Abstract

We report soliton pulse formation and amplification and soliton-self-frequency shifting in an anomalously dispersive, Yb3+-doped holey fiber amplifier seeded with pulses from an Yb3+-doped, 1.06-µm fiber based mode-locked oscillator. Our fiber-based system provides a highly practical, all-diode-pumped, continuously tunable femtosecond pulse source operational in the important and difficult to reach wavelength range from 1.06 to 1.33 µm. In other experiments multipulse, multicolored soliton formation was observed with wavelength-shifted pulsed output to beyond 1.58 µm. Supercontinuum generation and nonlinear compression of pulses to 65 fs were also obtained with other configurations.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
    [CrossRef] [PubMed]
  2. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
    [CrossRef] [PubMed]
  3. E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel’makh, and A. A. Fomichev, “Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers,” JETP Lett. 41, 294–297 (1985).
  4. N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325–327 (1999).
    [CrossRef]
  5. M. E. Fermann, A. Galvanauskas, M. L. Stock, K. K. Wong, D. Harter, and L. Goldberg, “Ultrawide tunable Er soliton fiber laser amplified in Yb-doped fiber,” Opt. Lett. 24, 1428–1430 (1999).
    [CrossRef]
  6. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  7. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
    [CrossRef]
  8. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093–1102 (1999).
    [CrossRef]
  9. T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
    [CrossRef]
  10. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001).
    [CrossRef]
  11. J. H. Price, W. Belardi, L. Lefort, T. M. Monro, and D. J. Richardson, “Nonlinear pulse compression, dispersion com-pensation, and soliton propagation in holey fiber at 1 mi- cron,” in Nonlinear Guided Waves and Their Applications, Vol. 55 of OSA trends in Optics and Technology Series (Optical Society of America, Washington, D.C., 2001), paper WB1–2.
  12. W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, “Soliton effects in photonic crystal fibres at 850 nm,” Electron. Lett. 36, 53–55 (2000).
    [CrossRef]
  13. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).
  14. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
    [CrossRef] [PubMed]
  15. D. J. Richardson, V. V. Afanasjev, A. B. Grudinin, and D. N. Payne, “Amplification of femtosecond pulses in a passive, all-fiber soliton source,” Opt. Lett. 17, 1596–1598 (1992).
    [CrossRef] [PubMed]
  16. J. T. Manassah and B. Gross, “Propagation of femtosecond pulses in a fiber amplifier,” Opt. Commun. 122, 71–82 (1995).
    [CrossRef]
  17. J. H. Price, L. Lefort, D. J. Richardson, G. J. Spuhler, R. Paschotta, U. Keller, C. Barty, A. Fry, and J. Weston, “A practical, low noise, stretched pulse Yb 3+ doped fiber laser,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Op- tical Society of America, Washington, D.C., 2001), paper CTuQ6.
  18. V. Cautaerts, D. J. Richardson, R. Paschotta, and D. C. Hanna, “Stretched pulse Yb3+: silica fiber laser,” Opt. Lett. 22, 316–318 (1997).
    [CrossRef] [PubMed]
  19. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-Fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993).
    [CrossRef] [PubMed]
  20. M. H. Ober, M. Hofer, U. Keller, and T. H. Chiu, “Self-starting diode-pumped femtosecond Nd fiber laser,” Opt. Lett. 18, 1532–1534 (1993).
    [CrossRef]
  21. P. J. Bennett, T. M. Monro, and D. J. Richardson, “Toward practical holey fiber technology: fabrication, splicing, modeling, and characterization,” Opt. Lett. 24, 1203–1205 (1999).
    [CrossRef]
  22. K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, “Modelocked laser based on ytterbium doped holey fibre,” Electron. Lett. 37, 560–561 (2001).
    [CrossRef]
  23. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Modeling large air fraction holey optical fibers,” J. Lightwave Technol. 18, 50–56 (2000).
    [CrossRef]
  24. T. M. Monro, N. G. Broderick, and D. J. Richardson, “Exploring the optical properties of holey fibers,” in Nanoscale Linear and Nonlinear Optics: International School on Quantum Electronics, Erice, Sicily, July 2000 AIP Conf. Proc. 560, 123–128 (2001).
    [CrossRef]

2001 (3)

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001).
[CrossRef]

K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, “Modelocked laser based on ytterbium doped holey fibre,” Electron. Lett. 37, 560–561 (2001).
[CrossRef]

T. M. Monro, N. G. Broderick, and D. J. Richardson, “Exploring the optical properties of holey fibers,” in Nanoscale Linear and Nonlinear Optics: International School on Quantum Electronics, Erice, Sicily, July 2000 AIP Conf. Proc. 560, 123–128 (2001).
[CrossRef]

2000 (5)

T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Modeling large air fraction holey optical fibers,” J. Lightwave Technol. 18, 50–56 (2000).
[CrossRef]

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, “Soliton effects in photonic crystal fibres at 850 nm,” Electron. Lett. 36, 53–55 (2000).
[CrossRef]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

1999 (5)

1997 (1)

1995 (1)

J. T. Manassah and B. Gross, “Propagation of femtosecond pulses in a fiber amplifier,” Opt. Commun. 122, 71–82 (1995).
[CrossRef]

1993 (2)

1992 (1)

1986 (2)

1985 (1)

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel’makh, and A. A. Fomichev, “Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers,” JETP Lett. 41, 294–297 (1985).

Afanasjev, V. V.

Arriaga, J.

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, “Soliton effects in photonic crystal fibres at 850 nm,” Electron. Lett. 36, 53–55 (2000).
[CrossRef]

Bennett, P. J.

Birks, T. A.

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

Broderick, N. G.

T. M. Monro, N. G. Broderick, and D. J. Richardson, “Exploring the optical properties of holey fibers,” in Nanoscale Linear and Nonlinear Optics: International School on Quantum Electronics, Erice, Sicily, July 2000 AIP Conf. Proc. 560, 123–128 (2001).
[CrossRef]

Broderick, N. G. R.

Cautaerts, V.

Chandalia, J. K.

Chiu, T. H.

Dianov, E. M.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel’makh, and A. A. Fomichev, “Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers,” JETP Lett. 41, 294–297 (1985).

Eggleton, B. J.

Fermann, M. E.

Fomichev, A. A.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel’makh, and A. A. Fomichev, “Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers,” JETP Lett. 41, 294–297 (1985).

Furusawa, K.

K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, “Modelocked laser based on ytterbium doped holey fibre,” Electron. Lett. 37, 560–561 (2001).
[CrossRef]

Galvanauskas, A.

Goldberg, L.

Gordon, J. P.

Goto, T.

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325–327 (1999).
[CrossRef]

Gross, B.

J. T. Manassah and B. Gross, “Propagation of femtosecond pulses in a fiber amplifier,” Opt. Commun. 122, 71–82 (1995).
[CrossRef]

Grudinin, A. B.

Hanna, D. C.

Hänsch, T. W.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Harter, D.

Haus, H. A.

Hofer, M.

Holzwarth, R.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Ippen, E. P.

Karasik, A. Y.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel’makh, and A. A. Fomichev, “Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers,” JETP Lett. 41, 294–297 (1985).

Keller, U.

Knight, J. C.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, “Soliton effects in photonic crystal fibres at 850 nm,” Electron. Lett. 36, 53–55 (2000).
[CrossRef]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

Knox, W. H.

Kosinski, S. G.

Liu, X.

Mamyshev, P. V.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel’makh, and A. A. Fomichev, “Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers,” JETP Lett. 41, 294–297 (1985).

Manassah, J. T.

J. T. Manassah and B. Gross, “Propagation of femtosecond pulses in a fiber amplifier,” Opt. Commun. 122, 71–82 (1995).
[CrossRef]

Mitschke, F. M.

Mogilevtsev, D.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

Mollenauer, L. F.

Monro, T. M.

K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, “Modelocked laser based on ytterbium doped holey fibre,” Electron. Lett. 37, 560–561 (2001).
[CrossRef]

T. M. Monro, N. G. Broderick, and D. J. Richardson, “Exploring the optical properties of holey fibers,” in Nanoscale Linear and Nonlinear Optics: International School on Quantum Electronics, Erice, Sicily, July 2000 AIP Conf. Proc. 560, 123–128 (2001).
[CrossRef]

T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Modeling large air fraction holey optical fibers,” J. Lightwave Technol. 18, 50–56 (2000).
[CrossRef]

T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093–1102 (1999).
[CrossRef]

P. J. Bennett, T. M. Monro, and D. J. Richardson, “Toward practical holey fiber technology: fabrication, splicing, modeling, and characterization,” Opt. Lett. 24, 1203–1205 (1999).
[CrossRef]

Nelson, L. E.

Nishizawa, N.

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325–327 (1999).
[CrossRef]

Ober, M. H.

Ortigosa-Blanch, A.

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, “Soliton effects in photonic crystal fibres at 850 nm,” Electron. Lett. 36, 53–55 (2000).
[CrossRef]

Paschotta, R.

Payne, D. N.

Petropoulos, P.

K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, “Modelocked laser based on ytterbium doped holey fibre,” Electron. Lett. 37, 560–561 (2001).
[CrossRef]

Prokhorov, A. M.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel’makh, and A. A. Fomichev, “Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers,” JETP Lett. 41, 294–297 (1985).

Ranka, J. K.

Richardson, D. J.

Russell, P. St. J.

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, “Soliton effects in photonic crystal fibres at 850 nm,” Electron. Lett. 36, 53–55 (2000).
[CrossRef]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

Serkin, V. N.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel’makh, and A. A. Fomichev, “Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers,” JETP Lett. 41, 294–297 (1985).

Silvestre, E.

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, “Soliton effects in photonic crystal fibres at 850 nm,” Electron. Lett. 36, 53–55 (2000).
[CrossRef]

Stel’makh, M. F.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel’makh, and A. A. Fomichev, “Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers,” JETP Lett. 41, 294–297 (1985).

Stentz, A. J.

Stock, M. L.

Tamura, K.

Udem, T.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Wadsworth, W. J.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, “Soliton effects in photonic crystal fibres at 850 nm,” Electron. Lett. 36, 53–55 (2000).
[CrossRef]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

Windeler, R. S.

Wong, K. K.

Xu, C.

AIP Conf. Proc. (1)

T. M. Monro, N. G. Broderick, and D. J. Richardson, “Exploring the optical properties of holey fibers,” in Nanoscale Linear and Nonlinear Optics: International School on Quantum Electronics, Erice, Sicily, July 2000 AIP Conf. Proc. 560, 123–128 (2001).
[CrossRef]

Electron. Lett. (2)

K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, “Modelocked laser based on ytterbium doped holey fibre,” Electron. Lett. 37, 560–561 (2001).
[CrossRef]

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, “Soliton effects in photonic crystal fibres at 850 nm,” Electron. Lett. 36, 53–55 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325–327 (1999).
[CrossRef]

J. Lightwave Technol. (2)

JETP Lett. (1)

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel’makh, and A. A. Fomichev, “Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers,” JETP Lett. 41, 294–297 (1985).

Opt. Commun. (1)

J. T. Manassah and B. Gross, “Propagation of femtosecond pulses in a fiber amplifier,” Opt. Commun. 122, 71–82 (1995).
[CrossRef]

Opt. Lett. (11)

D. J. Richardson, V. V. Afanasjev, A. B. Grudinin, and D. N. Payne, “Amplification of femtosecond pulses in a passive, all-fiber soliton source,” Opt. Lett. 17, 1596–1598 (1992).
[CrossRef] [PubMed]

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001).
[CrossRef]

F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
[CrossRef] [PubMed]

J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
[CrossRef] [PubMed]

M. E. Fermann, A. Galvanauskas, M. L. Stock, K. K. Wong, D. Harter, and L. Goldberg, “Ultrawide tunable Er soliton fiber laser amplified in Yb-doped fiber,” Opt. Lett. 24, 1428–1430 (1999).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

V. Cautaerts, D. J. Richardson, R. Paschotta, and D. C. Hanna, “Stretched pulse Yb3+: silica fiber laser,” Opt. Lett. 22, 316–318 (1997).
[CrossRef] [PubMed]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-Fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993).
[CrossRef] [PubMed]

M. H. Ober, M. Hofer, U. Keller, and T. H. Chiu, “Self-starting diode-pumped femtosecond Nd fiber laser,” Opt. Lett. 18, 1532–1534 (1993).
[CrossRef]

P. J. Bennett, T. M. Monro, and D. J. Richardson, “Toward practical holey fiber technology: fabrication, splicing, modeling, and characterization,” Opt. Lett. 24, 1203–1205 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Other (3)

J. H. Price, L. Lefort, D. J. Richardson, G. J. Spuhler, R. Paschotta, U. Keller, C. Barty, A. Fry, and J. Weston, “A practical, low noise, stretched pulse Yb 3+ doped fiber laser,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Op- tical Society of America, Washington, D.C., 2001), paper CTuQ6.

J. H. Price, W. Belardi, L. Lefort, T. M. Monro, and D. J. Richardson, “Nonlinear pulse compression, dispersion com-pensation, and soliton propagation in holey fiber at 1 mi- cron,” in Nonlinear Guided Waves and Their Applications, Vol. 55 of OSA trends in Optics and Technology Series (Optical Society of America, Washington, D.C., 2001), paper WB1–2.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup, showing the in-house mode-locked Yb3+ fiber seed laser (diode pumped), the launch arrangement for seeding the pulses and the pump laser to the Yb3+ doped holey fiber amplifier, and an inset SEM of the holey fiber structure. HR, high-reflectivity mirror; +ve, positive, WDM, wavelength-division multiplexer; PBS, polarizing beam splitter.

Fig. 2
Fig. 2

Representation of the pulse evolution with propagation distance along the holey fiber amplifier: (a) frequency domain, optical spectra; (b) time domain, pulse duration/peak power.

Fig. 3
Fig. 3

Seed pulses from a mode-locked laser: (a) Autocorrelation of chirped seed pulses and of unchiped pulses (ΔνΔτ0.55) compressed by use of a diffraction grating pair; (b) pulse spectrum.

Fig. 4
Fig. 4

Transmission spectrum (after a polarization beam splitter) showing the high birefringence of this elliptical core holey fiber (1.2-m length).

Fig. 5
Fig. 5

Characteristics of the Yb3+-doped holey fiber. (a) SEM of the structure, showing the dimensions of the elliptical core. (The metallic coating required for producing SEM images enlarges the fine silica bridges by ∼50 nm, which is taken into account when we calculate the fiber characteristics.) (b) Dispersion predictions for the two principal polarization axes. (c) Effective mode area (Aeff) predictions for the two principal polarization axes.

Fig. 6
Fig. 6

Tunable single-color solitons: (a) superimposed spectra of the solitons shifted to progressively longer wavelengths (1.06–1.33 µm), (b) plot of the soliton wavelength versus amplifier (incident) pump power.

Fig. 7
Fig. 7

Autocorrelation measurements of the wavelength-shifted solitons. (a) Spectrum and corresponding autocorrelation traces for the seed pulse for a wavelength-shifted pulse at 1.24 µm. (b) Plot of pulse duration and time–bandwidth product versus soliton pulse wavelength.

Fig. 8
Fig. 8

Multicolor solitons, showing increasingly complex spectra as the amplifier pump power is increased.

Fig. 9
Fig. 9

(a) Typical example of complex multicolored soliton spectra extending to λ1.58 µm. (b) Broadband continuous spectrum extending to λ1.62 µm.

Fig. 10
Fig. 10

Temporally compressed pulses: (a) autocorrelation trace (τ67 fs), (b) spectra of a seed pulse (dashed curve) and a compressed pulse (solid curve).

Metrics