Abstract

We propose a new scheme for constructing a single-beam dark optical trap that minimizes light-induced perturbations of the trapped atoms. The proposed scheme optimizes the trap depth for given trapping laser power and detuning by creating a light envelope with (a) an almost minimal surface area for a given volume and (b) the minimal wall thickness that is allowed by diffraction. The stiffness of the trap’s walls, combined with the large detuning allowed by the efficient distribution of light intensity, yields a low spontaneous photon scattering rate for the trapped atoms. Our trap also optimizes the loading efficiency by maximizing the geometrical overlap between a magneto-optical trap and the dipole trap. We demonstrate this new scheme by generating the proposed light distribution of a single-beam dark trap with a trap depth that is ∼33 times larger than that of existing blue-detuned traps and ∼13 times larger than that of a red-detuned trap with the same diameter, detuning, and laser power. Trapped atoms are predicted to have a decoherence rate that is >200 times smaller than in existing single-beam dark traps and ∼1800 times smaller than in a red-detuned trap with the same diameter, depth, and laser power.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Davidson, H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu, “Long atomic coherence times in an optical dipole trap,” Phys. Rev. Lett. 74, 1311–1314 (1995).
    [CrossRef] [PubMed]
  2. R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At., Mol., Opt. Phys. 42, 95–170 (2000).
    [CrossRef]
  3. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
    [CrossRef] [PubMed]
  4. H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu, “Raman cooling of atoms in an optical dipole trap,” Phys. Rev. Lett. 76, 2658–2661 (1996).
    [CrossRef] [PubMed]
  5. Yu. B. Ovchinnikov, I. Manek, A. I. Sidorov, G. Wasik, and R. Grimm, “Gravito-optical atom trap based on a conical hollow beam,” Europhys. Lett. 43, 510–515 (1998).
    [CrossRef]
  6. T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
    [CrossRef]
  7. R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
    [CrossRef]
  8. R. Ozeri, L. Khaykovich, N. Friedman, and N. Davidson, “Large-volume single-beam dark optical trap for atoms using binary phase elements,” J. Opt. Soc. Am. B 17, 1113–1116 (2000).
    [CrossRef]
  9. N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, “Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap,” Phys. Rev. A 61, 031403 (R) (2000).
    [CrossRef]
  10. L. Khaykovich, N. Friedman, S. Baluschev, D. Fathi, and N. Davidson, “Ultrasensitive two-photon spectroscopy based on long spin-relaxation time in a dark optical trap,” Europhys. Lett. 50, 454–459 (2000).
    [CrossRef]
  11. V. Milner, J. L. Hanssen, W. C. Campbell, and M. G. Raizen, “Optical billiards for atoms,” Phys. Rev. Lett. 86, 1514–1517 (2001).
    [CrossRef] [PubMed]
  12. N. Friedman, A. Kaplan, D. Carasso, and N. Davidson, “Observation of chaotic and regular dynamics in atom-optics billiards,” Phys. Rev. Lett. 86, 1518–1521 (2001).
    [CrossRef] [PubMed]
  13. S. J. M. Kuppens, K. L. Corwin, K. W. Miller, T. E. Chupp, and C. E. Wieman, “Loading an optical dipole trap,” Phys. Rev. A 62, 013406 (2000).
    [CrossRef]
  14. K. M. O’Hara, S. R. Granade, M. E. Gehm, and J. E. Thomas, “Loading dynamics of CO2 laser traps,” Phys. Rev. A 63, 043403 (2001).
    [CrossRef]
  15. C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, “Evaporative cooling in a crossed dipole trap,” Phys. Rev. Lett. 74, 3577–3580 (1995).
    [CrossRef] [PubMed]
  16. In contrast to that of a blue-detuned trap, for which the volume is clearly defined, the volume of a red-detuned trap is ambiguous. We choose a conservative criterion by identifying the trap’s dimension with the distance between the 1/e2 points of the potential.
  17. J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25, 191–193 (2000).
    [CrossRef]
  18. The smallest ratio of surface area to enclosed volume is of course achieved for a sphere. Our trap generates a dark volume surrounded by two cones attached at their bases. If the height of the cones is equal to their base radius, this ratio is only 6 2 times larger (~12%).
  19. Yu. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997).
    [CrossRef]
  20. J. W. Goodman, Introduction to Fourier Optics, 2nd. ed. (McGraw-Hill, New York, 1996), Chap. 7.
  21. Two exceptions are z=0, where the +1 and −1 orders overlap, yielding a double potential height, and z≈L, where the singularity of (L−z)−1 in Eq. (3) yields extremely high potentials.
  22. K. Gibble and S. Chu, “Laser-cooled Cs frequency standard and a measurement of the frequency shift due to ultracold collisions,” Phys. Rev. Lett. 70, 1771–1774 (1993).
    [CrossRef] [PubMed]
  23. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
    [CrossRef]

2001 (3)

K. M. O’Hara, S. R. Granade, M. E. Gehm, and J. E. Thomas, “Loading dynamics of CO2 laser traps,” Phys. Rev. A 63, 043403 (2001).
[CrossRef]

N. Friedman, A. Kaplan, D. Carasso, and N. Davidson, “Observation of chaotic and regular dynamics in atom-optics billiards,” Phys. Rev. Lett. 86, 1518–1521 (2001).
[CrossRef] [PubMed]

V. Milner, J. L. Hanssen, W. C. Campbell, and M. G. Raizen, “Optical billiards for atoms,” Phys. Rev. Lett. 86, 1514–1517 (2001).
[CrossRef] [PubMed]

2000 (6)

R. Ozeri, L. Khaykovich, N. Friedman, and N. Davidson, “Large-volume single-beam dark optical trap for atoms using binary phase elements,” J. Opt. Soc. Am. B 17, 1113–1116 (2000).
[CrossRef]

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At., Mol., Opt. Phys. 42, 95–170 (2000).
[CrossRef]

J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25, 191–193 (2000).
[CrossRef]

S. J. M. Kuppens, K. L. Corwin, K. W. Miller, T. E. Chupp, and C. E. Wieman, “Loading an optical dipole trap,” Phys. Rev. A 62, 013406 (2000).
[CrossRef]

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, “Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap,” Phys. Rev. A 61, 031403 (R) (2000).
[CrossRef]

L. Khaykovich, N. Friedman, S. Baluschev, D. Fathi, and N. Davidson, “Ultrasensitive two-photon spectroscopy based on long spin-relaxation time in a dark optical trap,” Europhys. Lett. 50, 454–459 (2000).
[CrossRef]

1999 (1)

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
[CrossRef]

1998 (1)

Yu. B. Ovchinnikov, I. Manek, A. I. Sidorov, G. Wasik, and R. Grimm, “Gravito-optical atom trap based on a conical hollow beam,” Europhys. Lett. 43, 510–515 (1998).
[CrossRef]

1997 (2)

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Yu. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997).
[CrossRef]

1996 (1)

H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu, “Raman cooling of atoms in an optical dipole trap,” Phys. Rev. Lett. 76, 2658–2661 (1996).
[CrossRef] [PubMed]

1995 (2)

C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, “Evaporative cooling in a crossed dipole trap,” Phys. Rev. Lett. 74, 3577–3580 (1995).
[CrossRef] [PubMed]

N. Davidson, H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu, “Long atomic coherence times in an optical dipole trap,” Phys. Rev. Lett. 74, 1311–1314 (1995).
[CrossRef] [PubMed]

1993 (1)

K. Gibble and S. Chu, “Laser-cooled Cs frequency standard and a measurement of the frequency shift due to ultracold collisions,” Phys. Rev. Lett. 70, 1771–1774 (1993).
[CrossRef] [PubMed]

1992 (1)

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

1986 (1)

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[CrossRef] [PubMed]

Adams, C. S.

H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu, “Raman cooling of atoms in an optical dipole trap,” Phys. Rev. Lett. 76, 2658–2661 (1996).
[CrossRef] [PubMed]

C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, “Evaporative cooling in a crossed dipole trap,” Phys. Rev. Lett. 74, 3577–3580 (1995).
[CrossRef] [PubMed]

N. Davidson, H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu, “Long atomic coherence times in an optical dipole trap,” Phys. Rev. Lett. 74, 1311–1314 (1995).
[CrossRef] [PubMed]

Arlt, J.

Ashkin, A.

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[CrossRef] [PubMed]

Baluschev, S.

L. Khaykovich, N. Friedman, S. Baluschev, D. Fathi, and N. Davidson, “Ultrasensitive two-photon spectroscopy based on long spin-relaxation time in a dark optical trap,” Europhys. Lett. 50, 454–459 (2000).
[CrossRef]

Bjorkholm, J. E.

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[CrossRef] [PubMed]

Cable, A.

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[CrossRef] [PubMed]

Campbell, W. C.

V. Milner, J. L. Hanssen, W. C. Campbell, and M. G. Raizen, “Optical billiards for atoms,” Phys. Rev. Lett. 86, 1514–1517 (2001).
[CrossRef] [PubMed]

Carasso, D.

N. Friedman, A. Kaplan, D. Carasso, and N. Davidson, “Observation of chaotic and regular dynamics in atom-optics billiards,” Phys. Rev. Lett. 86, 1518–1521 (2001).
[CrossRef] [PubMed]

Chu, S.

H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu, “Raman cooling of atoms in an optical dipole trap,” Phys. Rev. Lett. 76, 2658–2661 (1996).
[CrossRef] [PubMed]

C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, “Evaporative cooling in a crossed dipole trap,” Phys. Rev. Lett. 74, 3577–3580 (1995).
[CrossRef] [PubMed]

N. Davidson, H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu, “Long atomic coherence times in an optical dipole trap,” Phys. Rev. Lett. 74, 1311–1314 (1995).
[CrossRef] [PubMed]

K. Gibble and S. Chu, “Laser-cooled Cs frequency standard and a measurement of the frequency shift due to ultracold collisions,” Phys. Rev. Lett. 70, 1771–1774 (1993).
[CrossRef] [PubMed]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[CrossRef] [PubMed]

Chupp, T. E.

S. J. M. Kuppens, K. L. Corwin, K. W. Miller, T. E. Chupp, and C. E. Wieman, “Loading an optical dipole trap,” Phys. Rev. A 62, 013406 (2000).
[CrossRef]

Corwin, K. L.

S. J. M. Kuppens, K. L. Corwin, K. W. Miller, T. E. Chupp, and C. E. Wieman, “Loading an optical dipole trap,” Phys. Rev. A 62, 013406 (2000).
[CrossRef]

Davidson, N.

N. Friedman, A. Kaplan, D. Carasso, and N. Davidson, “Observation of chaotic and regular dynamics in atom-optics billiards,” Phys. Rev. Lett. 86, 1518–1521 (2001).
[CrossRef] [PubMed]

R. Ozeri, L. Khaykovich, N. Friedman, and N. Davidson, “Large-volume single-beam dark optical trap for atoms using binary phase elements,” J. Opt. Soc. Am. B 17, 1113–1116 (2000).
[CrossRef]

L. Khaykovich, N. Friedman, S. Baluschev, D. Fathi, and N. Davidson, “Ultrasensitive two-photon spectroscopy based on long spin-relaxation time in a dark optical trap,” Europhys. Lett. 50, 454–459 (2000).
[CrossRef]

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, “Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap,” Phys. Rev. A 61, 031403 (R) (2000).
[CrossRef]

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
[CrossRef]

N. Davidson, H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu, “Long atomic coherence times in an optical dipole trap,” Phys. Rev. Lett. 74, 1311–1314 (1995).
[CrossRef] [PubMed]

C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, “Evaporative cooling in a crossed dipole trap,” Phys. Rev. Lett. 74, 3577–3580 (1995).
[CrossRef] [PubMed]

Fathi, D.

L. Khaykovich, N. Friedman, S. Baluschev, D. Fathi, and N. Davidson, “Ultrasensitive two-photon spectroscopy based on long spin-relaxation time in a dark optical trap,” Europhys. Lett. 50, 454–459 (2000).
[CrossRef]

Friedman, N.

N. Friedman, A. Kaplan, D. Carasso, and N. Davidson, “Observation of chaotic and regular dynamics in atom-optics billiards,” Phys. Rev. Lett. 86, 1518–1521 (2001).
[CrossRef] [PubMed]

R. Ozeri, L. Khaykovich, N. Friedman, and N. Davidson, “Large-volume single-beam dark optical trap for atoms using binary phase elements,” J. Opt. Soc. Am. B 17, 1113–1116 (2000).
[CrossRef]

L. Khaykovich, N. Friedman, S. Baluschev, D. Fathi, and N. Davidson, “Ultrasensitive two-photon spectroscopy based on long spin-relaxation time in a dark optical trap,” Europhys. Lett. 50, 454–459 (2000).
[CrossRef]

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, “Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap,” Phys. Rev. A 61, 031403 (R) (2000).
[CrossRef]

Gehm, M. E.

K. M. O’Hara, S. R. Granade, M. E. Gehm, and J. E. Thomas, “Loading dynamics of CO2 laser traps,” Phys. Rev. A 63, 043403 (2001).
[CrossRef]

Gibble, K.

K. Gibble and S. Chu, “Laser-cooled Cs frequency standard and a measurement of the frequency shift due to ultracold collisions,” Phys. Rev. Lett. 70, 1771–1774 (1993).
[CrossRef] [PubMed]

Granade, S. R.

K. M. O’Hara, S. R. Granade, M. E. Gehm, and J. E. Thomas, “Loading dynamics of CO2 laser traps,” Phys. Rev. A 63, 043403 (2001).
[CrossRef]

Grimm, R.

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At., Mol., Opt. Phys. 42, 95–170 (2000).
[CrossRef]

Yu. B. Ovchinnikov, I. Manek, A. I. Sidorov, G. Wasik, and R. Grimm, “Gravito-optical atom trap based on a conical hollow beam,” Europhys. Lett. 43, 510–515 (1998).
[CrossRef]

Yu. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997).
[CrossRef]

Hanssen, J. L.

V. Milner, J. L. Hanssen, W. C. Campbell, and M. G. Raizen, “Optical billiards for atoms,” Phys. Rev. Lett. 86, 1514–1517 (2001).
[CrossRef] [PubMed]

Hirano, T.

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Kaplan, A.

N. Friedman, A. Kaplan, D. Carasso, and N. Davidson, “Observation of chaotic and regular dynamics in atom-optics billiards,” Phys. Rev. Lett. 86, 1518–1521 (2001).
[CrossRef] [PubMed]

Kasevich, M.

H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu, “Raman cooling of atoms in an optical dipole trap,” Phys. Rev. Lett. 76, 2658–2661 (1996).
[CrossRef] [PubMed]

C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, “Evaporative cooling in a crossed dipole trap,” Phys. Rev. Lett. 74, 3577–3580 (1995).
[CrossRef] [PubMed]

N. Davidson, H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu, “Long atomic coherence times in an optical dipole trap,” Phys. Rev. Lett. 74, 1311–1314 (1995).
[CrossRef] [PubMed]

Khaykovich, L.

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, “Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap,” Phys. Rev. A 61, 031403 (R) (2000).
[CrossRef]

L. Khaykovich, N. Friedman, S. Baluschev, D. Fathi, and N. Davidson, “Ultrasensitive two-photon spectroscopy based on long spin-relaxation time in a dark optical trap,” Europhys. Lett. 50, 454–459 (2000).
[CrossRef]

R. Ozeri, L. Khaykovich, N. Friedman, and N. Davidson, “Large-volume single-beam dark optical trap for atoms using binary phase elements,” J. Opt. Soc. Am. B 17, 1113–1116 (2000).
[CrossRef]

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
[CrossRef]

Kitamura, N.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

Koshioka, M.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

Kuga, T.

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Kuppens, S. J. M.

S. J. M. Kuppens, K. L. Corwin, K. W. Miller, T. E. Chupp, and C. E. Wieman, “Loading an optical dipole trap,” Phys. Rev. A 62, 013406 (2000).
[CrossRef]

Lee, H. J.

H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu, “Raman cooling of atoms in an optical dipole trap,” Phys. Rev. Lett. 76, 2658–2661 (1996).
[CrossRef] [PubMed]

C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, “Evaporative cooling in a crossed dipole trap,” Phys. Rev. Lett. 74, 3577–3580 (1995).
[CrossRef] [PubMed]

N. Davidson, H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu, “Long atomic coherence times in an optical dipole trap,” Phys. Rev. Lett. 74, 1311–1314 (1995).
[CrossRef] [PubMed]

Manek, I.

Yu. B. Ovchinnikov, I. Manek, A. I. Sidorov, G. Wasik, and R. Grimm, “Gravito-optical atom trap based on a conical hollow beam,” Europhys. Lett. 43, 510–515 (1998).
[CrossRef]

Yu. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997).
[CrossRef]

Masuhara, H.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

Miller, K. W.

S. J. M. Kuppens, K. L. Corwin, K. W. Miller, T. E. Chupp, and C. E. Wieman, “Loading an optical dipole trap,” Phys. Rev. A 62, 013406 (2000).
[CrossRef]

Milner, V.

V. Milner, J. L. Hanssen, W. C. Campbell, and M. G. Raizen, “Optical billiards for atoms,” Phys. Rev. Lett. 86, 1514–1517 (2001).
[CrossRef] [PubMed]

Misawa, H.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

O’Hara, K. M.

K. M. O’Hara, S. R. Granade, M. E. Gehm, and J. E. Thomas, “Loading dynamics of CO2 laser traps,” Phys. Rev. A 63, 043403 (2001).
[CrossRef]

Ovchinnikov, Y. B.

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At., Mol., Opt. Phys. 42, 95–170 (2000).
[CrossRef]

Ovchinnikov, Yu. B.

Yu. B. Ovchinnikov, I. Manek, A. I. Sidorov, G. Wasik, and R. Grimm, “Gravito-optical atom trap based on a conical hollow beam,” Europhys. Lett. 43, 510–515 (1998).
[CrossRef]

Yu. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997).
[CrossRef]

Ozeri, R.

R. Ozeri, L. Khaykovich, N. Friedman, and N. Davidson, “Large-volume single-beam dark optical trap for atoms using binary phase elements,” J. Opt. Soc. Am. B 17, 1113–1116 (2000).
[CrossRef]

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, “Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap,” Phys. Rev. A 61, 031403 (R) (2000).
[CrossRef]

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
[CrossRef]

Padgett, M. J.

Raizen, M. G.

V. Milner, J. L. Hanssen, W. C. Campbell, and M. G. Raizen, “Optical billiards for atoms,” Phys. Rev. Lett. 86, 1514–1517 (2001).
[CrossRef] [PubMed]

Sasaki, K.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

Shiokawa, N.

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Sidorov, A. I.

Yu. B. Ovchinnikov, I. Manek, A. I. Sidorov, G. Wasik, and R. Grimm, “Gravito-optical atom trap based on a conical hollow beam,” Europhys. Lett. 43, 510–515 (1998).
[CrossRef]

Thomas, J. E.

K. M. O’Hara, S. R. Granade, M. E. Gehm, and J. E. Thomas, “Loading dynamics of CO2 laser traps,” Phys. Rev. A 63, 043403 (2001).
[CrossRef]

Torii, Y.

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Wasik, G.

Yu. B. Ovchinnikov, I. Manek, A. I. Sidorov, G. Wasik, and R. Grimm, “Gravito-optical atom trap based on a conical hollow beam,” Europhys. Lett. 43, 510–515 (1998).
[CrossRef]

Weidemuller, M.

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At., Mol., Opt. Phys. 42, 95–170 (2000).
[CrossRef]

Wieman, C. E.

S. J. M. Kuppens, K. L. Corwin, K. W. Miller, T. E. Chupp, and C. E. Wieman, “Loading an optical dipole trap,” Phys. Rev. A 62, 013406 (2000).
[CrossRef]

Adv. At., Mol., Opt. Phys. (1)

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At., Mol., Opt. Phys. 42, 95–170 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

Europhys. Lett. (2)

Yu. B. Ovchinnikov, I. Manek, A. I. Sidorov, G. Wasik, and R. Grimm, “Gravito-optical atom trap based on a conical hollow beam,” Europhys. Lett. 43, 510–515 (1998).
[CrossRef]

L. Khaykovich, N. Friedman, S. Baluschev, D. Fathi, and N. Davidson, “Ultrasensitive two-photon spectroscopy based on long spin-relaxation time in a dark optical trap,” Europhys. Lett. 50, 454–459 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Phys. Rev. A (4)

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
[CrossRef]

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, “Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap,” Phys. Rev. A 61, 031403 (R) (2000).
[CrossRef]

S. J. M. Kuppens, K. L. Corwin, K. W. Miller, T. E. Chupp, and C. E. Wieman, “Loading an optical dipole trap,” Phys. Rev. A 62, 013406 (2000).
[CrossRef]

K. M. O’Hara, S. R. Granade, M. E. Gehm, and J. E. Thomas, “Loading dynamics of CO2 laser traps,” Phys. Rev. A 63, 043403 (2001).
[CrossRef]

Phys. Rev. Lett. (9)

C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, “Evaporative cooling in a crossed dipole trap,” Phys. Rev. Lett. 74, 3577–3580 (1995).
[CrossRef] [PubMed]

Yu. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997).
[CrossRef]

N. Davidson, H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu, “Long atomic coherence times in an optical dipole trap,” Phys. Rev. Lett. 74, 1311–1314 (1995).
[CrossRef] [PubMed]

K. Gibble and S. Chu, “Laser-cooled Cs frequency standard and a measurement of the frequency shift due to ultracold collisions,” Phys. Rev. Lett. 70, 1771–1774 (1993).
[CrossRef] [PubMed]

V. Milner, J. L. Hanssen, W. C. Campbell, and M. G. Raizen, “Optical billiards for atoms,” Phys. Rev. Lett. 86, 1514–1517 (2001).
[CrossRef] [PubMed]

N. Friedman, A. Kaplan, D. Carasso, and N. Davidson, “Observation of chaotic and regular dynamics in atom-optics billiards,” Phys. Rev. Lett. 86, 1518–1521 (2001).
[CrossRef] [PubMed]

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[CrossRef] [PubMed]

H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu, “Raman cooling of atoms in an optical dipole trap,” Phys. Rev. Lett. 76, 2658–2661 (1996).
[CrossRef] [PubMed]

Other (4)

J. W. Goodman, Introduction to Fourier Optics, 2nd. ed. (McGraw-Hill, New York, 1996), Chap. 7.

Two exceptions are z=0, where the +1 and −1 orders overlap, yielding a double potential height, and z≈L, where the singularity of (L−z)−1 in Eq. (3) yields extremely high potentials.

In contrast to that of a blue-detuned trap, for which the volume is clearly defined, the volume of a red-detuned trap is ambiguous. We choose a conservative criterion by identifying the trap’s dimension with the distance between the 1/e2 points of the potential.

The smallest ratio of surface area to enclosed volume is of course achieved for a sphere. Our trap generates a dark volume surrounded by two cones attached at their bases. If the height of the cones is equal to their base radius, this ratio is only 6 2 times larger (~12%).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optimal dark optical trap generated by use of a telescope, two refractive axicons, and a BPE. The +1 and -1 orders of diffraction are imaged to generate the trap (printed in black). Note that all the elements in this figure, and hence the trap itself, have circular symmetry.

Fig. 2
Fig. 2

Contour maps of the calculated potential for three different optical traps. Each solid curve is the contour corresponding to the trap depth. The dashed curves are contours at 0.5 and 1.5 times the trap depth. All the traps have the same radial dimension. (a) Crossed red-detuned trap, (b) rotating beam trap, (c) the proposed optimal trap (the contour lines practically coincide in this case).

Fig. 3
Fig. 3

(a) Calculated minimal light intensity Imin on the surface of the trap of Fig. 1 as a function of beam waist w0 at z=0, with the parameters specified in the text. For w0=10.5 µm the light intensity on the trap’s surface is almost constant, and therefore the weakest point is maximized. (b) The trap’s darkness ratio, U/Ek (solid curve), and the average spontaneous photon scattering rate γs (dashed line) as functions of w0. U/Ek and γs are minimized for w0=12.5 µm and w0=10.7 µm, respectively. Note that for each value of w0 the laser detuning varies as (1/Imin) to maintain a constant trapping depth.

Fig. 4
Fig. 4

Measured light-intensity cross sections at several planes along the optical axis for the optical configuration of Fig. 1, with the parameters described in the text. The internal circle for z<0 (z>0) is formed by the +1 (-1) diffraction order of the BPE and provides the radial confinement. The external circle is formed by the other diffraction order. For z=0 the two orders exactly overlap and form a single ring with r=1.47 mm.

Fig. 5
Fig. 5

Measured (+) and calculated (solid curve) minimal potential height as a function of the distance along beam propagation direction z for the trap of Fig. 1, with the parameters described in the text. The nearly constant potential height over most of the trap’s length is evidence of optimal use of the laser power.

Tables (1)

Tables Icon

Table 1 Maximum Possible Detuning, Atomic Darkness Factor, and Mean Spontaneous Photon Scattering Rate for the Three Configurations Analyzed in Texta

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Uˆred=k122Pπw02=kPπr2,
Uˆrotating=k2Pπ(2r)2exp-2r2(2r)2=Urede.
U(z)=U(z=0)2L[1+(z/zr)2]1/2(L-z),
Uˆoptimal=k122π1/2P2πrw015rw0Ured.
U= drU(r)exp-U(r)-U0kbT dr exp-U(r)-U0kbT,

Metrics