tang, “Measurements of noncritically phase-matched second-harmonic generation in a LiB3O5 crystal,” Appl. Phys. Lett. 57, 980–982 (1990).
[CrossRef]

Appl. Spectrosc. (1)

Chin. Phys. Lett. (1)

X. Y. Chen, Z. D. Luo, and Y. D. Huang, “Modelling of the self sum-frequency-mixing laser,” Chin. Phys. Lett. 18, 230–232 (2001).
[CrossRef]

J. Alloys Comp. (1)

G. Aka, F. Mougel, F. Auge, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloys Comp. 303, 401–408 (2000).
[CrossRef]

J. Appl. Phys. (2)

B.-S. Lu, J. Wang, H.-F. Pan, M.-H. Jiang, E. Q. Liu, and X. Y. Hou, “Laser self-doubling in neodymium yttrium aluminum borate,” J. Appl. Phys. 66, 6052–6054 (1989).
[CrossRef]

D. Jaque and J. J. Romero, “Continuous wave ultraviolet laser source based on self-frequency-sum-mixing in Nd3+:YAl3(BO3)4,” J. Appl. Phys. 90, 1070–1072 (2001).
[CrossRef]

J. Cryst. Growth (1)

Q. Ye and B. H. T. Chai, “Crystal growth of YCa4O(BO3)3 and its orientation,” J. Cryst. Growth 197, 228–235 (1999).
[CrossRef]

J. Lumin. (1)

A. Brenier and G. Boulon, “Self-frequency summing NYAB laser for tunable UV generation,” J. Lumin. 86, 125–128 (2000).
[CrossRef]

J. Opt. Soc. Am. B (3)

Jpn. J. Appl. Phys. (3)

M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, and S. Kubota, “Deep UV mastering using an all-solid-state 266 nm laser for an over 20 Gbytes/layer capacity disk,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
[CrossRef]

M. Watanabe, K. Hayasaka, H. Imajo, R. Ohmukai, and S. Urabe, “Sum frequency generation near 194 nm with an external cavity by simultaneous enhancement of frequency-stabilized fundamental lasers,” Jpn. J. Appl. Phys. 33, 1599–1602 (1994).
[CrossRef]

Y. Kaneda, S. Kubota, H. Yamatsu, M. Furuki, K. Kurokawa, and T. Kashiwagi, “Disk mastering processes with an all-solid-state ultraviolet laser,” Jpn. J. Appl. Phys. 37, 2125–2129 (1998).
[CrossRef]

Mater. Sci. Eng. (1)

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. 30, 1–54 (2000).
[CrossRef]

Opt. Commun. (4)

S. Sayama and M. Ohtsu, “Tunable UV cw generation by frequency tripling of a Ti:sapphire laser,” Opt. Commun. 137, 295–298 (1997).
[CrossRef]

S. Sayama and M. Ohtsu, “Tunable UV cw generation at 276 nm wavelength by frequency conversion of laser diodes,” Opt. Commun. 145, 95–97 (1998).
[CrossRef]

J. Lu, G. Li, J. Liu, S. Zhang, H. Chen, M. Jiang, and Z. Shao, “Second harmonic generation and self frequency doubling performance in Nd:GdCa4O(BO3)3 crystal,” Opt. Commun. 168, 405–408 (1999).
[CrossRef]

Q. Ye, L. Shah, J. Eichenholz, D. Hammons, R. Peale, M. Richardson, A. Chin, and B. H. T. Chai, “Investigation of diode-pumped, self-frequency doubled RGB lasers from Nd:YCOB crystals,” Opt. Commun. 164, 33–37 (1997).
[CrossRef]

Opt. Laser Technol. (1)

F. Huang, Q. Luo, T. Lou, T. Yu, J. Dong, B. Lei, and Y. Wei, “Tunable solid state UV laser,” Opt. Laser Technol. 33, 111–115 (2001).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (4)

F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, “Cw blue laser generation by self-sum frequency mixing in Nd:Ca4GdO(BO3)3 (Nd:GdCOB) single crystal,” Opt. Mater. 13, 293–297 (1999).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

A. Brenier, G. Boulon, D. Jaque, and J. García Solé, “Self frequency summing NYAB laser for tunable blue generation,” Opt. Mater. 13, 311–317 (1999).
[CrossRef]

D. Vivien, F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, P. Aschehoug, J. M. Benitez, N. L. Nain, and M. Jacquet, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16, 213–220 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995).
[CrossRef] [PubMed]

Proc. SPIE (1)

Z. D. Luo, “Features and applications of a new self-frequency-doubling laser crystals-NYAB,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals, J. T. Lin, ed., Proc. SPIE 1104, 132–137 (1989).
[CrossRef]

Prog. Natural Sci. (1)

Z. D. Luo, “Determination of optimum neodymium concentration in NYAB self frequency doubling laser,” Prog. Natural Sci. 4, 504–507 (1994).

Other (5)

N. Hodgson and H. Weber, Optical Resonators: Fundamentals, Advanced Concepts and Applications (Springer-Verlag, Berlin, 1997).

F. Mougel, G. Aka, F. Salin, D. Pelenc, B. Ferrand, A. Kahan-Harari, and D. Vivien, “Accurate second harmonic generation phase matching angles prediction and evaluation of nonlinear coefficients of YCOB crystal,” in Advanced Solid State Lasers, Vol. 26 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1999), pp. 709–714.

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).

Y. Kaneda and S. Kubota, “Continuous wave 355 nm all solid state laser,” in Conference on Lasers and Electro Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 236–242.

A. A. Kaminskii, Laser Crystals (Springer-Verlag, Berlin, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

SFSM phase-matching curves as a function of pump wavelength obtained for the two main IR laser channels and for the three materials studied here. Vertical dotted lines, spectral range in which emissions from the argon laser occur.

Fig. 2
Fig. 2

Polarized absorption spectra of (a) NYAB and (b) NYCOB crystals in the pump–UV spectral range. The contributions of Nd3+ ions and of absorption edge are indicated.

Fig. 3
Fig. 3

Calculated UV output power obtained from a 2-W argon-pumped NYAB crystal as a function of Nd3+ concentration and crystal length. (a), (b) IR oscillation at 1062 and 1338 nm, respectively. Pump wavelength, 514.5 nm.

Fig. 4
Fig. 4

Calculated IR (filled squares) and UV (open circles) output power from a 5-mm NYAB crystal as a function of incident pump power. Crystal concentration, 15 at. %; pump wavelength, 514.5 nm; IR laser wavelength, (a) 1062 and (b) 1338 nm.

Fig. 5
Fig. 5

Calculated UV output power obtained from a 2-W argon-pumped NYCOB crystal as a function of Nd3+ concentration and crystal length. (a), (b) IR oscillation at 1060 and 1332 nm, respectively. Pump wavelength, 514.5 nm.

Fig. 6
Fig. 6

Calculated IR (filled squares) and UV (open circles) output power from a 5-mm NYCOB crystal as a function of incident pump power. Crystal concentration, 5 and 6 at. % for (a) and (b), respectively. Pump wavelength, 514.5 nm; IR laser wavelength, (a) 1060 and (b) 1332 nm.

Tables (4)

Tables Icon

Table 1 SFSM Phase-Matching Angles Obtained for NYAB and NYCOB Crystals As a Function of Argon Wavelength and Nd3+ Ion Oscillating Channel

Tables Icon

Table 2 Ultraviolet Wavelength As a Function of Pump and IR, Laser Wavelengths for SFSM in NYABa

Tables Icon

Table 3 Nonlinear Coefficient d, Nd3+ Dependence of the Fluorescence Lifetime of the Metastable State τF, Stimulated-Emission Cross Sections That Correspond to the Two Main IR Channels,a and Internal Optical Loss Factor L for NYAB and NYCOB Crystals

Tables Icon

Table 4 Ultraviolet Wavelength As a Function of Pump and IR Laser Wavelengths for SFSM in NYCOBa

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

1λUV=1λAr+1λIR.
nUVe(θpm)1λUV=nAro1λAr+nIRo1λIR,
nUVXY(φpm)1λUV=npumpz1λpump+nlaserz1λlaser,
αUVnet=αedge+αion=αedge+σionN,
PIRout=(PArabs-Pth)ηIR={PAr[1-exp(-σArNl)]-Pth}λArλIRTT+L,
Pth=πhυpump(wpump2¯+wIR2¯)(L+T)4σemτF,
EIR(x)=EIR=4PIRintπwIR2¯cε0nIR1/2,
EAr(x)=EAr(x=0)exp-σArN2x=4PArπwAr2¯cε0nAr1/2 exp-σArN2x,
dEUV(x)dx=2πdnUVλUVEIREAr(x)-αUVnet2EUV(x),
EUV(x)=4πdnUVλUV(αUVnet-σArN)EIREAr(x=0)×exp-σArN2x-exp-αUVnet2x.
PUV=wUV2¯cε0nUV4|EUV(x=l)|2,

Metrics